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Abstract 

My dissertation focuses on developing remote sensing indices for understanding and 

monitoring biodiversity patterns at broad scales. Human activities cause major changes to the 

planet and greatly affect biodiversity. There is an urgent need for better assessments of the 

current status of biodiversity to understand and predict future changes, and to implement 

conservation actions that prevent or reduce biodiversity loss. However, monitoring biodiversity 

over large areas in the field is challenging. Remote sensing provides an opportunity to develop 

indices that are designed for biodiversity assessment, because satellite data are collected 

systematically across broad scales. Vegetation productivity patterns are important determinants 

of species richness and abundance. The Dynamic Habitat Indices (DHIs) derived from satellite 

data are three measures of annual vegetation productivity that have been specifically designed 

for biodiversity assessments. However, so far the DHIs have only been derived from coarse-

resolution satellite imagery, which limits their value for management decisions. My goal was to 

develop the DHIs from medium spatial resolution Landsat data and evaluate the performance of 

the DHIs for modeling species richness and abundance across conterminous United States. 

In my first chapter, I calculated the DHIs using 30-m Landsat and 250-m MODIS data 

and compared both datasets at three spatial extents. The main challenge in calculating the 

Landsat DHIs was low temporal resolution compared with MODIS. I also assessed where the 

Landsat DHIs provided advantages over MODIS DHIs in capturing spatial heterogeneity in 

vegetation productivity. Finally, I compared the Landsat DHIs calculated over different decades. 

Landsat and MODIS DHIs were highly correlated, indicating my approach in calculating 

Landsat DHIs worked well. The comparison Landsat DHIs for the 1990s and the 2010s showed 

strong changes.  



ii 

 

In my second chapter, I evaluated the performance of the DHIs based on Landsat and 

MODIS in modeling species richness of overall species richness and twenty one bird guilds at 

four spatial extents. Overall, the predictive performance of DHIs based on Landsat and MODIS 

for the four spatial extents was very similar. However, Landsat DHI provided slightly higher 

predictive power in modeling some bird guilds including forest affiliates and specialists, 

grassland affiliates and specialists, and shrubland specialists. Landsat DHIs complemented 

topographic and land cover metrics in multivariate models. 

In my third chapter, I tested the usefulness of the Landsat DHIs in modelling detection-

corrected avian abundance for twenty bird species across Western United States. I found that 

models with the DHIs had lower AIC score than a null model, indicating that the DHIs captured 

important habitat characteristics for birds. Resident and migrant birds had stronger response to 

minimum and variation DHI. My results show the complexity of relationships between the DHIs 

and bird abundance that depend on species’ life history and habitat preferences. 
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Introductory  

Biodiversity is declining globally, due to many threats including habitat loss from human 

activities, which modify ecosystems through land cover and land use change (Pimm et al. 2014, 

Ceballos et al. 2015). Conservation of biodiversity is critically important for the resilience and 

resistance of ecosystems to environmental change (Chapin et al. 2000). Moreover, biodiversity 

loss raises serious concerns about the services that humans receive from ecosystems (Sekercioglu 

2006). Thus, there is an urgent need for accurate assessments of the current status of biodiversity 

to better understand key factors shaping large-scale biodiversity patterns and predict how species 

respond to environmental changes. Such assessments can allow timely implementation of 

conservation actions to prevent biodiversity loss. However, to obtain a spatially detailed map of 

species richness directly is difficult making remote sensing a valuable tool for biodiversity 

assessment (Nagendra 2001, Turner et al. 2003). 

Satellite data can be used to characterize suitable habitat for each species, and predict 

species distributions (Nagendra 2001). Remotely sensed vegetation productivity is a key factors 

shaping species richness and abundance patterns (Myneni et al. 1995, Cohen and Goward 2004, 

Pettorelli et al. 2011). The challenge is to capture vegetation productivity patterns at the temporal 

and spatial scales that are most relevant for species. There is a trade-off between spatial and 

temporal resolution of satellite data. On the one hand, satellites with coarse spatial resolution 

have more observations over time, providing better estimations of annual vegetation 

productivity, but larger pixels can be too coarse for ecological studies and management 

applications. On the other hand, imagery with higher spatial resolution can provide more detailed 

information about spatial patterns of productivity, but temporal resolution is lower, especially for 
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historical data, which means that disturbances that affect biodiversity may be missed (Roxburgh 

et al. 2004, Ciais et al. 2005, Bigler et al. 2006). 

The Dynamic Habitat Indices are remotely sensed estimates that summarize three aspects 

of annual vegetation productivity a) the cumulative productivity throughout the year, b) the 

minimum productivity, and c) the variation in productivity (Coops et al. 2008, Hobi et al. 2017, 

Radeloff et al. 2019). All three components of the DHIs are important for biodiversity because 

they are related to the available energy hypothesis (Wright 1983, Mittelbach et al. 2001, 

Hawkins et al. 2003, Bonn et al. 2004), the environmental stress hypothesis (Connell and Orias 

1964, Currie et al. 2004), and the environmental stability hypothesis (Hurlbert and Haskell 2003, 

Williams and Middleton 2008), respectively (Radeloff et al. 2019). Indeed, numerous studies 

show that the DHIs derived form 1-km MODIS data are important predictors of species richness 

and of the abundance of individual species. For example, the DHIs effectively predict species 

richness for many taxa at national to global scales (Coops et al. 2009a, Zhang et al. 2016, Hobi et 

al. 2017, Radeloff et al. 2019), as well as abundance of mammals (Michaud et al. 2014, 

Razenkova et al. 2020, 2023). The DHIs were used in models of Andean condor habitat selection 

in Argentina and Chile (Perrig et al. 2020), of the geographic range of an enigmatic South 

American bamboo specialist, the Purple-winged Ground Dove (Lees et al. 2021), and of the 

distribution of bird species in California (Burns et al. 2020). For many of the species that have 

been modeled, 1-km DHIs are rather coarse though because the species are affected by habitat 

features at finer scales. Moreover, effective management applications often require maps with 

higher spatial resolution. 

My overarching goal for the dissertation was to develop the Dynamic Habitat Indices 

(DHIs) with medium spatial resolution and to evaluate them in explaining avian species richness 
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and abundance across the conterminous United States. My study area is the 48 conterminous 

states of the USA (7.6 million km2). This large area is suitable for my research questions because 

it includes a large range of ecoregions, climatic zones, and topography, resulting in large number 

of habitats and a wide range of the DHIs values. Moreover, two excellent datasets are available 

for bird richness and bird abundance for the conterminous United States and Western United 

States, respectively.  

 

Chapter 1 Summary  

Question 1: How well do the Dynamic Habitat Indices calculated from 30-m Landsat data 

capture the pattern of vegetation productivity over the conterminous United States compared 

with 250-m MODIS DHIs? 

Biodiversity science requires effective tools to monitor patterns of species diversity at 

multiple temporal and spatial scales. Remote sensing provides measurements of key habitat 

factors, such as vegetation productivity that shape broad-scale patterns of biodiversity 

(Mittelbach et al. 2001, Hawkins et al. 2003, Bailey et al. 2004). However, a challenge is to 

capture vegetation productivity patterns at the temporal and spatial scales that are most relevant 

for species.  

My goal was to develop the DHIs based on 30-m resolution Landsat data and compare them 

to 250-m resolution MODIS DHIs across the conterminous US. My objectives were to 1) 

develop and compare composite DHIs based on Landsat and MODIS imagery for five (2016-

2020), ten (2011-2020), and twenty (2001-2020) years at three spatial extents, 2) evaluate how 

Landsat DHIs capture heterogeneity within MODIS pixels, and 3) assess changes in Landsat 

DHIs from 1990s to 2010s. 
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I calculated the DHIs based on either Landsat and MODIS for three time periods: for five 

(2016-2020), ten (2011-2020), or 20 years (2001-2020), and, in addition, I calculated the Landsat 

DHIs over ten years (1991-2000).  

To compare the DHIs derived from Landsat and MODIS data, I ran Spearman correlation 

analysis at three spatial scales: 1) 85 Level III ecoregions, 2) 967 Level IV ecoregions, and 3) 

within the extent of each MODIS pixel. I found that patterns of DHIs based on Landsat and 

MODIS were generally similar, but Landsat DHIs captured more detailed information about 

landscapes. The main difference in spatial patterns between Landsat and MODIS occurred in 

forested areas and mountains. The Spearman correlation coefficients between the three DHIs for 

both datasets across the three periods and within Level III and Level IV ecoregions were high, 

indicating that Landsat DHIs were in good agreement with MODIS DHIs. My results show that 

Landsat DHIs captured unique information about landscapes compared with topographic and 

fragmentation metrics. When comparing Landsat DHIs from 1990s and 2010s, I found an 

increase in the cumulative DHI in the West Coast, in most of the mountain ranges, and in parts of 

the South and a decrease in Midwest and New England. 

In summary, my results show that Landsat data are suitable for generating novel satellite data 

products designed for biodiversity applications. The newly developed DHIs based on Landsat 

have great potential for biodiversity monitoring at regional and local scales. The Landsat DHIs 

can help to advance our understanding of the importance of vegetation productivity in shaping 

patterns of species richness, abundances, and distribution of individual species.  

 

Resulting paper (in review): Elena Razenkova, Katarzyna E. Lewińska, He Yin, Laura S. 

Farwell, Anna M. Pidgeon, Patrick Hostert, Nicholas C. Coops, and Volker C. Radeloff. 
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Medium-resolution Dynamic Habitat Indices from Landsat satellite imagery. Remote Sensing of 

Environment. 

 

Chapter 2 Summary  

Question 2: Do the Dynamic Habitat Indices calculated from 30-m Landsat and 250-m MODIS 

data provide comparable predictive power in models of bird richness across four spatial extents? 

Biodiversity is declining due to many threats from human activities resulting in habitat 

loss, and climate change (Rockström et al. 2009, Butchart et al. 2010). It is important to 

understand the drivers of species richness patterns, to predict how species will respond to 

environment changes and ultimately design conservation actions that can prevent potential loss. 

Satellite data provide meaningful information about the biophysical characteristics of ecosystems 

(Turner et al. 2003, Cavender-Bares et al. 2022) and are suitable for monitoring biodiversity 

patterns at broad scales (Wright 1983, Gaston 2000, Mittelbach et al. 2001, Hawkins et al. 

2003a, 2003b, Bonn et al. 2004). The DHIs calculated from 1-km MODIS data were successfully 

used in numerous studies (Coops et al. 2009b, Hobi et al. 2017, Radeloff et al. 2019). However, 

MODIS DHIs can be too coarse for some species. A key question is how much predictive power 

satellite data with medium spatial resolution can add to models compared with available coarse 

resolution data, knowing that the temporal resolution of medium spatial resolution satellite 

imagery is much lower.  

My goal was to evaluate the predictive performance of the DHIs based on 30-m Landsat and 

250-m MODIS in bird richness models. My objectives were: 1) compare the predictive 

performance the DHIs based on Landsat and MODIS in models of bird richness for four spatial 

extents and over heterogeneous landscapes, 2) evaluate the relative importance of Landsat DHIs 
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and other environmental predictors in bird richness models, and 3) test the Landsat DHIs 

calculated for 1991-2000 in model of species richness. 

I expected that Landsat DHIs and MODIS provide similar predictive power, and that the 

Landsat DHIs outperform the MODIS DHIs in models of at least some bird guild and over 

heterogeneous landscapes. I expected there was no difference in predictive power of both DHIs 

for grassland species. 

I conducted a linear regression analysis to examine the relationships between the DHIs and 

species richness. Building upon my first chapter, I used the DHIs derived from 30-m Landsat and 

250-m MODIS data as predictors for species richness and summarized both datasets at four 

spatial extents that matched the four sets of bird data. I analyzed bird species richness of all bird 

species and of 19 functional bird guilds. In multivariate models combining Landsat DHIs with 

topography and land cover, I evaluated the relative importance of the Landsat DHIs.  

My results show that Landsat and MODIS DHIs provided similar predictive power to most 

bird guilds for all four spatial extents. However, Landsat DHIs provided higher predictive power 

in models for overall species richness, forest affiliates and specialists, grassland affiliates, 

shrubland affiliates and specialists, and species with small body sizes. Similarly, in 

heterogeneous landscapes Landsat DHIs provided higher predictive power than MODIS DHIs. In 

multivariate models, Landsat DHIs complemented topographic and land-cover metrics and had a 

strong effect on species richness for most bird guilds. There was no substantial difference in 

performance of Landsat DHIs from the 1990s and the 2010s in models of species richness at any 

extents. 
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In summary, my results show that Landsat DHIs provided high predictive power in models of 

species richness. The relationship between the DHIs and species richness provide better 

understanding of importance of the higher resolution of the DHIs for predicting species richness.  

 

Resulting paper (submitted): Elena Razenkova, Kathleen A. Carroll, Laura S. Farwell, Paul 

R. Elsen, Anna M. Pidgeon, Volker C. Radeloff. Explaining bird richness with the Dynamic 

Habitat Indices across the conterminous US. Ecological Applications. 

 

Chapter 3 Summary  

Question 3: Can the Dynamic Habitat Indices calculated based on 30-m Landsat predict bird 

abundances across the Western United States? 

According to the North American Bird Conservation Initiative (NABCI), 37% of all bird 

species in North America are mostly at risk of extinction (NABCI 2016, Rosenberg et al. 2019). 

The global biodiversity crisis is fundamentally a problem of declining abundances of individual 

species. Thus there is an urgent need to identify factors that determine pattern of bird abundance 

over broad scales in order to inform effective conservation decisions. The DHIs were specifically 

developed for monitoring species richness, but may also provide valuable information when 

modeling individual species’ abundance patterns. The More Individuals Hypothesis (MIH) 

explains heterogeneous pattern of species richness (Evans et al. 2005, 2006, Storch et al. 2018), 

but this hypothesis can also be directly applied to explain species abundance. More productive 

areas that have high biodiversity can support a higher number of individuals, because of 

abundant food resources (Srivastava and Lawton 1998, Storch et al. 2018, Razenkova et al. 
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2023). At same time, the relationship between available energy and abundance may be stronger 

for rare species than for common species (Evans et al. 2005, 2006), because where there is more 

available energy the extinction probability may be reduced, especially for rare species (Evans et 

al. 2005, 2006). 

The main goal of my third chapter was to evaluate the utility of the Landsat DHIs in 

explaining bird abundance across the Western United States (US). My first objectives were 1) 

test if bird abundance is higher in areas with higher vegetation productivity, 2) compare the 

relationships between the DHIs and bird abundance for rare and common species, 3) assess 

whether bird groups based on migratory behavior exhibit different relationships to the DHIs. 

I expected to find support for the MIH and to see higher numbers of individuals in more 

productive areas. I also expected that common species would show strong relationships with the 

DHIs, but rare species would have weaker relationships, because vegetation productivity is not 

the limiting factor for these species. Lastly, I expected that residents have a stronger relationship 

with minimum DHI, while long-distance migrants have a stronger relationship with variation 

DHI.  

For bird data, I analyzed point count data obtained from the Integrated Monitoring in Bird 

Conservation Regions (IMBCR) Program for twenty bird species across the Western US. I used 

hierarchical distance-sampling abundance models to examine relationship between Landsat DHIs 

and avian abundance. I ran several possible abundance models for each species where Landsat 

DHIs from my first chapter were abundance covariates, and primary habitat, start time, and year 

were detection covariates, and calculated the AIC score. 

I found that the DHIs were significant abundance covariates for 17 species, but the 

abundance was positively associated with higher productivity for five species. Contrary to my 
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predictions, I found that abundance of rare bird species had a stronger relationship with the DHIs 

than common species. Residents and long-distance migrants showed stronger associations with 

minimum DHI and variation DHI, while short distance migrants showed stronger relationships 

with cumulative DHI. 

In conclusion, all three components of the DHIs captured important habitat characteristics 

for individual bird species and can be used in modeling avian abundance. Although my finding 

provided generally only weak support of MIH, I did find a strong relationship with vegetation 

productivity for rare species. My results highlight the complexity of relationships between the 

DHIs and bird abundance, which depend on life history and habitat preferences of the species.  

 

Resulting paper (not submitted): Elena Razenkova, Maia E. Persche, Anna M. Pidgeon, 

Volker C. Radeloff. Explaining bird abundance with the Dynamic Habitat Indices across 

Western United States. Journal of Applied Ecology. 

 

Significance 

Identifying the factors driving species richness and abundance patterns across broad 

scales is crucial to understand the mechanisms influencing these patterns, and predict how 

species may respond to changing conditions. In order to safeguard biodiversity, better 

assessments of the current status of biodiversity are needed. However, biodiversity patterns are 

very complex, many factors matter for different regions and for different species. My research 

provide a better understanding of the relationship between vegetation productivity, avian species 
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richness and abundance of individual species across conterminous United States. My work 

contributes to science and conservation in three main ways.  

Scientific contribution 

My work contributes to avian ecology by improving the understanding of the factors 

shaping broad-scale patterns of species richness and abundance of individual species. While 

biodiversity patterns have been studied extensively, in most cases researchers used data that are 

either coarse or analyzed only limited geographical extents. My work was possible due to 

advancements in cloud computing technologies and open access to the full Landsat archive, 

which provide a great opportunity to generate novel products for biodiversity assessments 

(Kennedy et al. 2014, Wulder et al. 2019). My dissertation fill a gap by showing that satellite 

data with medium spatial resolution are suitable for calculating the Dynamic Habitat Indices for 

large areas. The DHIs capture patterns of vegetation productivity and reflect important habitat 

features. My research shows that Landsat DHIs are strong predictors for species richness and 

abundance.  

In chapter 1, the comparison between Landsat and MODIS DHIs provides better 

understanding in which areas the increased spatial resolution afforded by Landsat was most 

important. In chapter 2, the relationship between the DHIs derived from medium (30-m) and 

coarse (250-m) spatial resolution satellite data and species richness provide deeper understating 

whether DHIs with medium resolution provide more advantages over DHIs with coarse 

resolution for which bird guilds and at what extents. I found that Landsat DHIs are strong 

predictors of bird richness, especially of those bird guilds that depend more on heterogeneous 

landscapes. The results of this chapter indicate that Landsat DHIs complement topographic and 
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land cover metrics and provide better understanding of the relative importance of these factors in 

shaping the patterns of species richness.  

In chapter 3, my analyses of the relationship between Landsat DHIs and bird abundance 

increases knowledge how individual species respond to three DHIs. Results of this chapter 

highlight the complexity of the relationships between the DHIs and bird abundance of individual 

species indicating that the life history and habitat preferences of species play major roles in 

habitat selection. Importantly, the Landsat DHIs are effective to model abundance of rare 

species. 

Methodological contribution 

The main methodological contribution of this research is the development the Dynamic 

Habitat Indices based on 30-m Landsat data and testing in modeling avian species richness and 

abundance. The DHIs calculation became possible due to a cloud-based processing platform, 

Google Earth Engine (GEE), which allow to process satellite data over large areas and over long 

period of time effectively. My results show that satellite data with medium resolution are suitable 

to calculate composite DHIs both for recent years and even for historical times by incorporating 

several years of data (five years minimum) and filling data gaps with linear interpolation. My 

method is very promising for the calculation of Landsat DHIs and for further analysis of long-

term changes in the DHIs, especially considering that my comparison between the Landsat DHIs 

for the 1990s and 2010s showed substantial changes. My GEE scripts to calculate the DHIs 

based on Landsat or MODIS are easily reproducible for other locations and can be calculated 

over different periods. 
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In chapter 3, I was the first to use Landsat DHIs in hierarchical distance-sampling 

abundance models for twenty bird with different IUCN statuses and population trends, migratory 

strategies, and habitat preferences across the Western United States. The DHIs can be valuable 

tool to capture habitat quality and foraging conditions that attract birds. 

Conservation contribution 

There is an urgent need for better assessment of current status of biodiversity to 

understand and predict future changes, and to implement conservation actions mitigating 

biodiversity loss. This dissertation contributes to management and conservation science by 

adding deeper understanding relationship between vegetation productivity and avian species 

richness and abundance.  

First, I calculated the DHIs using Landsat data that are much higher resolution than 

available course-resolution MODIS DHIs. Landsat DHIs have great potential to quantify 

important characteristics of suitable habitat for many species and would be more relevant for 

fine-scale ecological studies and local management decisions. Second, 30-m resolution DHIs 

match the resolution of animal movement data, making Landsat data more suitable when 

assessing connectivity among habitat patches or movement corridors. Third, Landsat DHIs 

capture spatial heterogeneity much better than MODIS, and therefore are better for analyses in 

heterogeneous landscapes. My chapters 2 and 3 provide examples how and where the Landsat 

DHIs can be used. The results of these chapters show that Landsat DHIs are useful for 

monitoring species richness and abundance patterns at broad scales. More specifically, Landsat 

DHIs predict species richness of all bird species and of 19 functional bird guilds well and 

provide higher predictive power for models over heterogeneous landscapes. In chapter 3, 
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incorporating knowledge of the relationship between Landsat DHIs and bird abundance helps to 

predict absolute abundances, suggesting that conservation managers can be used the DHIs as a 

tool for monitoring abundance for common and rare species.   
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Chapter 1: Medium resolution Dynamic Habitat Indices from Landsat satellite imagery 

Abstract 

Biodiversity science requires effective tools to monitor patterns of species diversity at 

multiple temporal and spatial scales. Remote sensing provides measurements of key habitat 

factors, such as vegetation productivity that shape broad-scale patterns of biodiversity. The 

Dynamic Habitat Indices (DHIs) summarize aboveground vegetation productivity in a way that 

is ecologically relevant. The DHIs are well-grounded in ecological theories such as the species-
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energy theory, which hypothesizes a strong connection between productivity and species 

richness. Existing DHIs were derived from MODIS at 1-km spatial resolution and are available 

after 2001 and predict species richness at broad scale well. That resolution is rather coarse 

relative to the scales at which many species perceive habitat though. Landsat data can capture 

key habitats at medium spatial resolution and has a longer temporal record. The challenge is that 

Landsat data is less frequently acquired than MODIS data, raising the question if the DHIs can 

be accurately calculated from Landsat data. Here, our main goals were to: a) develop, for the first 

time, the DHIs from 30-m Landsat data for the conterminous US, and b) compare these at 

different spatial and temporal scales with DHIs newly derived from 250-m resolution MODIS 

data. For both datasets, we calculated the DHIs from Normalized Difference Vegetation Index 

(NDVI) values for three time periods: of five (2016-2020), 10 (2011-2020), and 20 (2001-2020) 

years. We also compared Landsat and MODIS DHIs at three spatial extents: 1) Level III 

ecoregions (Environmental Protection Agency), 2) Level IV ecoregions, and 3) MODIS level 

(250-m). In addition, we took advantage of Landsat’s long archive to calculate the DHIs for 

1991-2000 and investigated how they changed by 2011-2020. We found that the Landsat and 

MODIS derived DHIs were highly correlated at ecoregion Levels III and IV extents for all time 

periods (Spearman correlation from 0.96 to 0.99 for mean and 0.6 to 0.98 for standard deviation), 

suggesting that our Landsat DHIs were accurate. However, at finer spatial scales the standard 

deviation of Landsat DHI and a difference map between and Landsat and MODIS DHIs 

highlight that the former captured spatial heterogeneity, especially in forested landscapes, much 

better. We also found considerable changes in Landsat DHIs from 1991-2000 to 2011-2020. For 

example, cumulative DHI increased along the West Coast, in mountain ranges, and in the South, 

but decreased in the Midwest. Our new DHIs at 30- and 250-m resolution for the conterminous 
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US have great potential for use in biodiversity science and conservation. All datasets are freely 

available.  

Introduction 

A key question in ecology is which environmental factors determine the patterns of 

biodiversity. The species-energy theory predicts that areas with higher amounts of plant biomass 

can support greater species richness of consumers due to availability of abundant food resources 

(Wright 1983, Currie et al. 1993, Hawkins et al. 2003a, 2003b). Remotely sensed indices capture 

the energy that is available in a system through photosynthesis, which is a proxy for vegetation 

productivity (Myneni et al. 1995, Cohen and Goward 2004, Pettorelli et al. 2011). However, a 

challenge is to capture vegetation productivity patterns at the temporal and spatial scales that are 

most relevant for species. On one hand, coarse resolution satellite sensors (e.g., > 250 m) provide 

more frequent observations thereby capturing more temporal variability in vegetation 

productivity. However their coarse resolution limits their utility over regional and local scales, 

especially where the environmental heterogeneity is high and local management decisions are 

required (Kennedy et al. 2014, Rose et al. 2015). Conversely medium- or high-resolution sensors 

(e.g., 10 - 30 m) provide more spatially detailed information (Wulder et al. 2008, 2019), but the 

frequency of observations is substantially lower, especially for historical data, thereby potentially 

missing disturbances that affect biodiversity (Roxburgh et al. 2004, Ciais et al. 2005, Bigler et al. 

2006), and reducing the accuracy of derived metrics. 

Remotely sensed measures of vegetation productivity dynamics can be used to 

understand factors that influence species richness. The Dynamic Habitat Indices (DHIs) 

summarize three measures of vegetation productivity over the course of a year based on three 

measures (Coops et al. 2008, Hobi et al. 2017, Radeloff et al. 2019). The first measure is 
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cumulative productivity: areas characterized by high cumulative productivity support more 

individuals (Srivastava and Lawton 1998, Hurlbert 2004) and tend to be more biodiverse (Wright 

1983). The second measure is minimum productivity: areas with low minimum productivity may 

not have sufficient resources to support year-round resident species during seasons with lowest 

productivity. The third measure is coefficient of variation of vegetation productivity: areas with 

low seasonality tend to be more biodiverse. The DHIs are highly correlated with species richness 

across different taxa and have been successfully used for predicting species richness (Zhang et 

al. 2016, Radeloff et al. 2019), such as bird richness in Canada (Coops et al. 2009), US (Hobi et 

al. 2017), and Thailand (Suttidate et al. 2019); bird, mammal, and amphibian richness in China 

(Zhang et al. 2016, Zhu and Guo 2022), and across the globe (Coops et al. 2019, Radeloff et al. 

2019). The DHIs also effectively predicted moose abundance in Canada (Michaud et al. 2014) 

and Russia (Razenkova et al. 2020).  

So far, the DHIs have only been derived from coarse-resolution satellite data, such as 

from 8-km AVHRR and 1-km MODIS imagery. These data have proven to be highly valuable 

for biodiversity science already, for example, in models of Andean condor habitat selection in 

Argentina and Chile (Perrig et al. 2020), in models of geographic range of an enigmatic South 

American bamboo specialist, the Purple-winged Ground Dove (Lees et al. 2021), and in models 

of the distribution of bird species in California (Burns et al. 2020). For many of the species that 

have been modeled, 1-km DHIs are rather coarse though because the species are affected by 

habitat features at finer scales. 

The DHIs at medium resolution would be much more relevant to finer-scale ecological 

studies and management decisions than coarse-resolution MODIS DHIs. Landsat DHIs can 

capture productivity dynamics within the territory of an individual bird (Leonard et al. 2008, 
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Jones 2011) or mammal (Oeser et al. 2020) and therefore reflect habitat better than coarser 

resolution imagery (Cohen and Goward 2004). Moreover, 30-m resolution metrics match the 

resolution of animal movement data, and therefore Landsat data are more suitable when 

assessing connectivity among habitat patches or movement corridors (Neumann et al. 2015, 

Bleyhl et al. 2017).  

However, the challenge in calculating DHIs from Landsat data is the lower temporal 

resolution with a 16-day revisit cycle. These scarce observations are not sufficient to calculate 

the DHIs annually. One way to overcome this problem is to aggregate several years of imagery 

and calculate a composite metric. This also minimizes effects of erroneous observations in 

annual imagery. There is a trade-off though in that compositing data from many years will 

increase the number of observation, but changes in vegetation productivity caused by 

anthropogenic or natural disturbances can occur within the compositing period. The DHIs 

composited across many years may miss these changes. This trade-off raises the first question 

that is what aggregation period is optimal for the calculation of DHIs using Landsat imagery. 

The second question is where the higher spatial resolution of Landsat DHIs, compared to 

MODIS DHIs, can capture spatial heterogeneity better, for example in more heterogeneous 

landscapes, such as those with complex terrain. Mountains are often hotspots for biodiversity 

(Badgley et al. 2017, Rahbek et al. 2019). Furthermore, strong gradients in temperature and 

environmental conditions provide more niches for different species than areas that are 

homogenous (Letten et al. 2013). For individual species, mountainous areas provide more 

refugia (Perrigo et al. 2020), and individual animals do not need to travel long distances to find 

suitable environmental and climatic conditions for survival and reproductive success (Elsen et al. 

2020). Fragmentation of habitat due to land use change can be another source of heterogeneity 



25 

 

25 

 

that might require the use of Landsat DHIs. Some species, such as habitat specialists, are 

negatively impacted by fragmentation (Henle et al. 2004), while other species benefit from it 

(Rybicki et al. 2020). Thus, there is a need for the DHIs that capture heterogeneity of vegetation 

productivity at medium spatial resolution. 

Last but not least, many wildlife species are declining due to habitat loss and degradation 

(Butchart et al. 2010, Pimm et al. 2014). The long record of continuously acquired images of 

Landsat data provides a unique opportunity to monitor how the DHIs have changed since the 

1990s (Wulder et al. 2019). This is critical to understand how habitat is changing over time and 

affecting species richness and abundance patterns. 

Our primary goal was to develop the DHIs based on 30-m resolution Landsat data and 

compare them to 250-m resolution MODIS DHIs across the conterminous US. More specifically, 

our objectives were to:  

• Calculate and compare composite DHIs based on Landsat and MODIS imagery for five 

(2016-2020), ten (2011-2020), and twenty (2001-2020) years at three spatial extents. 

• Assess the ability of Landsat DHIs to capture heterogeneity within MODIS pixels in complex 

terrain and fragmented landscapes.  

• Quantify changes in the Landsat DHIs for the 1990s to the 2010s. 

Methods 

Study area 

Our study area was the conterminous US (7.6 million km2), which includes 85 Level III 

ecoregions and 967 Level IV ecoregions based on the Environmental Protection Agency 

(Omernik 1987).  
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Data 

Calculating DHIs from Landsat data 

We analyzed atmospherically corrected Surface Reflectance Tier 1 Collection 1 scenes 

obtained from Landsat-5 TM, Landsat-7 ETM+, and Landsat-8 OLI from 2001 to 2020 covering 

the conterminous US, in Google Earth Engine (access data 10-12-2018, Gorelick et al. 2017). 

We used only ETM+ data prior to the failure of the Scan Line Corrector to minimize stripes in 

our DHIs due to gaps in coverage (Markham et al. 2004). We removed pixels covered by clouds 

and cloud shadows with medium and high confidence based on the pixel quality assessment 

(QA) band from each Landsat image. Pixels were excluded based on pixel QA Bitmask as 

follows: bit 3, shadow; bits 6-7, cloud confidence where 2 was median confidence and 3 was 

high confidence; bit 8-9, cirrus confidence where 2 was median and 3 was high confidence. We 

also removed all pixels with negative reflectance values in any band. We replaced pixels 

identified as snow and ice based on the QA band with zeros because we assumed no 

photosynthetic activity. For the remaining pixels, we calculated the Normalized Difference 

Vegetation Index (NDVI) using bands 4 and 3 for TM, ETM+ and bands 5 and 4 for OLI. We 

selected NDVI because it is the most frequently used in remote sensing and ecology (Pettorelli 

2013, Roy et al. 2016). Because OLI has narrower spectral bands than TM and ETM+, we 

applied a calibration correction (Roy et al. 2016). All negative NDVI values were replaced by 

zeros assuming that those were also snow and ice. To remove water pixels, we applied a mask of 

permanent water bodies derived from Landsat (Hansen et al. 2013). 

For each pixel we calculated the median NDVI value for each month from all the 

observation for five (2016-2020), ten (2011-2020), or 20 years (2001-2020). In some months 

(mostly in winter) when there were no observations, we applied linear interpolation to fill in gaps 
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in the monthly median NDVI composite. Pixels that had missing data for more than four 

consecutive months were set to no-data. We selected to fill missing data up to four consecutive 

months because most pixels with missing data were from winter months and located in northern 

states when there was no photosynthetic activity during those months. From the interpolated 

NDVI composites, we calculate the three DHIs: 1) cumulative DHI (cum DHI), 2) minimum 

DHI (min DHI), and 3) seasonal DHI (var DHI). For objective 3, we also calculated the DHIs for 

1991-2000, following the same protocol. During the 1990s, Landsat-4 and 5 TM, Landsat-7 

ETM+ were in orbit. Data from Landsat-4 were very sparse during study period. Bands and 

wavelengths are similar across all three satellites therefore there was no need for additional 

calibration correction for NDVI calculation. 

Data availability varied substantially for each time period (Table 1). We used only OLI 

data for our five year period (2016-2020), OLI and TM data for our ten years (2011-2020), and 

OLI, TM and ETM+ four our twenty years (2001-2020). For each time period, we calculated the 

number of pixels with missing data and the percent of interpolated data.  

Calculating DHIs from MODIS data 

We analyzed MODIS Collection 6 16-day NDVI data at 250 m resolution (GEE Image 

collection MODIS/006/MOD13AQ1) to calculate DHIs. We followed established methods to 

calculate the MODIS DHIs (Hobi et al. 2017, Radeloff et al. 2019), but with minor changes. 

Similar to Hobi et al. (2017), we removed clouds and cloud shadow from each 16-day composite 

using the QA band. However, we replaced pixels flagged as snow and ice with zeros assuming 

no vegetative activity. We then calculated the median NDVI for each 16-days time step (23 

observations in a year) for the same 5, 10 and 20 years. 
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Analysis for objective 1: Compare Landsat DHIs and MODIS DHIs 

To compare the DHIs based on Landsat and MODIS, we ran Spearman correlation 

analyses at three spatial scales. We calculated mean and standard deviation for both types of 

DHIs over a) 85 Level III ecoregions (Figure 1a), b) 967 Level IV ecoregions, and c) within the 

extent of each MODIS pixel. Ecoregions of Level III and IV are appropriate units for comparison 

of DHIs, because they are defined as areas that have similar ecosystems (Omernik and Griffith 

2014). To compare the Landsat derived DHIs with corresponding MODIS pixels, we used a 

moving window of 8x8 pixels (240 m), which most closely matches the size of MODIS pixels 

(232 m). We calculated mean and standard deviation of Landsat-based cumulative DHI for each 

8x8 pixel grid and resampled it to the MODIS data grid using the nearest neighbor rule. For 

comparison and visualization, we normalized data from 0 to 1 by dividing the DHI value of each 

pixel by the maximum value of the given mean cumulative DHI (Landsat or MODIS) hereafter 

referred to as “Landsat cumulative DHI and “MODIS cumulative DHI”, respectively, and 

calculated the difference by subtracting Landsat from MODIS.  

Ancillary environmental variables 

 We used five ancillary environmental variables including elevation, topography and land 

cover to model where Landsat DHIs varied the most within MODIS pixels. For elevation we 

used NASA Shuttle Radar Topography Mission (SRTM) elevation model with 30-m resolution 

(Farr et al. 2007). From the SRTM, we calculate the terrain ruggedness index (TRI) to 

characterize topographic heterogeneity (Riley 1999). For land cover, we analyzed the 2016 

National Land Cover Database (NLCD) with 30-m resolution (Yang et al. 2018). We focused on 

three dominant land cover classes commonly used in ecological models: forest, shrubland, and 

grassland. Our forest class was the combination of NLCD classes 41-decidious forest, 42-
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evegreen forest, 43-mixed forest. Our shrubland class included 51-dwarf scrub, and 52-

shrub/scrub, and our grassland class only included 71-grassland/herbaceous. To quantify 

fragmentation, we applied the Morphological Spatial Pattern Analysis (MSPA) implemented in 

GUIDOS, a tool that classifies spatial patterns at the pixel level based on binary land-cover maps 

(Vogt et al. 2007, 2009). We calculated the percent of core and of edge area for each land cover 

class (forest, shrubland, and grassland), as two key metrics of fragmentation (Batáry and Báldi 

2004, Vogt et al. 2007). 

Analysis for objective 2: Assess the ability of Landsat DHIs to capture heterogeneity and 

fragmentation within individual MODIS pixels 

To evaluate how Landsat DHIs relate to commonly used metrics of heterogeneity and 

fragmentation, we modeled relationships between the Landsat DHIs and topographic and 

landscape metrics. We sought to understand if variability in the DHIs captured by Landsat within 

MODIS pixels is associated with elevation, topography, or landscape metrics. To do so we 

randomly selected 10,000 MODIS pixels separated by at least 10 km to minimize spatial 

autocorrelation. We calculated the standard deviation of Landsat cumulative DHIs within 

MODIS pixels as the dependent variable, and mean and standard deviation of elevation and 

terrain ruggedness, plus percent core and edge area for forest, shrubland, and grassland as 

explanatory variables. Prior to modeling, we checked for collinearity among our explanatory 

variables and examined their scatter plots to check for nonlinear patterns. To meet the 

assumptions of linear regression we applied log transformation of the dependent variable that is 

the standard deviation of Landsat DHIs within MODIS pixels. First, we fitted univariate linear 

regression models and used the adjusted R2 to evaluate the total explanatory power of each 

model. Second, we fitted multivariate models with all possible subsets of the ten explanatory 
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variables, and used best subsets regression to identify the most important explanatory variables 

based on how often variables appeared in the top models as ranked based on the Bayesian 

Information Criterion (BIC) (Schwarz 1978). We assessed multicollinearity of the top model by 

examining the variance inflation factor (VIF) for each variable, applying a threshold of VIF <10 

(O’Brien 2007).  

Analysis for objective 3: Compare Landsat DHIs over 1991-2000 versus 2011-2020 

We quantified changes in the Landsat DHIs for the 1990s with those for the 2010s. We 

asked first, how strongly the DHIs for both decades are correlated and, second, how their spatial 

patterns differed. For our first comparison we randomly selected 10,000 Landsat pixels each 

separated by 10-km to avoid spatial autocorrelation, and calculated Spearman correlation 

coefficients between the DHIs for the two decades. For our second comparison and for 

visualization, we normalized both sets of DHIs from 0 to 1 by dividing each DHI pixel value by 

the maximum value of the given DHI and made difference maps by subtracting the 1990s DHIs 

from the 2010s DHIs.  

We performed all statistical analyses in R version 4.0.3 (R Core Team 2016), using the 

‘psych’ package (Revelle 2017) to calculate correlation matrices, the ‘leaps’ package (Lumley 

2009) to perform best subsets selection, and the ‘car’ package to calculate VIF for explanatory 

variables (Fox and Weisberg 2016). 

Results 

The DHIs calculated from Landsat 

We calculated a monthly NDVI composite based on Landsat data for five (2016-2020), 

ten (1991-2000 and 2011-2020), and twenty years (2001-2020). We successfully generated 
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Landsat DHI even for a relatively short five year period (2016-2020), as well as for the 1990s 

(1991-2000), with much fewer observations. The DHIs based on Landsat reflected patterns of 

vegetation productivity across the conterminous US (Figure 1). For example, cumulative DHI 

had the highest values in the east and southeast of the conterminous US, in the west along the 

coastline, and in forested areas of the Midwest. Minimum DHI values were also high in 

southeast and along the west coast and were low in the northern Midwest and West. In contrast, 

the variation DHI had high values in the north and in mountain areas, and low values in the south 

and along the west coast. 

For each time period we had pixels with missing data that were located mostly in 

northern states (Appendix 1) for single months and for consecutive months. Winter months had 

the highest number of pixels with missing data with the peak in January (Figure 2, Appendix 1). 

We found there were fewer missing data as we increased compositing period from five years to 

20 years. In total, interpolated data made up 29.4% (1991-2000), 17.5% (2016-2020), 6.7% 

(2011-2020), and 1.7% (2001-2020) of total available data (Table 1). In addition, we calculated 

the percent of pixels that were set as no-data due to use of our threshold of interpolation of four 

months and made up 0.002% (2016-2020), 0.001% (2011-2020), and 0.00004% (2001-2020). 

Results for objective 1: MODIS DHIs versus Landsat DHIs 

As expected, broad-scale patterns of DHIs based on Landsat and MODIS were generally very 

similar, but Landsat DHIs captured more detailed landscape patterns, especially in forested areas 

(Figure 3). The Spearman correlation coefficients between means of the three DHIs based on 

Landsat and MODIS across three periods were 0.98-0.99 within Level III ecoregions, while the 

standard deviation ranged from 0.6 to 0.94. The Spearman correlation coefficients between mean 
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DHIs based on Landsat and MODIS were also high for Level IV ecoregions and ranged from 

0.96 to 0.99, while standard deviations ranged from 0.63 to 0.89 (Table 2). 

The standard deviation of cumulative DHI based on Landsat imagery calculated across all 

MODIS pixels were higher in places dominated by forest (Figure 4a). The difference map 

between MODIS cumulative DHI and Landsat cumulative DHI (i.e. MODIS minus Landsat) 

indicated that Landsat DHI was higher in some mountains such as the Sierra Nevada, the 

Cascade Range, the northern Rocky Mountains, and some states including Minnesota, Wisconsin 

and Michigan where forest is a dominant land cover (Figure 4b). 

Results for objective 2: Landsat DHIs within the footprint of MODIS pixels 

First, we calculated the Pearson correlation values between the standard deviation of 

cumulative DHI based on Landsat and our various environmental variables including mean and 

standard deviation of elevation and terrain ruggedness, percent core and edge area in forest, 

shrubland, and grassland for randomly selected 10,000 MODIS pixels. Pearson correlation 

coefficients among all ancillary variables were low, except for mean and standard deviation of 

terrain ruggedness index, indicating that collinearity was generally not an issue (r = 0.85, 

Supplementary materials Appendix 2). The correlation between standard deviation of cumulative 

DHI based on Landsat and percent of forest edge was the highest among all explanatory 

variables (r = 0.46). Second, we ran a series of univariate models in which the standard deviation 

of Landsat cumulative DHIs within MODIS pixels is the dependent variable, and all ancillary 

environmental variables were explanatory variables. In univariate models, individual variables 

explained only 2-15% of the variance in standard deviation of cumulative DHI (Table 3). We 

found a positive relationship between standard deviation of cumulative DHI and forest habitat, 

and a negative relationship with grassland and shrubland habitat (Table 3). Finally, we fitted 
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multivariate models. The adjusted R2 slightly increased for models incorporating multiple 

variables, explaining 26% of the variation in standard deviation of cumulative DHI (Table 3). 

The best model included percent of forest edge, percent of grassland core area, and percent of 

shrubland core area. There was no multicollinearity between explanatory variables in the top 

selected models, as indicated by a VIF of less than 1.5. 

Results for objective 3: Change in the Landsat DHIs from 1991-2000 to 2011-2020 

The patterns of the DHIs were similar for both periods, but our difference maps also showed 

striking regional patterns (Figure 5). Most notable, we found an increase in the cumulative DHI 

calculated in the West Coast, in most of the mountain ranges, and in parts of the South. 

However, cumulative DHI calculated over 1991-2000 was higher in the Midwest and New 

England. Minimum DHI decreased in the northern part of the US by the 2010s while variation 

DHI increased, especially in the Midwest.  

Discussion 

Our main goals were to develop the DHIs based on Landsat imagery, compare them with 

the DHIs derived from MODIS, and understand where the increased spatial resolution afforded 

by Landsat was most important. We successfully developed the Landsat DHIs for five (2016-

2020), ten (2011-2020), and twenty years (2001-2020), and at broad scales, the spatial patterns of 

the DHIs based on Landsat and MODIS were similar. Indeed, the correlations between the 

Landsat and MODIS DHIs for 2016-2020, 2011-2020, and 2001-2020 were all high (0.96-0.99), 

indicating that we could derive composite Landsat DHIs for as few as five year periods. 

However, there were areas where Landsat DHIs clearly captured landscape heterogeneity better, 

and hence were quite different from MODIS DHIs, especially in mountains and forested areas.  
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The DHIs captured unique information about landscapes that differed from commonly 

used metrics characterizing environmental heterogeneity. Specifically, we found weak 

relationship between the standard deviation of the Landsat cumulative DHI and environmental 

heterogeneity as captured by topographic metrics. This finding matches prior results for 1-km 

MODIS DHIs, which have low correlation with climate variables, suggesting that the DHIs 

capture unique information and can complement other environmental variables (Radeloff et al. 

2019, Suttidate et al. 2019). We also found weak relationships between the standard deviation of 

the cumulative DHI and fragmentation metrics. This might be because the DHIs were calculated 

based on NDVI, and NDVI can be similar for different land cover classes (e.g., forest and 

agricultural fields), while fragmentation metrics are based on land cover maps such that forest 

and cultivated field are discrete classes (Yang et al. 2018). In addition, the DHIs can vary 

notably within the same land cover class, which is feature that land cover classifications miss. 

Therefore, the DHIs can measure aspects of landcover distinct from fragmentation and 

topographic heterogeneity and can complement these variables in ecological models. 

Another advantage of Landsat is the long record of data that allows detection of 

environmental changes over time (Kerr and Ostrovsky 2003). Our results show that we can 

calculate the DHIs for historical periods when observations are limited for some areas. The high 

correlation between the Landsat DHI for the 1990s and 2010s indicates that our approach for the 

DHIs calculation works well. We found substantial changes in all three DHIs over last thirty 

years, and the pattern of these changes is striking. Based on the difference map between the 

Landsat DHIs, we see generally increased vegetation productivity in forested areas but a 

decrease in in the forests of the northern Midwest. In general, changes in cumulative DHI 

indicate overall changes in vegetation productivity, while minimum DHI may also indicate 
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changes in snow cover pattern for northern states and places with high altitude. A previous study 

captured changes in ecozone composition over shorter time periods (6 years) by comparing 

annual MODIS DHIs from multiple years with average DHIs (Coops et al. 2008). Having DHIs 

from multiple years offers an opportunity to examine trends and how changes in DHIs affect 

biodiversity (Hobi et al. 2021).  

Caveats and considerations 

The main challenge of working with Landsat is the relatively low number of scenes 

available for a given time period, due to the return interval of overpasses, which is further 

reduced by the presence of clouds. We used Landsat data to generate a monthly NDVI composite 

(versus 16-day MODIS data) over five, 10, and 20 years, and for each of those time periods, 

there were pixels with no observations for some months. These missing months affected 

especially the cumulative and variation DHIs. To provide a consistent product we used linear 

interpolation to fill missing months before calculating our composite DHIs. We interpolated data 

up to four consecutive months, however, phenology curves are nonlinear, and we may have 

introduced erroneous higher values for winter or lower values for summer months. Most of the 

missing data occurred in winter when vegetation productivity is low, so our interpolations like 

affected the minimum DHI the most. We decided to interpolate data based on monthly median 

NDVI values for all years, instead of annually, because there is not enough cloud-free Landsat 

data in many parts of the US to do so reliably (Baumann et al. 2017).  

Another limitation of our work is that we did not use the Point Spread Function (PSF) 

while aggregating Landsat DHIs to the nominal resolution of 250-m MODIS. This simplification 

excludes up to 25-30% of the signal of each MODIS pixel (Huang et al. 2019). However, we are 

confident our rescaling approach provided robust results, because of high values of the standard 
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deviation of Landsat-based dataset. Another caveat is that the wide swath of MODIS and the 

gridded sampling process causes mismatch between signal and ground source, introducing error 

in the MODIS product, especially in complex terrain which is not overcome completely even 

after preprocessing (Tan et al. 2006, Feng et al. 2012, Peng et al. 2015).  

Regarding the trade-off between longer compositing periods, which provide more 

observations, but also increase the likelihood that land cover changed during the compositing 

period, and shorter periods, which are more likely to be similar across the period, but lack 

observations, we suggest that ten years is a good compromise for most applications. However, 

Landsat coverage is better in the US, than in other parts of the world. Therefore, the period used 

for calculating DHIs may need to be longer in other parts of the world. On the other hand, the 

recently launched Landsat 9 provides a great opportunity to investigate long-term trends in the 

DHIs, and when combined with Sentinel-2 would greatly reduce the need for interpolation for 

more recent years. We opted against including Sentinel-2 data, however, to focus on the 

comparisons of different time periods from one sensor, and the changes from the 1990s to the 

2010s. 

Advancements in cloud computing technologies and open access to the full Landsat 

archive provide a great opportunity to generate novel products that are relevant for biodiversity 

assessments (Kennedy et al. 2014, Wulder et al. 2019). Previously, only coarse resolution data at 

global or continental scales were available, however now data with medium resolution are also 

available over large areas (Gergely et al. 2019) and can be efficiently processed (Gorelick et al. 

2017). Our newly developed DHIs based on Landsat have great potential for biodiversity 

monitoring at regional and local scales, for example, correlations with species richness as well as 

occurrence and abundance data. Thereby the Landsat DHIs can help to advance understanding of 
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the importance of proxies of productivity for species richness, distributions, and abundances. 

Such analyses can provide valuable information about habitat quality for managers striving to 

identify and protect critical habitat of species of concern. Lastly, we found that the long record of 

Landsat data captures long-term changes, and that opens great opportunities to investigate how 

these changes are affecting biodiversity. The 30-m Landsat and 250-m MODIS DHIs for the 

conterminous US, and global 1-km MODIS DHIs are freely available at 

http://silvis.forest.wisc.edu/data/dhis/. 
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Table 1. The time periods for which we calculate the DHIs, operational times of the different 

satellite, number of scenes that we analyzed, and percent interpolated data. 

Period L4 TM 

07/1982 – 

12/1993 

L5 TM  

03/1984- 

11/2011 

L7 ETM+ 

04/1999 – 

05/2003 

L8 OLI  

02/2013 – 

12/2020 

Interpolated 

time steps (%) 

1991-2000 302 70,354 12,521 No data 29.36% 

2001-2020 No data 80,663  18,825 66,231 1.71% 

2011-2020 No data 7,023 No data 66,231 6.75% 

2016-2020 No data No data No data 42,662 17.5% 
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Table 2: Spearman correlation coefficients for the relationships of the three Landsat and MODIS 

DHIs for Level III (larger, n = 85), and IV (smaller, n = 967) ecoregions, and for the three time 

periods for which MODIS data were available. 

  Ecoregion level III Ecoregion level IV 

 Time 

period 

Cumulative 

DHI 

Minimum 

DHI 

Variation 

DHI 

Cumulative 

DHI 

Minimum 

DHI 

Variation 

DHI 

M
ea

n
 

2016-2020 0.99 0.98 0.98 0.99 0.96 0.96 

2011-2020 0.99 0.98 0.99 0.99 0.97 0.97 

2001-2020 0.99 0.98 0.99 0.99 0.97 0.98 

S
ta

n
d
ar

d
 

D
ev

ia
ti

o
n

 2016-2020 0.94 0.83 0.60 0.88 0.74 0.63 

2011-2020 0.93 0.86 0.61 0.88 0.79 0.63 

2001-2020 0.94 0.81 0.65 0.89 0.76 0.63 
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Table 3: Results of linear regression relating the standard deviation of the mean cumulative DHI 

based on Landsat, within 10,000 randomly selected MODIS pixels, with predictor variables 

characterizing topography and fragmentation for 2016-2020, 2011-2020, and 2001-2020. Notes: 

Coefficient estimates (Est.) of variables are shown for univariate linear regression models. 

Adjusted R2 are shown for all models, with the highest adjusted R2 in bold. Significant 

relationship: *p<0.05, **p<0.01, ***p<0.001, NS not significant. Predictors are elevation, terrain 

ruggedness index (TRI), percent core and edge area for forest, grassland, and shrubland. 

Variables: 2016-2020 2011-2020 2001-2020 

 Est. adjR2 Est. adjR2 Est. adjR2 

Univariate models:       

Elevation mean 0.00 0.05*** 0.00 0.05*** 0.00 0.06*** 

Elevation std.dev. 0.01 0.02*** 0.01 0.02*** 0.01 0.02*** 

TRI mean 0.00 0.00NS 0.00 0.00NS 0.00 0.00NS 

TRI std.dev. 0.00 0.00NS 0.00 0.00NS 0.00 0.00NS 

Core forest  0.09 0.00*** 0.09 0.00*** 0.09 0.00*** 

Edge forest 0.54 0.14*** 0.56 0.15 0.57 0.15*** 

Core grassland -0.31 0.04*** -0.30 0.03 -0.30 0.03*** 

Edge grassland -0.01 0.00NS -0.01 0.00NS -0.04 0.00NS 

Core shrubland -0.45 0.13*** -0.45 0.13 -0.48 0.15*** 

Edge shrubland -0.09 0.00*** -0.07 0.00*** -0.12 0.00*** 

       

Multiple regression model:       

Elevation mean+Edge forest+Core 

grassland+Core shrubland 

0.26     

Edge forest+Core grassland+Core shrubland   0.25  0.26 
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Figure 1. The DHIs based on Landsat and MODIS calculated over 20 years (2001-2020): (a) 

cumulative DHI based on Landsat, (b) cumulative DHI based on MODIS, (c) minimum DHI 

based on Landsat, (d) minimum DHI based on MODIS, (e) variation DHI based on Landsat, (f) 

variation DHI based on MODIS, (g) Landsat DHIs are shown in RGB where red = variation 

DHI, green = cumulative DHI, blue = minimum DHI, (h) MODIS DHIs are shown in RGB 

where red = variation DHI, green = cumulative DHI, blue = minimum DHI. 
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Figure 2: Percent of missing Landsat data for each month for our four time periods. Interpolation 

was for the most part only necessary in winter months, when productivity is zero in most of the 

conterminous U.S. 
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Figure 3: Data layers corresponding to three sampled landscapes (a, b, e, h). First column: the 

2016 version of Landsat-based National Land Cover Database (NLCD); second column: the 

DHIs based on Landsat; third column: the DHIs based on MODIS (2016-2020). The DHIs are 

shown in RGB where red is the variation DHI, green the cumulative DHI, and blue the minimum 

DHI. 
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Figure 4: (a) The standard deviation of the cumulative DHI based on Landsat within each 

MODIS pixel; (b) the difference map of the MODIS cumulative DHI and Landsat cumulative 

DHI for 2011-2020 (MODIS - Landsat); (c) the 2016 version of Landsat-based National Land 

Cover Database (NLCD). The panel on the right highlight regions with diverse topography and 

land cover. 
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Figure 5: The difference map of the Landsat DHIs for 2011-2020 minus those for 1991-2000. 

Green areas decreased in the respective DHI; purple areas increased. 
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Figure 6: Spearman correlation between the Landsat DHIs calculated over 1991-2000 and 2011-

2020. 
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Appendix 1: Spatial distribution of missing data over conterminous US over five, ten, and twenty 

years. Missing data over five years (2016-2020) shown in yellow color, over five and ten years 

(2016-2020 and 2011-2020) in blue color, over five, ten and twenty years (2016-2020, 2011-

2020, 2001-2020) are shown in pink color. Gray color indicated that Landsat data are available. 
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Appendix 2: Pearson correlations between explanatory variables in model for second objective. 

Abbreviations are ElevMean and ElevSD- mean and standard deviation of elevation, TRIMean 

and TRISD- mean and standard deviation of terrain ruggedness index, pFORCore and 

pFOREgde- percent of core and percent of edge of forest, pGRCore and pGREgde- percent of 

core and percent of edge of grassland cover, pSHRCore and pSHREgde- percent of core and 

percent of edge of shrubland cover. 
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Chapter 2: Explaining bird richness with the Dynamic Habitat Indices across the 

conterminous US 

Abstract 

Biodiversity is declining at an unprecedented rate, and effective conservation necessitates 

understanding the drivers of species richness patterns. Vegetation productivity derived from 

satellite data captures available energy in ecosystems, allowing the generation of relevant indices 

for biodiversity. One such group of indices, the Dynamic Habitat Indices (DHIs) from 1-km 

MODIS, strongly predict avian species richness. Our goal was to test the ability of the DHIs 

calculated from higher spatial but lower temporal resolution (30-m, 16-day Landsat) satellites to 

capture patterns of vegetation productivity and explain bird richness across the conterminous 

United States and compare their performance with DHIs derived from coarser spatial but higher 

temporal resolution products (250-m, 1-2 day MODIS). We also assessed the relative importance 

of Landsat DHIs compared with other commonly used variables to explain bird richness. In 

addition, we explored the relationship between Landsat DHIs and bird richness from 1991-2000. 

Using North American Breeding Bird Survey (BBS) data, we calculated richness as four sets of 

all species and within 21 functional guilds over two periods (1991-2000 and 2011-2019). We 

calculated the DHIs from Landsat (1991-2000 and 2011-2020) and MODIS data (2011-2020) 

and summarized both grains at four spatial extents, designed to match the four sets of bird data a) 

within 85 Level III ecoregions, b) 5-km square buffers around BBS routes, c) 2.5-km square 

buffers for the first-ten-stops, and d) 0.5-km square buffers for first points. The predictive 

performance of DHIs based on Landsat and MODIS across the four spatial extents was very 

similar and explained up to 48% of the variance in bird richness in univariate linear regression 

models. In multivariate models combining Landsat DHIs with topography and land cover, we 

found the DHIs complemented other variables and explained up to 64% of the variance in bird 
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richness. The predictive performance of 1991-2000 Landsat DHIs was similar to that of 2011-

2020, suggesting good overall accuracy and consistency. Our results highlight the usefulness of 

Landsat DHIs for measuring vegetation productivity and explaining species richness at broad 

scales. We show that Landsat DHIs have great potential for understanding how changes in DHIs 

over time may influence biodiversity. 

Introduction 

Biodiversity is declining at an unprecedented rate, and a major cause of this decline is 

anthropogenic factors (Rockström et al. 2009, Pimm et al. 2014). Humans dramatically change 

ecosystems through land use and land cover change (Sleeter et al. 2013, Sohl et al. 2014), with 

profound consequences for biodiversity (Sala et al. 2000, Hansen et al. 2013, Haddad et al. 

2015). Effective conservation efforts rely on a broad-scale understanding of the drivers of 

biodiversity patterns (Pereira et al. 2013). In this capacity, satellite data provide meaningful 

information about the biophysical characteristics of ecosystems (Turner et al. 2003, Cavender-

Bares et al. 2022) and are suitable for monitoring biodiversity patterns across the globe (Wright 

1983, Gaston 2000, Mittelbach et al. 2001, Hawkins et al. 2003a, 2003b, Bonn et al. 2004). 

Species richness is a key component of biodiversity and is positively correlated with net 

primary productivity (NPP) (Paruelo et al. 1997). Remotely sensed vegetation indices such as the 

normalized difference vegetation index (NDVI) characterize NPP at broad scales and 

consequently are related to species richness (Myneni et al. 1995, Skidmore et al. 2003, Cohen 

and Goward 2004, Pettorelli et al. 2011). The Dynamic Habitat Indices (DHIs) are integrated 

measures of vegetation productivity summarized as a) year-round overall productivity; b) 

available minimum productivity during the winter season; and c) variation in productivity, and 

are effective predictors of species richness at regional and global scales (Coops et al. 2009, Hobi 
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et al. 2017, Radeloff et al. 2019). Moreover, the DHIs derived from various MODIS products 

have been successfully used to explain tropical species richness in Thailand (Suttidate et al. 

2019), model distributions of bird species in California (Burns et al. 2020), explain broad 

patterns of mammal and bird richness in China (Zhu and Guo 2022), and explain abundance and 

occurrence of mammals (Michaud et al. 2014, Razenkova et al. 2020). The frequency of MODIS 

observations also allows the calculation of annual DHIs to explain inter annual variability in bird 

richness (Hobi et al. 2021). However, MODIS DHIs can be too coarse to be useful for relating to 

some species, as in cases where breeding territories are smaller than a 1-km MODIS pixel. 

Moreover, higher spatial resolution satellite data can capture spatial heterogeneity at finer scales, 

which is an important predictor of species distributions and richness. However satellites with 

higher spatial resolutions capture images less frequently per location than satellites with coarser 

spatial resolutions, especially prior to the launch of Landsat 7 in 1999. Thus, there are potential 

tradeoffs between numbers of available images versus spatial resolution, in calculating the DHIs 

using satellite data for a given period. A key question is: do higher spatial resolution DHIs 

(Landsat) provide similar explanatory power in models of species richness as the DHIs 

calculated with coarse resolution (MODIS) data, despite incorporating fewer images? 

Another advantage of Landsat is its long-term record, starting in 1972, which allows for 

long-term monitoring of Earth’s surface and advances our understanding of global terrestrial 

changes (Wulder et al. 2008, 2019, Kennedy et al. 2014). However, Landsat data are not 

uniformly distributed in space and time, which creates additional challenges in the calculation of 

DHIs for different time periods. Our next question is: do Landsat DHIs calculated over different 

time periods provide similar explanatory power in models as those calculated over the most 

recent decade (2011-2020)? To answer this question, we selected Landsat data from 1991-2000, 
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when three satellites were in orbit (Landsat 4, 5, and 7). The spatial coverage for some areas was 

limited, resulting in the DHIs calculated over 1991-2000 requiring more interpolated data (see 

method for more details).  

We modeled bird species richness because birds are effective indicators of biodiversity 

and respond strongly to vegetation productivity (Hurlbert and Haskell 2003, Bailey et al. 2004, 

Bonn et al. 2004, Hunt et al. 2022). Moreover, they quickly respond to ecosystem changes, have 

diverse ecological functions, and are highly mobile (Cody 1981, Sekercioglu 2006). Observed 

steep declines in bird abundance (Pimm et al. 2014) raise serious concerns about ecosystem 

health as well as human well-being, because birds provide numerous ecosystem services such as 

pest control, pollination, fertilizer, and seed dispersal (Sekercioglu 2006). The North American 

Breeding Bird Survey (BBS, (Sauer et al. 2017)) is a long-term bird abundance and occurrence 

dataset. It provides an opportunity to explore the relationship between the DHIs and bird richness 

and test whether higher spatial resolution DHIs provide greater predictive power than coarse 

DHIs in species richness models. The long record of Landsat and BBS data enables exploration 

of the relationship between vegetation productivity and bird species richness in the past.  

We hypothesized that sites with high vegetation productivity also have high vegetation 

structural complexity and can therefore support more species than areas with low productivity 

and structural complexity. Habitat structural complexity is an important determinant of species 

richness (MacArthur 1964), and vegetation heterogeneity provides more niche space which may, 

in turn, support greater biodiversity (Tews et al. 2004). Due to their higher spatial resolution, the 

Landsat DHIs are better suited to capture heterogeneity in vegetation productivity, and thus may 

provide more explanatory power in modeling birds that depend on heterogeneous landscapes, 

such as forest and shrubland species (Bar‐Massada and Wood 2014, Farwell et al. 2021). We 
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also expected richness of permanent residents and birds with small body sizes may be better 

predicted by Landsat DHIs, as these groups must make greater adjustments to maintain suitable 

body temperature to survive during harsh seasons than migrants and large-bodied species, and 

heterogeneous landscapes provide a variety of options for escaping unfavorable weather 

conditions (Scholander et al. 1950, Elsen et al. 2020).  

The DHIs contain ecologically relevant and unique information for biodiversity that may 

complement other environmental variables that drive biodiversity patterns, such as land cover 

and topography (Suttidate et al. 2019). To evaluate the relative importance of Landsat DHIs 

against other variables commonly used to model bird richness, we combined the DHIs, 

topography, and land cover in models. We focused on topography and land cover in particular 

because both affect bird richness (Turner et al. 2003).  

Our primary goal was to evaluate the predictive performance of the DHIs based on 30-m 

Landsat and compare them with 250-m MODIS in bird richness models. Specifically, we 

examined the following questions: 

• Do the Landsat and MODIS DHIs provide comparable predictive power in models of 

bird richness across four spatial extents? 

• Do the Landsat DHIs provide higher predictive power than MODIS DHIs in models of 

bird richness within heterogeneous landscapes?  

• What is the relative importance of Landsat DHIs in bird richness models compared with 

topography and land cover? 
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• What is the predictive power of the Landsat DHIs calculated over 1991-2000 compared 

with the Landsat DHIs calculated over 2011-2020? 

We expected that the Landsat DHIs would have higher predictive power compared to the 

MODIS DHIs in models of bird guilds for which species richness within a given habitat is 

typically positively associated with habitat heterogeneity, including forest and shrubland birds, 

permanent residents, and birds with small body sizes, because Landsat DHIs provide more 

information about heterogeneous cover than MODIS DHIs, especially in complex terrain. 

However, we expected no differences in predictive power between the Landsat and MODIS 

DHIs for grassland birds, because richness in this guild depends on relatively subtle differences 

in grass species, density, and height, which are probably equally well captured by both satellites. 

Among our four spatial extents, we expected to see greater differences in predictive power 

between the Landsat and MODIS DHIs for the first ten-stops (representing one-fifth of BBS data 

available) and the first stop of BBS routes (representing one-fiftieth of BBS data available) and 

that the predictive power of models would be highest for ecoregions (the largest extent) and 

lowest for the first stop along a BBS route (the smallest extent) due to greater species richness 

dynamic range at the ecoregion scale. For combined models, we expected that the Landsat DHIs 

would complement the other environmental variables and increase the overall predictive power 

of the models. Finally, we expected that the Landsat DHIs calculated over 1991-2000 would 

provide similar predictive power as the Landsat DHIs calculated over 2011-2020, despite a larger 

percent of interpolated data in the earlier time steps. However, we also expected changes in bird 

species richness over time associated with land cover and other habitat suitability changes, and in 

particular we expected a decline in richness of birds of conservation concern (i.e., threatened 

species).  
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Methods 

The DHIs from Landsat and MODIS data 

The Dynamic Habitat Indices (DHIs) summarize vegetation productivity in three ways 

that are relevant for biodiversity: the overall productivity (cumulative DHI), minimum 

productivity (minimum DHI), and seasonal variation in vegetation productivity (variation DHI) 

(Radeloff et al. 2019). We used the DHIs calculated from the normalized difference vegetation 

index (NDVI) based on 30-m Landsat and 250-m MODIS data. Full details regarding the 

calculation of the DHIs based on Landsat and MODIS are described previously (Razenkova et al. 

n.d., Hobi et al. 2017, Radeloff et al. 2019). In short, we calculated the DHIs from a time series 

of 1991-2000 and 2011-2020 median monthly values of Landsat NDVI for conterminous US. To 

calculate Landsat NDVI we used bands 3 and 4 of Landsat 4, 5, and 7, and bands 4 and 5 of 

Landsat 8. To fill gaps in the NDVI composite, we applied linear interpolation. Overall, we 

interpolated about 29.4% of the data for 1991-2000 and 6.8% for 2011-2020. For the DHIs 

calculated from MODIS Collection 6, we used the NDVI 16-day composite product at 250-m 

resolution over 2011-2020. Unlike the monthly NDVI composite for the Landsat DHIs, our 

MODIS DHIs were based on the median NDVI values for each MODIS time step (16-day 

composite, 23 total observations) over 2011-2020. Prior to any NDVI calculation, we removed 

clouds and cloud shadows, replaced pixels with snow and ice with zeros (assuming no 

photosynthetic activity), and removed water bodies based on a water mask (Hansen et al. 2013). 

We accessed and processed all remote sensing data in Google Earth Engine (Gorelick et al. 

2017). We calculated the three components of the DHIs as follows: 1) cumulative DHI, which is 

the sum of monthly composite (for Landsat) or 16-day composite (for MODIS) observations; 2) 
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minimum DHI, which is the lowest NDVI value over the composite; and 3) seasonal DHI, which 

is the coefficient of variation.  

BBS data 

BBS data are collected once a year during the breeding season across North America 

(Sauer et al. 2017). A single BBS route consists of 50 stops spaced evenly along a 39.4-km route 

along a secondary road. Skilled volunteers observe and record individual birds at each stop, by 

species, following a standardized protocol. We excluded observations from BBS data when 

weather conditions during the survey were poor and when surveys were conducted by first-time 

observers, because these can result in false positive errors (Kendall et al. 1996). We calculated 

bird species richness by summing the 1991-2000 bird data, and the 2011-2019 data. We 

organized bird occurrence data into 4 sets that were increasingly site-specific. The most 

encompassing set included a) all birds detected on BBS routes in each of 85 Level III ecoregions. 

We also analyzed b) all birds on each BBS route (3,090 routes in 1991-2000 and 3,022 routes in 

2011-2019), and subsets of BBS routes. These included c) birds detected on the first 10-stops of 

each BBS route (2,689 routes in 1991-2000 and 2,979 routes in 2011-2019), and d) birds 

detected only on the first stop of each route (2,323 routes for 1991-2000 and 2,699 routes for 

2011-2019). BBS data were not collected during 2020, so our satellite data extends one year 

beyond our BBS data.  

We separated birds based on habitat association (forest, shrubland, and grassland 

specialists and affiliates), migratory behavior (residents, short-distance migrants, and long-

distance migrants), nest location (ground and mid-story, canopy nesters), IUCN status 

(threatened species, species with decreasing population trends, and species with stable or 

increasing population trends), range size (small and large), diet (insectivores, granivores, and 
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frugivores), and body size (large and small) using BBS classifications and detailed information 

about bird species from Birds of the World (Billerman et al. 2020). In addition, we separated 

birds by body size (small and large) by calculating the average body mass of all breeding birds 

from BBS data, using information about body mass from (Dunning 2008). We assigned species 

as small-bodied if their average body mass was smaller than the average body mass of all birds; 

otherwise, we assigned them as large-bodied. In total, we calculated species richness for 21 bird 

guilds and overall species richness.  

Ancillary environmental variables 

  For elevation, we used the NASA Shuttle Radar Topography Mission (SRTM) digital 

elevation model (DEM) at 30-m spatial resolution (Farr et al. 2007). From the DEM, we also 

calculated the terrain ruggedness index (TRI) that characterizes topographic heterogeneity (Riley 

1999). We used land cover maps from the 2016 National Land Cover Database (NLCD) at 30-m 

resolution to characterize land cover composition. We focused on three broad habitat types: 

forest (including decidious forest, evegreen forest, mixed forest), shrubland (including dwarf 

scrub, and shrub/scrub), and grassland.  

Statistical analysis 

For modeling, we calculated the mean and standard deviation of the DHIs based on 

Landsat (1991-2000 and 2011-2020) and MODIS (2011-2020) at each of four spatial extents, 

designed to match the four sets of bird data a) within 85 Level III ecoregions, b) 5-km square 

buffers around the full BBS routes, centered on first-stop locations, c) 2.5-km square buffers for 

the first-ten-stops, centered on first-stop locations, and d) 0.5-km square buffers for first survey 

points, centered on first-stop locations (hereafter referred to as four spatial extents: ecoregions, 

full BBS route, first ten stops, and first stop). We selected buffer sizes based on a previous 
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assessment of the detection area covered by 1, 10, and 50 BBS survey stops (Carroll et al. 2022). 

We calculated Spearman correlation coefficients and created scatter plots to explore the 

relationship between bird richness and the DHIs. For statistical analysis, we fitted a series of 

linear regressions with our 22 bird richness metrics (overall species richness and richness within 

21 guilds) as the response variables and the three components of the Landsat and MODIS DHIs 

(2011-2020) as the explanatory variables. For each model, we evaluated both linear and 

quadratic terms of the DHIs to account for potential nonlinear relationships between vegetation 

productivity and species richness, especially at the finest spatial extent (first stop) (Mittelbach et 

al. 2001). To compare the performance of the models incorporating Landsat with those using 

MODIS DHIs (2011-2020) for each functional guild, we considered only one type of regression 

with either linear or quadratic terms. To assess the predictive power of the Landsat DHIs (1991-

2000) in models, we used linear regression, where the response variables were species richness 

summarized for 1991-2000 for the same bird guilds as above at the four spatial extents (see 

workflow of the modeling Appendix 3). 

To assess the performance of Landsat and MODIS DHIs in modeling species richness 

over heterogeneous landscapes, we selected BBS routes only in areas where TRI was >10. TRI 

provides a quantitative measure of topographic heterogeneity based on the difference between a 

site's (i.e., pixel’s) elevation and the average deviation of all eight surrounding pixels. Thus, an 

arbitrarily selected threshold (TRI>10) enabled us to separate homogeneous (i.e., flat) and 

heterogeneous (i.e., rugged) landscapes and retain a sufficient number of BBS routes for 

modeling (651 of 3,022 total BBS routes; Appendix 4). We conducted this analysis only for the 

full BBS route extent (i.e., 5-km square buffers centered on first-stop locations BBS route) for 

several functional guilds, including overall species richness, forest affiliates and specialists, 
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grassland affiliates, shrubland affiliates and specialists, permanent residents, long-distance 

migrants, short-distance migrants, and small-bodied species. We did not assess grassland 

specialists due to small sample size. We expected the predictive power would be greater for 

Landsat than for MODIS DHIs for each of these bird guilds.  

To evaluate the relative importance of the DHIs compared with other environmental 

predictors, we fitted a bird richness model with the Landsat DHIs, elevation, TRI, and proportion 

of forest, grassland, and shrubland land cover. We ran this analysis only for the full BBS route 

extent (i.e., 5-km square buffers centered on first-stop locations BBS route). Before fitting 

models, we first checked the multicollinearity among explanatory variables by calculating 

Spearman correlation coefficients (Appendix 5). The highest correlation coefficients were -0.84 

between minimum DHI and variation DHI. The remaining variables had a correlation of 

│r│<0.8. We centered and standardized all explanatory variables to make unbiased comparisons 

of effect sizes. Then, we fitted a linear regression model with all explanatory variables. To 

identify a set of best performing models, we compared models using the Bayesian Information 

Criterion (BIC), which penalizes models with larger numbers of explanatory variables. We 

identified all models with ∆BIC<4, identified the top-ranked model, and then calculated adjusted 

R2 values for those models to estimate how well each model explained the variation in bird 

richness. To evaluate the contribution of each explanatory variable in the top-ranked models of 

species richness (overall species richness and for each of 21 guilds), we plotted standardized 

regression coefficients with 95% confidence intervals. In addition, we calculated adjusted R2 for 

top-ranked models without the DHIs. We used variance inflation factors (VIF) to check the top-

ranked models for multicollinearity, where a VIF >10 indicates high multicollinearity (O’Brien 

2007). 
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Results 

Landsat and MODIS DHIs 

We found that Spearman correlation coefficients between the mean of Landsat and MODIS 

DHIs for 2011-2020 at the four spatial extents were high (0.90 to 1), while the standard deviation 

varied from 0.51 to 0.93 (Table 4). As expected, cumulative DHI from the two sensors was most 

highly correlated among the three components of the DHIs, especially at the broadest spatial 

scale, ecoregions (r=0.99). The standard deviation of variation DHI had the lowest correlation at 

the finest spatial scale, the first stop of each BBS route (r=0.51). 

BBS routes and bird guilds 

The number of BBS observations we analyzed differed across extents and guilds. Across 

both time periods (1991-2000 and 2011-2019), our BBS data followed expected spatial patterns 

of species richness with the broadest areas (i.e., ecoregions) having the highest species richness 

and the smallest areas (i.e., first stops) having the lowest (Figure 7, Appendix 6). We found that 

average bird richness was similar between 1991-2000 and 2011-2019, it was slightly lower in the 

1991-2000 than in the second period at the scale of the first ten stops and the first stops 

(Appendix 7). Trends in bird richness varied by guild at the ecoregion scale (Appendix 7). 

Declines in bird richness ranged from 0.15-1.54 across the two time periods, with forest affiliates 

experiencing the steepest declines. Some guilds increased in bird richness (ranging from 0.40-

1.19), with residents showing the greatest increase.  

Landsat and MODIS DHIs as predictors of 2011-2020 species richness  

We found that the three components of the Landsat DHIs provide comparable predictive 

power as the MODIS DHIs, with slightly higher performance for most bird guilds and across all 
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four spatial extents (Table 5). However, neither the Landsat nor the MODIS DHIs were 

uniformly included in the best models across guilds and extents. Cumulative DHI provided the 

highest predictive power at larger spatial extents (ecoregions and full BBS routes) and explained 

10-48% of the variance of the 21 guilds. For example, cumulative DHI was the strongest 

predictor of shrubland specialists at these extents. At smaller spatial extents (first ten stops and 

first stop), the cumulative DHI model also best explained variance of the guild composed of 

species with stable/increasing populations (38%). Overall, the Landsat cumulative DHI was a 

stronger predictor than the MODIS cumulative DHI for most bird guilds. MODIS DHIs 

explained more variance than Landsat DHIs only for residents, small-ranged, and large-bodied 

bird guilds at the ecoregion scale. 

Minimum DHI was generally the second strongest predictor of bird species richness. 

However, it had higher predictive power at the ecoregion scale for grassland specialists, short-

distance migrants, and species with decreasing population sizes. (Table 5). Minimum DHI was a 

strong predictor of grassland affiliates and specialists, residents, short-distance migrants, ground 

nesters, granivores, and threatened, decreasing, and large-ranged species, explaining 20-38% of 

the variation in species richness of these guilds. When comparing the predictive performance of 

minimum DHI based on Landsat and MODIS, MODIS minimum DHI performed better for more 

guilds than Landsat overall. However, Landsat minimum DHI performed better for grassland 

affiliates and specialists across all four spatial extents. 

Variation DHI tied with minimum DHI in having high explanatory power for grassland 

specialists, and also was strongly associated with substantial variation in residents, long-distance 

and short-distance migrants, decreasing, small-ranged, and large-ranged bird guilds, accounting 

for 18-47% of the variation in species richness. Landsat variation DHI performed better than 
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MODIS and was the strongest predictor for large-ranged species. Overall, the Landsat DHIs had 

higher predictive power than MODIS DHIs for all functional guilds except for residents, short-

distance migrants, threatened, small-ranged, and large-bodied species, and had comparable 

predictive power in models for shrubland specialists and granivores.  

In most cases, we observed non-linear relationships between vegetation productivity and 

species richness across our four spatial extents, as models with quadratic terms performed better 

than those without (Table 5). We did not find evidence that the shape or directionality of the 

relationships between bird richness and the DHIs differed between Landsat and MODIS. 

However, we noticed directionality differed for some guilds depending on the spatial extent. For 

example, overall species richness had a negative relationship with cumulative and minimum DHI 

at the ecoregion scale but a positive relationship at the full route and first ten stops scales (Figure 

2). We observed similar patterns for all guilds except grassland affiliates and specialists, and 

shrubland specialists (Table 5). 

Performance of the Landsat and MODIS DHIs over heterogeneous landscapes 

Our second objective was to compare the predictive performance of Landsat and MODIS 

DHIs in models of bird richness within heterogeneous landscapes. We found that the Landsat 

DHIs provided greater explanatory power (1-2%) than the MODIS DHIs for overall species 

richness, forest affiliates and specialists, grassland affiliates, shrubland affiliates and specialists, 

and species with small body sizes (Table 6). There was no difference in explanatory power 

between Landsat and MODIS DHIs in bird richness models for residents (minimum DHI), long-

distance migrants (cumulative DHI and minimum DHI), or short-distance migrants (minimum 

DHI). The predictive power of models for the heterogeneous landscape subset was lower than for 

the full dataset models except for shrubland affiliates and small-bodied species (Table 5, Table 
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6). For example, the Landsat cumulative DHI explained only 21% of the variance in overall 

species richness in heterogeneous landscapes versus 30% of the same model for the full dataset. 

In contrast, the Landsat cumulative DHI explained 17 % and 27% of the variance in shrubland 

affiliates in heterogeneous landscapes compared with 4% of the same models for the full dataset.  

Relative importance of the Landsat DHIs in the global model 

The top-ranked models explained between 13-64 % of the variance in bird richness and 

included two topographic (elevation, TRI), three land cover metrics (proportion of forest, 

grassland, and shrubland cover), and the three Landsat DHIs (cumulative, minimum, and 

variation DHI; Table 4). The models explaining granivores, ground nesters, and large-bodied 

species had lower predictive power and explained only 13%, 17%, and 20% of the variance, 

respectively. Our top-ranked models included different combinations of explanatory variables, 

but all included at least two components of the Landsat DHIs, one variable related to land cover, 

and one variable related to topography. Only one top-ranked model (for large-ranged species) did 

not include any topographic metric. Cumulative DHI had the strongest positive effect on species 

richness for most bird guilds except grassland specialists and affiliates, shrubland specialists and 

affiliates, and small-ranged species (Figure 9). Minimum DHI had the second strongest negative 

effect on species richness; only a few bird guilds, including shrubland specialists, threatened, and 

small-ranged species, had positive relationships with minimum DHI. Although variation DHI 

had the weakest effect among the three DHI components, it strongly negatively affected 

shrubland affiliates, shrubland specialists, and residents.  

Among land cover classes, the proportion of forest cover was the most important 

predictor, with greater effect than either the proportion of grassland or shrubland cover for forest 

specialists (as expected), residents, and large- and small-bodied species (Figure 9). The 
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proportion of grassland cover had a strong negative effect on overall species richness and forest 

affiliates, again as expected. Only grassland affiliates and specialists had a positive relationship 

with the proportion of grassland cover. Yet, although the proportion of grassland cover had a 

weak effect on other bird guilds, it was included in most top-ranked models and negatively 

influenced species richness. Based on effect, the proportion of shrub cover had stronger negative 

effects on granivores than other predictors, and a positive influence on shrub specialists and 

affiliates, ground nesters, insectivores, small-ranged, and small-bodied species. 

Elevation had a strong positive effect on forest affiliates, forest specialists, short-distance 

migrants, and species with stable/increasing population trends, and a negative effect on 

shrubland affiliates, shrubland specialists, residents, threatened species, species with decreasing 

population trends, and granivores, based on top-ranked models (Table 7). Terrain ruggedness 

was important and positively influenced overall species richness, forest affiliates, forest 

specialists, mid-story and canopy nesters, stable/increasing species, small-ranged and small-

bodied birds, and insectivores (Figure 9). Furthermore, terrain ruggedness was selected in top-

ranked models (18 of 22) more often than elevation (12 of 22). 

Variance inflation factors (VIFs) for all variables in top-ranked models were <10, 

indicating an acceptable level of collinearity between explanatory variables (Appendix 8) 

(O’Brien 2007). In summary, we found that the DHIs were important predictors and had a 

stronger effect on species richness for all bird guilds than topographic and land cover metrics. 

After removing the DHIs from top-ranked models, adjusted R2 declined from 4-45%, and large-

ranged bird had the largest decline in adjusted R2 (last column in Table 7). 
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The Landsat DHIs as predictors for species richness for 1991-2000 

We found no substantial difference in the performance of Landsat DHIs in bird richness 

models between 1991-2000 and 2011-2020, at any extents (Table 5, Table 8), except granivores. 

The difference in variance explained by Landsat DHIs for the 1990s compared to the 2010s 

ranged from 0-0.13. Granivores had the largest decline in variance explained from 40% 

(cumulative DHI for the 2010s) to 27% (cumulative DHI for the 1990s) at the ecoregion scale.  

Discussion 

The main goal of this work was to evaluate the performance of the Landsat and MODIS 

DHIs in modeling species richness for 21 bird guilds and overall species richness at four spatial 

extents across the conterminous US. We found that the Landsat DHIs provided comparable and, 

in some cases, slightly higher predictive power than the MODIS DHIs in bird richness models, 

providing evidence that medium-resolution satellite imagery captures important habitat 

characteristics at relevant scales for species richness. Individual components of the DHIs can 

explain up to 48% (Landsat and MODIS cumulative DHI) of the variance in bird richness. 

However, the predictive power of the DHIs was highly dependent on the bird guilds and spatial 

extent of analysis. Among the three components of the DHIs, cumulative DHI provided the 

highest predictive power and performed best in richness models of forest affiliates and specialists 

(except at the ecoregion scale), grassland affiliates and specialists, and shrubland specialists, 

across all four spatial extents. Our expectation that Landsat DHIs would perform better than 

MODIS DHIs was supported for forest specialists and affiliates, shrubland affiliates, and birds 

with small body sizes, but was not supported for shrubland specialists or permanent residents.  

We also found that minimum DHI was important for grassland specialists and affiliates, 

residents, and short-distance migrants. This result is consistent with previous work that showed 
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minimum MODIS DHI was a good predictor of grassland birds (Coops et al. 2009, Hobi et al. 

2017) and minimum monthly NDVI was important for resident birds (Hurlbert and Haskell 

2003). Contrary to our expectation, we observed a notable difference in the performance of 

Landsat DHIs and MODIS DHIs in richness models of grassland specialists and affiliates. These 

results highlight the importance of higher spatial resolution satellite data in grassland ecosystems 

that capture spectral variability of landscapes in more detail than coarse resolution data 

(Fassnacht et al. 2022). However, our expectation that models would have higher explanatory 

power at the ecoregion scale was not supported, in most cases. For example, cumulative DHI 

performed poorly for forest affiliates and specialists, long-distance migrants, threatened species, 

stable/increasing populations, large-ranged birds, insectivores, and small-bodied birds at the 

ecoregion scale. 

Habitat heterogeneity is an important determinant of species richness (MacAthur and 

MacAthur 1961), and the Landsat DHIs have great potential to characterize vegetation 

productivity over heterogeneous landscapes. Indeed, we found that bird richness models based 

on the Landsat DHIs generally outperformed those based on MODIS DHIs in heterogeneous 

landscapes, such as grassland affiliates at ecoregion scale. However, we expected to find a larger 

difference in the performance of models based on Landsat versus MODIS DHIs. The wider 

swath and coarser spatial resolution of MODIS data introduce geometric and spectral issues in 

surface reflectance products (e.g., NDVI) that are reduced by MODIS preprocessing but not 

eliminated completely (Tan et al. 2006, Feng et al. 2012, Peng et al. 2015). Our explanation for 

finding no substantial differences in the models based on Landsat and MODIS DHIs over 

heterogeneous areas is a potential bias in BBS route locations, which are not representative of 

heterogeneous landscapes (Veech et al. 2017, Ankori-Karlinsky et al. 2022). Roughly 80% of 
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BBS routes are located in areas where the TRI is between 0-10, while only 20% are located in 

areas with TRI values between 11-54. 

When we evaluated the Landsat DHIs in global models, we found that the DHIs 

complemented other environmental variables in explaining bird richness, including topographic 

and land cover metrics. Moreover, the DHIs were the strongest predictors and had the largest 

effects on richness within most guilds. Our results indicate the utility of the DHIs in capturing 

habitat characteristics is distinct from other commonly used variables, in line with prior studies 

(Radeloff et al. 2019, Suttidate et al. 2019). 

As predicted, the Landsat DHIs calculated over 1991-2000 and 2011-2020 had 

comparable predictive power in modeling bird richness across the conterminous US. These 

results show that the Landsat DHIs are suitable for applications spanning multiple decades, back 

at least until the early 1990s when the number of available satellite images was far lower than it 

is today. Combining Landsat DHIs over different time periods with BBS data allows for a better 

understanding of changes in relationship between vegetation productivity and species richness 

patterns. Indeed, we found a decline in species richness over the past thirty years for all bird 

guilds except residents, stable/increasing populations, and granivores at the ecoregion and full 

BBS route scales. These findings are consistent with numerous studies reporting declines of 

different bird groups across the US (Langham et al. 2015, NABCI 2016, Rosenberg et al. 2019). 

This is the first study that compares the performance of the DHIs derived from medium 

(30-m) and coarse (250-m) spatial resolution satellite data in modeling bird richness across four 

spatial extents. The relationship between species richness and productivity has been investigated 

for a long time (Mittelbach et al. 2001, Hawkins et al. 2003a, Bonn et al. 2004), and several 



83 

 

83 

 

efforts have explored how such relationships are influenced by the spatial scale of analysis 

(Gross et al. 2000, Hurlbert and Haskell 2003, Bailey et al. 2004). We found that the relationship 

between species richness and vegetation productivity was unchanged by the spatial resolution of 

the DHIs (i.e., 30-m Landsat or 250-m MODIS) but was influenced by the spatial extent of 

analysis (i.e., ecoregion, full BBS route, first ten-stops, or first stop scales). At the ecoregion 

scale, the relationship between productivity and species richness was linear in most cases but 

became unimodal or hump-shaped at finer extents (Figure 8). Our results confirm the findings of 

earlier work that, for some bird guilds, species richness is linearly related to vegetation 

productivity, while for others the relationship is better represented by a decelerating curve 

(Evans et al. 2005, Hobi et al. 2017). We also found that bird guilds had different responses 

based on the spatial extent of analysis. Some bird guilds had the strongest relationship with 

vegetation productivity at larger spatial extents (e.g., shrubland specialists at the ecoregion 

scale), while other guilds showed divergent patterns (e.g., overall species richness at the full BBS 

route scale or residents at the first ten-stop scale). These findings highlight the importance of 

analyzing multiple spatial extents to find meaningful relationships for species (Jackson and 

Fahrig 2012, 2015). However, we were surprised to find that the directionality of the relationship 

between the DHIs and species richness changed from positive to negative depending on the 

spatial extent of the analysis. Given this, we speculate that the DHIs are capturing different 

features or qualities that work to that promote or suppress high species richness at these different 

scales.  

Caveats and limitations 

There were some limitations of the remotely sensed data. We applied linear interpolation 

for the Landsat DHIs to fill in missing data; however, phenology curves are nonlinear, and 



84 

 

84 

 

therefore we likely overestimated NDVI values for winter and underestimated values for 

summer. Moreover, there were slight differences in how we calculated the DHIs based on 

MODIS and Landsat data. The Landsat DHIs were calculated based on monthly NDVI 

composites, while the MODIS DHIs were based on 16-day NDVI composites. Given the high 

correlation between Landsat and MODIS DHIs, in all likelihood that difference had minimal 

effects on our results. The BBS is a great resource for long-term bird data; however, BBS routes 

are not uniformly distributed across the conterminous US and are especially sparse in remote 

areas and landscapes with complex terrain (Veech et al. 2017). Moreover, some bird guilds, 

including frugivorous and threatened species, had a low number of species (especially at the first 

stop scale). Despite these limitations, our remotely sensed indices provided high predictive 

power for some bird guilds and our models performed well. 

Conclusion 

The Dynamic Habitat Indices derived from Landsat data are new remotely sensed indices 

of vegetation productivity specifically designed to predict biodiversity patterns. The DHIs 

provide unique information compared with commonly used predictors including land cover and 

topographic metrics. We showed that Landsat DHIs provide high predictive power in modeling 

species richness for most bird guilds. The higher spatial resolution of Landsat DHIs characterizes 

heterogeneous landscapes with greater detail than is possible using MODIS DHIs and provides 

information at a resolution which better approximates their perception of habitat. Using the 

Landsat archive we can advance our understanding of how changes in vegetation productivity 

influence biodiversity patterns. All remotely sensed datasets are freely available at 

https://silvis.forest.wisc.edu/data/dhis/. 

References 

https://silvis.forest.wisc.edu/data/dhis/


85 

 

85 

 

Ankori-Karlinsky, R., M. Kalyuzhny, K. F. Barnes, A. M. Wilson, C. Flather, R. Renfrew, J. 

Walsh, E. Guk, and R. Kadmon. 2022. North American Breeding Bird Survey underestimates 

regional bird richness compared to Breeding Bird Atlases. Ecosphere 13:1–18. 

Bailey, S. A., M. C. Horner-Devine, G. Luck, L. A. Moore, K. M. Carney, S. Anderson, C. 

Betrus, and E. Fleishman. 2004. Primary productivity and species richness: Relationships 

among functional guilds, residency groups and vagility classes at multiple spatial scales. 

Ecography 27:207–217. 

Bar‐Massada, A., and E. M. Wood. 2014. The richness-heterogeneity relationship differs 

between heterogeneity measures within and among habitats. Ecography 37:528–535. 

Billerman, S. M., B. K. Keeney, P. G. Rodewald, and T. S. Schulenberg. 2020. Birds of the 

World. Cornell Laboratory of Ornithology, Ithaca, NY, USA. 

Bonn, A., D. Storch, and K. J. Gaston. 2004. Structure of the species-energy relationship. 

Proceedings of the Royal Society B: Biological Sciences 271:1685–1691. 

Burns, P., M. Clark, L. Salas, S. Hancock, D. Leland, P. Jantz, R. Dubayah, and S. J. Goetz. 

2020. Incorporating canopy structure from simulated GEDI lidar into bird species 

distribution models. Environmental Research Letters 15. 

Carroll, K. A., L. S. Farwell, A. M. Pidgeon, E. Razenkova, D. Gudex-Cross, D. P. Helmers, K. 

E. Lewińska, P. R. Elsen, and V. C. Radeloff. 2022. Mapping breeding bird species richness 

at management‐relevant resolutions across the United States. Ecological Applications 32. 

Cody, M. L. 1981. Habitat Selection in Birds: The Roles of Vegetation Structure, Competitors, 

and Productivity. BioScience 31:107–113. 

Cohen, W. B., and S. N. Goward. 2004. Landsat ’ s Role in Ecological Applications of Remote 

Sensing. BioScience 54:535–545. 



86 

 

86 

 

Coops, N. C., R. H. Waring, M. A. Wulder, A. M. Pidgeon, and V. C. Radeloff. 2009. Bird 

diversity: a predictable function of satellite-derived estimates of seasonal variation in canopy 

light absorbance across the United States. Journal of Biogeography 36:905–918. 

Dunning, J. 2008. CRC Handbook of Avian Body Masses. second ed. CRC Press, Boca Raton. 

Elsen, P. R., L. S. Farwell, A. M. Pidgeon, and V. C. Radeloff. 2020. Landsat 8 TIRS-derived 

relative temperature and thermal heterogeneity predict winter bird species richness patterns 

across the conterminous United States. Remote Sensing of Environment 236. 

Evans, K. L., J. J. D. Greenwood, and K. J. Gaston. 2005. Dissecting the species-energy 

relationship. Proceedings of the Royal Society B: Biological Sciences 272:2155–2163. 

Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. 

Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. 

Burbank, and D. E. and Alsdorf. 2007. The shuttle radar topography mission. Reviews of 

Geophysics 45:1–33. 

Farwell, L. S., D. Gudex-Cross, I. E. Anise, M. J. Bosch, A. M. Olah, V. C. Radeloff, E. 

Razenkova, N. Rogova, E. M. O. Silveira, M. M. Smith, and A. M. Pidgeon. 2021. Satellite 

image texture captures vegetation heterogeneity and explains patterns of bird richness. 

Remote Sensing of Environment 253:112175. 

Fassnacht, F. E., J. Müllerová, L. Conti, M. Malavasi, and S. Schmidtlein. 2022. About the link 

between biodiversity and spectral variation. Applied Vegetation Science 25:1–13. 

Feng, M., C. Huang, S. Channan, E. F. Vermote, J. G. Masek, and J. R. Townshend. 2012. 

Quality assessment of Landsat surface reflectance products using MODIS data. Computers 

and Geosciences 38:9–22. 

Gaston, K. J. 2000. Global patterns in biodiversity. Nature 405:220–227. 



87 

 

87 

 

Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore. 2017. Google 

Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of 

Environment 202:18–27. 

Gross, K. L., M. R. Willig, L. Gough, R. Inouye, and S. B. Cox. 2000. Patterns of species density 

and productivity at different spatial scales in herbaceous plant communities. Oikos 89:417–

427. 

Haddad, N. M., L. A. Brudvig, J. Clobert, K. F. Davies, A. Gonzalez, R. D. Holt, T. E. Lovejoy, 

J. O. Sexton, M. P. Austin, C. D. Collins, W. M. Cook, E. I. Damschen, R. M. Ewers, B. L. 

Foster, C. N. Jenkins, A. J. King, W. F. Laurance, D. J. Levey, C. R. Margules, B. A. 

Melbourne, A. O. Nicholls, J. L. Orrock, D. X. Song, and J. R. Townshend. 2015. Habitat 

fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1:1–10. 

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. 

Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. 

O. Justice, and J. R. G. Townshend. 2013. High-Resolution Global Maps of 21st-Century 

Forest Cover Change. Science 342:850–853. 

Hawkins, B. A., R. Field, H. V. Cornell, D. J. Currie, J. F. Guegan, D. M. Kaufman, J. T. Kerr, 

G. G. Mittelbach, T. Oberdorff, E. M. O’Brien, E. E. Porter, and J. R. G. Turner. 2003a. 

Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–

3117. 

Hawkins, B. A., E. E. Porter, and J. A. F. Diniz-Filho. 2003b. Productivity and history as 

predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84:1608–1623. 

Hobi, M. L., M. Dubinin, C. H. Graham, N. C. Coops, M. K. Clayton, A. M. Pidgeon, and V. C. 

Radeloff. 2017. A comparison of Dynamic Habitat Indices derived from different MODIS 



88 

 

88 

 

products as predictors of avian species richness. Remote Sensing of Environment 195:142–

152. 

Hobi, M. L., L. S. Farwell, M. Dubinin, D. Kolesov, A. M. Pidgeon, N. C. Coops, and V. C. 

Radeloff. 2021. Patterns of bird species richness explained by annual variation in remotely 

sensed Dynamic Habitat Indices. Ecological Indicators 127:107774. 

Hurlbert, A. H., and J. P. Haskell. 2003. The effect of energy and seasonality on avian species 

richness and community composition. American Naturalist 161:83–97. 

Jackson, H. B., and L. Fahrig. 2012. What size is a biologically relevant landscape? Landscape 

Ecology 27:929–941. 

Jackson, H. B., and L. Fahrig. 2015. Are ecologists conducting research at the optimal scale? 

Global Ecology and Biogeography 24:52–63. 

Kendall, W. L., B. G. Peterjohn, and J. R. Sauer. 1996. First-time observer effects in the North 

American Breeding Bird Survey. The Auk 113:823–829. 

Langham, G. M., J. G. Schuetz, T. Distler, C. U. Soykan, and C. Wilsey. 2015. Conservation 

status of North American birds in the face of future climate change. PLoS ONE 10:1–16. 

MacArthur, R. H. 1964. Environmental Factors Affecting Bird Species Diversity. The American 

Naturalist 98:387–397. 

MacAthur, R. H., and J. W. MacAthur. 1961. On Bird Species Diversity. Ecology 42:594–598. 

Michaud, J. S., N. C. Coops, M. E. Andrew, M. A. Wulder, G. S. Brown, and G. J. M. Rickbeil. 

2014. Estimating moose (Alces alces) occurrence and abundance from remotely derived 

environmental indicators. Remote Sensing of Environment 152:190–201. 



89 

 

89 

 

Mittelbach, G. G., C. F. Steiner, S. M. Scheiner, K. L. Gross, H. L. Reynolds, R. B. Waide, M. 

R. Willig, S. I. Dodson, and L. Gough. 2001. What is the observed relationship between 

species richness and productivity? Ecology 82:2381–2396. 

Myneni, R. B., F. G. Hall, P. J. Sellers, and A. L. Marshak. 1995. Interpretation of spectral 

vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing 33:481–486. 

NABCI. 2016. North American Bird Conservation Initiative. 2016. The State of North America’s 

Birds 2016. Environment and Climate Change Canada: Ottawa, Ontario. 

O’Brien, R. M. 2007. A caution regarding rules of thumb for variance inflation factors. Quality 

and Quantity 41:673–690. 

Paruelo, J. M., H. E. Epstein, W. K. Lauenroth, and I. C. Burke. 1997. ANPP estimates from 

NDVI for the central grassland region of the United States. Ecology 78:953–958. 

Peng, J., Q. Liu, L. Wang, Q. Liu, W. Fan, M. Lu, and J. Wen. 2015. Characterizing the pixel 

footprint of satellite albedo products derived from MODIS reflectance in the Heihe River 

Basin, China. Remote Sensing 7:6886–6907. 

Pereira, H. M., S. Ferrier, M. Walters, G. N. Geller, R. H. G. Jongman, R. J. Scholes, M. W. 

Bruford, N. Brummitt, S. H. M. Butchart, A. C. Cardoso, N. C. Coops, E. Dulloo, D. P. 

Faith, J. Freyhof, R. D. Gregory, C. Heip, R. Höft, G. Hurtt, W. Jetz, D. S. Karp, M. A. 

McGeoch, D. Obura, Y. Onoda, N. Pettorelli, B. Reyers, R. Sayre, J. P. W. Scharlemann, S. 

N. Stuart, E. Turak, M. Walpole, and M. Wegmann. 2013. Essential Biodiversity Variables. 

Science 339:277–278. 

Pettorelli, N., S. Ryan, T. Mueller, N. Bunnefeld, B. Jedrzejewska, M. Lima, and K. Kausrud. 

2011. The Normalized Difference Vegetation Index (NDVI): Unforeseen successes in animal 

ecology. Climate Research 46:15–27. 



90 

 

90 

 

Pimm, S. L., C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman, L. N. Joppa, P. H. Raven, C. 

M. Roberts, and J. O. Sexton. 2014. The biodiversity of species and their rates of extinction, 

distribution, and protection. Science 344. 

Radeloff, V. C., M. Dubinin, N. C. Coops, A. M. Allen, T. M. Brooks, M. K. Clayton, G. C. 

Costa, C. H. Graham, D. P. Helmers, A. R. Ives, D. Kolesov, A. M. Pidgeon, G. 

Rapacciuolo, E. Razenkova, N. Suttidate, B. E. Young, L. Zhu, and M. L. Hobi. 2019. The 

Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sensing of 

Environment 222:204–214. 

Razenkova, E., K. E. Lewińska, H. Yin, L. S. Farwell, A. M. Pidgeon, P. Hostert, N. C. Coops, 

V. Radeloff, and O. C. (n.d.). Medium-resolution Dynamic Habitat Indices from Landsat 

satellite imagery. in review. 

Razenkova, E., V. C. Radeloff, M. Dubinin, E. V Bragina, M. Allen, M. K. Clayton, A. M. 

Pidgeon, L. M. Baskin, C. Nicholas, and M. L. Hobi. 2020. Vegetation productivity 

summarized by the Dynamic Habitat Indices explains patterns of moose abundance across 

Russia. Scientific Reports 10:1–12. 

Riley, S. 1999. Index that quantifies topographic heterogeneity. 

Rockström, J., W. Steffen, K. Noone, Å. Persson, F. S. Chapin, E. Lambin, T. M. Lenton, M. 

Scheffer, C. Folke, H. J. Schellnhuber, B. Nykvist, C. A. de Wit, T. Hughes, S. van der 

Leeuw, H. Rodhe, S. Sörlin, P. K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. 

Karlberg, R. W. Corell, V. J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. 

Crutzen, and J. Foley. 2009. A safe operating space for humanity. Nature 461:472–475. 



91 

 

91 

 

Rosenberg, K. V., A. M. Dokter, P. J. Blancher, J. R. Sauer, A. C. Smith, P. A. Smith, J. C. 

Stanton, A. Panjabi, L. Helft, M. Parr, and P. P. Marra. 2019. Decline of the North American 

avifauna. Science 366:120–124. 

Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, 

L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. 

Oesterheld, N. L. R. Poff, M. T. Sykes, B. H. Walker, M. Walker, and D. H. Wall. 2000. 

Global biodiversity scenarios for the year 2100. Science 287:1770–1774. 

Sauer, J. R., D. K. Niven, J. E. Hines, D. J. Ziolkowski, K. L. Pardieck, J. E. Fallon, and W. A. 

Link. 2017. The North American Breeding Bird Survey, Results and Analysis 1966–2013. 

USGS Patuxent Wildlife Research Center, Laurel, MD. 

Scholander, P. F., R. Hock, V. Walters, F. Johnson, and L. Irving. 1950. HEAT REGULATION 

IN SOME ARCTIC AND TROPICAL MAMMALS AND BIRDS. The Biological Bulletin 

99. 

Sekercioglu, C. H. 2006. Increasing awareness of avian ecological function. Trends in Ecology 

and Evolution 21:464–471. 

Skidmore, A. K., B. O. Oindo, and M. Y. Said. 2003. Biodiversity Assessment by Remote 

Sensing. Proceedings of the 30th International symposium on remote sensing of the 

environment: information for risk management and sustainable development:1–4. 

Suttidate, N., M. L. Hobi, A. M. Pidgeon, P. D. Round, N. C. Coops, D. P. Helmers, N. S. 

Keuler, M. Dubinin, B. L. Bateman, and V. C. Radeloff. 2019. Tropical bird species richness 

is strongly associated with patterns of primary productivity captured by the Dynamic Habitat 

Indices. Remote Sensing of Environment 232:1–10. 



92 

 

92 

 

Tan, B., C. E. Woodcock, J. Hu, P. Zhang, M. Ozdogan, D. Huang, W. Yang, Y. Knyazikhin, 

and R. B. Myneni. 2006. The impact of gridding artifacts on the local spatial properties of 

MODIS data: Implications for validation, compositing, and band-to-band registration across 

resolutions. Remote Sensing of Environment 105:98–114. 

Tews, J., U. Brose, V. Grimm, K. Tielbörger, M. C. Wichmann, M. Schwager, and F. Jeltsch. 

2004. Animal species diversity driven by habitat heterogeneity/diversity: The importance of 

keystone structures. Journal of Biogeography 31:79–92. 

Turner, W., S. Spector, N. Gardiner, M. Fladeland, E. Sterling, and M. Steininger. 2003. Remote 

sensing for biodiversity science and conservation. Trends in Ecology and Evolution 18:306–

314. 

Veech, J. A., K. L. Pardieck, and D. J. Ziolkowski. 2017. How well do route survey areas 

represent landscapes at larger spatial extents? An analysis of land cover composition along 

breeding bird survey routes. Condor 119:607–615. 

Wright, D. H. 1983. Species-energy theory: an extension of species–area theory. Oikos 41:496–

506. 

Zhu, L., and Y. Guo. 2022. Remotely Sensed Winter Habitat Indices Improve the Explanation of 

Broad-Scale Patterns of Mammal and Bird Species Richness in China. Remote Sensing 14. 

  



93 

 

93 

 

Table 4: Spearman correlation coefficients between mean and standard deviation MODIS and 

Landsat DHIs calculated for 2011-2020 at four spatial extents: within 85 ecoregions, a 5-km 

square buffer around centered on first-stop locations of BBS routes, a 2.5-km square buffer for 

the first ten stops of BBS routes, and a 0.5-km square buffer around the first stop of BBS routes. 

Abbreviations: Cum DHI = cumulative DHI, Min DHI = minimum DHI, Var DHI = variation 

DHI. 

Variable/Scale Ecoregions Full route 10-stops 1-stop 

Mean     

Cum DHI 0.99 0.97 0.97 0.96 

Min DHI 0.98 0.94 0.93 0.90 

Var DHI 0.99 0.94 0.93 0.93 

Standard deviation     

Cum DHI 0.93 0.88 0.88 0.69 

Min DHI 0.86 0.76 0.73 0.59 

Var DHI 0.61 0.78 0.74 0.51 
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Table 5: Results of linear regressions between the individual Landsat and MODIS DHIs and species richness for overall species 

richness and 21 functional bird guilds at four spatial extents: ecoregions, full BBS route, first ten stops, and first stop. The adjusted R2 

values are shown for each model; the highest values of adjusted R2 within a functional guild are highlighted in bold. Abbreviations: (–) 

= negative relationship, (+) = positive relationship, and (0) = no relationship; “l” = linear and “q” = quadratic indicate the type of 

regression; Cum DHI = cumulative DHI, Min DHI = minimum DHI, Var DHI = variation DHI.  

Species richness Extents 
 Landsat 

Cum DHI 

 MODIS 

Cum DHI 

 Landsat 

Min DHI 

 MODIS 

Min DHI 

 Landsat 

Var DHI 

 MODIS 

Var DHI 

Overall Species 

Richness 

Ecoregion q (–) 0.25 q (–) 0.26 l (–) 0.17 l (–) 0.18 q (+) 0.02 l (+) 0.01 

Full route q (+) 0.30 q (+) 0.28 q (+) 0.01  - q (+) 0.05 q (+) 0.03 

10-Stops q (+) 0.31 q (+) 0.29 q (+) 0.02 q (+) 0.02 q (+) 0.04 q (+) 0.01 

1-Stop q (+) 0.06 q (+) 0.06 q (–) 0.01  - q (+) 0.02 q (+) 0.02 

Forest Affiliates 

Ecoregion q (–) -0.01  - l (–) 0.05 l (–) 0.06 q (+) 0.09 q (+) 0.08 

Full route q (+) 0.42 q (+) 0.39 q (+) 0.04 q (+) 0.05 q (+) 0.01 q (+) 0.01 

10-Stops q (+) 0.42 q (+) 0.39 q (+) 0.07 q (+) 0.07 q (+) 0.01  - 

1-Stop q (+) 0.21 q (+) 0.20 q (+) 0.04 q (+) 0.04  -  - 

Grassland Affiliates 

Ecoregion q (–) 0.27 q (–) 0.25 l (–) 0.26 l (–) 0.21 l (+) 0.15 l (+) 0.11 

Full route q (–) 0.41 q (–) 0.36 q (–) 0.25 q (–) 0.23 q (+) 0.11 q (+) 0.08 

10-Stops q (–) 0.35 q (–) 0.31 l (–) 0.18 q (–) 0.15 q (+) 0.08 q (+) 0.06 

1-Stop l (–) 0.27 l (–) 0.23 q (–) 0.11 q (–) 0.09 q (+) 0.05 q (+) 0.06 

Shrubland Affiliates 

Ecoregion q (–) 0.43 q (–) 0.42 q (–) 0.11 q (–) 0.14 l (–) 0.10 q (–) 0.11 

Full route q (–) 0.04 q (–) 0.04 q (+) 0.08 q (+) 0.07 q (–) 0.08 q (–) 0.09 

10-Stops q (–) 0.01 q (–) 0.01 q (+) 0.10 q (+) 0.10 l (–) 0.06 q (–) 0.07 

1-Stop q (–) 0.01 q (–) 0.01 q (+) 0.08 q (+) 0.09 l (–) 0.05 q (–) 0.04 

Forest Specialists 

Ecoregion  -  - q (–) 0.05 q (–) 0.11 q (+) 0.14 q (+) 0.14 

Full route q (+) 0.31 q (+) 0.28 q (+) 0.03 q (+) 0.05 l (+) 0.01 l (+) 0.02 

10-Stops q (+) 0.30 q (+) 0.27 q (+) 0.03 q (+) 0.05 l - l (+) 0.01 

1-Stop q (+) 0.09  (+) 0.08 q (–) 0.02 q (–) 0.06 l (+) 0.03 l (+) 0.03 

Grassland Specialists 

Ecoregion q (–) 0.20 q (–) 0.18 l (–) 0.31 l (–) 0.26 l (+) 0.31 l (+) 0.24 

Full route q (–) 0.30 q (–) 0.27 q (–) 0.24 q (–) 0.21 q (+) 0.22 q (+) 0.17 

10-Stops q (–) 0.26 q (–) 0.23 l (–) 0.18 l (–) 0.14 q (+) 0.15 q (+) 0.12 
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1-Stop q (–) 0.19 q (–) 0.17 l (–) 0.10 l (–) 0.08 q (+) 0.07 q (+) 0.08 

Shrubland Specialists 

Ecoregion q (–) 0.48 q (–) 0.48 q (–) 0.07 q (–) 0.10 q (–) 0.15 q (–) 0.17 

Full route q (–) 0.29 q (–) 0.28 q (–) 0.03 q (–) 0.03 q (–) 0.12 q (–) 0.10 

10-Stops q (–) 0.20 q (–) 0.19 q (–) 0.03 q (–) 0.03 q (–) 0.11 q (–) 0.09 

1-Stop q (–) 0.14 q (–) 0.14 q (0) 0.02 q (–) 0.02 q (–) 0.05 q (–) 0.07 

Residents 

Ecoregion q (–) 0.29 q (–) 0.30 q (–) 0.03 q (–) 0.05 q (–) 0.11 q (–) 0.12 

Full route q (+) 0.15 q (+) 0.14 q (+) 0.24 q (+) 0.23 q (–) 0.19 q (–) 0.18 

10-Stops q (+) 0.19 q (+) 0.18 q (+) 0.30 q (+) 0.30 q (–) 0.20 q (–) 0.20 

1-Stop q (+) 0.06 q (+) 0.06 q (+) 0.19 q (+) 0.22 l (–) 0.17 l (–) 0.17 

Long-Distance 

Migrants 

Ecoregion l (–) -0.01 l (–) -0.01 l (–) 0.12 l (–) 0.11 q (+) 0.22 q (+) 0.18 

Full route q (+) 0.33 q (+) 0.32 l (+) 0.01 l (+) 0.01 q (+) 0.06 q (+) 0.03 

10-Stops q (+) 0.31 q (+) 0.30 q (+) 0.02 q (+) 0.02 q (+) 0.04 q (+) 0.02 

1-Stop q (+) 0.07 q (+) 0.07  -  - q (+) 0.02 q (+) 0.02 

Short-Distance 

Migrants 

Ecoregion l (–) 0.28 l (–) 0.29 q (–) 0.36 q (–) 0.38 q (+) 0.18 q (+) 0.18 

Full route q (+) 0.14 q (+) 0.13 q (–) 0.12 q (–) 0.13 q (+) 0.27 q (+) 0.24 

10-Stops q (+) 0.16 q (+) 0.15 l (–) 0.06 l (–) 0.05 q (+) 0.20 q (+) 0.17 

1-Stop q (–) 0.06 q (–) 0.06 l (–) 0.10 l (–) 0.08 q (+) 0.10 q (+) 0.12 

Ground Nesters 

Ecoregion q (–) 0.37 q (–) 0.36 l (–) 0.32 l (–) 0.31 q (+) 0.08 q (+) 0.06 

Full route q (+) 0.11 q (+) 0.11 q (–) 0.01 q (–) 0.01 q (+) 0.06 q (+) 0.04 

10-Stops q (+) 0.12 q (+) 0.12 q (+) 0.01 q (+) 0.01 q (+) 0.03 q (+) 0.02 

1-Stop q (0) 0.02 q (+) 0.02 q (–) 0.01 q (–) 0.01 q (+) 0.02 q (+) 0.01 

Mid-Story/Canopy 

Nesters 

Ecoregion q (–) 0.13 q (–) 0.14 l (–) 0.07 l (–) 0.08  - l (+) -0.01 

Full route q (+) 0.36 q (+) 0.34 q (+) 0.01 q (+) 0.01 q (+) 0.05 q (+) 0.02 

10-Stops q (+) 0.36 q (+) 0.33 l (+) 0.02 l (+) 0.02 q (+) 0.04 q (+) 0.01 

1-Stop q (+) 0.09 q (+) 0.08  -  - q (+) 0.01 q (+) 0.02 

Threatened 

Ecoregion l (–) -0.01 l (+) -0.01 l (+) -0.01 l (+) -0.01  - q (–) 0.02 

Full route q (+) 0.14 q (+) 0.15 q (+) 0.18 q (+) 0.21 l (–) 0.06 l (–) 0.07 

10-Stops q (+) 0.15 q (+) 0.14 q (+) 0.18 q (+) 0.21 l (–) 0.07 l (–) 0.08 

1-Stop l (+) 0.06 l (+) 0.06 q (+) 0.07 q (+) 0.08 l (–) 0.04 l (–) 0.04 

Decreasing 

Ecoregion l (–) 0.27 l (–) 0.26 l (–) 0.35 l (–) 0.33 q (+) 0.18 q (+) 0.16 

Full route q (+) 0.15 q (+) 0.15 q (–) 0.05 q (–) 0.05 q (+) 0.18 q (+) 0.13 

10-Stops q (+) 0.12 q (+) 0.12 q (–) 0.03 q (–) 0.03 q (+) 0.09 q (+) 0.07 

1-Stop q (–) 0.07 q (–) 0.07 q (–) 0.07 q (–) 0.06 q (+) 0.07 q (+) 0.08 



96 

 

96 

 

Stable/ Increasing 

Ecoregion q (–) 0.20 q (–) 0.22 q (–) 0.08 q (–) 0.08 l (–) -0.01 l (0) -0.01 

Full route q (+) 0.34 q (+) 0.31 l (+) 0.03 l (+) 0.03 q (+) 0.01  - 

10-Stops q (+) 0.38 q (+) 0.34 l (+) 0.06 l (+) 0.06 q (–) 0.02  - 

1-Stop q (+) 0.14 q (+) 0.13 q (+) 0.01 q (+) 0.01  -  - 

Small-Ranged  

Ecoregion q (–) 0.35 q (–) 0.37 q (–) 0.02 q (–) 0.03 q (–) 0.15 q (–) 0.16 

Full route q (–) 0.07 q (–) 0.07 l (+) 0.01 l (+) 0.01 q (–) 0.18 q (–) 0.14 

10-Stops q (–) 0.04 q (–) 0.05 q (+) 0.02 q (+) 0.01 q (–) 0.16 q (–) 0.12 

1-Stop q (–) 0.05 q (–) 0.06 q (+) 0.01 q (+) 0.01 q (–) 0.07 q (–) 0.10 

Large-Ranged 

Ecoregion  -  - l (–) 0.25 l (–) 0.24 q (+) 0.47 q (+) 0.43 

Full route q (+) 0.36 q (+) 0.35  -  - q (+) 0.13 q (+) 0.08 

10-Stops q (+) 0.34 q (+) 0.32 q (+) 0.01 q (+) 0.01 q (+) 0.08 q (+) 0.04 

1-Stop q (+) 0.09 q (+) 0.09 q (–) 0.01  - q (+) 0.04 q (+) 0.05 

Insectivores 

Ecoregion l (–) 0.04 l (–) 0.03 q (–) 0.10 q (–) 0.09 q (+) 0.06 q (+) 0.03 

Full route q (+) 0.36 q (+) 0.34 q (+) 0.03 q (+) 0.03 q (+) 0.02 q (+) 0.01 

10-Stops q (+) 0.35 q (+) 0.33 q (+) 0.05 q (+) 0.05 q (–) 0.02  - 

1-Stop q (+) 0.09 q (+) 0.09 l (+) 0.01  -  -  - 

Granivores 

Ecoregion q (–) 0.40 q (–) 0.40 q (–) 0.20 q (–) 0.20 l (+) 0.04 l (+) 0.05 

Full route q (+)0.20 q (+) 0.20 q (–) 0.03 q (–) 0.03 q (+) 0.04 q (+) 0.02 

10-Stops q (+) 0.22 q (+) 0.21 q (–) 0.06 q (+) 0.07 q (+) 0.05 q (+) 0.02 

1-Stop q (+) 0.11 q (+) 0.11 q (–) 0.05 q (+) 0.08 q (–) 0.02 q (+) 0.03 

Frugivores 

Ecoregion q (–) 0.09 q (–) 0.10 l (–) -0.01  -  - l (–) -0.01 

Full route q (+) 0.09 q (+) 0.08  -  - q (+) 0.01 q (+) 0.01 

10-Stops q (+) 0.06 q (+) 0.05  -  - q (+) 0.01 q (+) 0.01 

1-Stop q (+) 0.01  -  - q (–) 0.01  -  - 

Large body 

Ecoregion q (–) 0.43 q (–) 0.44 l (–) 0.15 q (–) 0.16 l (+) -0.01  - 

Full route q (+) 0.25 q (+) 0.24 q (+) 0.03 q (+) 0.03 q (+) 0.05 q (+) 0.02 

10-Stops q (+) 0.22 q (+) 0.21 q (+) 0.06 q (+) 0.07 q (–) 0.04 q (–) 0.02 

1-Stop q (+) 0.03 q (+) 0.03 q (+) 0.03 q (+) 0.04 q (–) 0.01 q (–) 0.01 

Small body 

Ecoregion l (–) 0.03 l (–) 0.03 l (–) 0.12 l (–) 0.13 q (+) 0.08 q (+) 0.05 

Full route q (+) 0.26 q (+) 0.25  - q (+) 0.01 q (+) 0.04 q (+) 0.03 

10-Stops q (+) 0.26 q (+) 0.24  - q (+) 0.01 q (+) 0.03 q (+) 0.02 

1-Stop q (+) 0.07 q (+) 0.06 q (–) 0.01 q (–) 0.02 q (+) 0.04 q (+) 0.04 
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Table 6: Results of linear regressions between the individual DHIs based on Landsat and MODIS for overall species richness and 

richness of several functional bird guilds over heterogeneous landscapes (for which terrain ruggedness index was >10) for a 5-km 

square buffer around centered on first-stop locations of BBS routes. The adjusted R2 values are shown for each model; the highest 

values of adjusted R2 within a functional guild are highlighted in bold. Abbreviations: “l” = linear and “q” = quadratic indicate the 

type of regression; Cum DHI = cumulative DHI, Min DHI = minimum DHI, Var DHI = variation DHI. 

Species group  Landsat 

Cum DHI 

 MODIS 

Cum DHI 

 Landsat 

Min DHI 

 MODIS 

Min DHI 

 Landsat 

Var DHI 

 MODIS 

Var DHI 

Overall species 

richness q 0.21 q 0.20 q 0.07 q 0.06 q 0.06 q 0.04 

Forest affiliates q 0.34 q 0.33 q 0.04 q 0.02 q 0.03 q 0.01 

Grass affiliates l 0.38 l 0.35 l 0.26 q 0.24 q 0.12 q 0.10 

Shrubland affiliates l 0.17 q 0.14 q 0.06 q 0.08 q 0.04 q 0.04 

Forest specialists q 0.30 q 0.28 q 0.02 q 0.01 q 0.01 q - 

Shrubland specialists q 0.29 q 0.28 q 0.01 q 0.02 q 0.11 q 0.08 

Residents q 0.05 q 0.06 q 0.20 q 0.20 q 0.26 q 0.25 

Long-Distance 

Migrants q 0.26 q 0.26 q 0.11 q 0.11 q 0.13 q 0.09 

Short-Distance 

Migrants q 0.08 q 0.07 q 0.10 q 0.10 q 0.16 q 0.14 

Small body q 0.27 q 0.26 q 0.07 q 0.05 q 0.05 q 0.03 
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Table 7: Results of BIC model selection for multivariate models including the LAndat DHIs (2011-2020, topographic and land cover 

metrics for overall species richness and 21 functional bird guilds for a 5-km square buffer around centered on first-stop locations of 

BBS routes, summarized for top-ranked models (ΔBIC<4). Standardized coefficients are shown for each predictor, with model 

degrees of freedom (df), fit statistics (logLik, BIC, ΔBIC), weights (Wt), and adjusted R2 values. Explanatory variables are intercept 

(Int), elevation (Elev), terrain ruggedness index (TRI), the proportion of forest cover (Forest), the proportion of grassland cover 

(Grass), the proportion of shrubland cover (Shrub), cumulative DHI (Cum DHI), minimum DHI (Min DHI), and variation DHI (Var 

DHI). The last column show the adjusted R2 values for the top-ranked model that excluded any components of the DHIs.  

Species 

group 
Rank Int. Elev TRI Forest Grass 

Shru

b 

Cum 

DHI 

Min 

DHI 

Var 

DHI 
df logLik BIC 

ΔBI

C 
Wt. R2

adj 

Model 

without 

DHIs R2
adj 

Overall 

species 
1 59.29 - 1.85 - -1.50 - 13.61 -10.07 - 6 -11871 23789 0 0.91 0.39 0.11 

Forest 

affiliates 
1 26.86 2.28 1.58 1.36 -1.49 - 13.40 -7.22 - 8 -10469 21001 0 0.95 0.64 0.45 

Grass 

affiliates 
1 3.08 - -0.40 -0.25 0.41 - -0.96 - 0.32 7 -5728 11512 0 0.55 0.49 0.30 

 2 3.08 - -0.39 -0.24 0.37 -0.12 -1.06 - 0.27 8 -5724 11513 0.80 0.37 0.49 - 

Shrub 

affiliates 
1 10.50 -0.50 0.28 - -0.54 0.75 -1.23 -0.72 -1.96 9 -8054 16181 0 0.68 0.27 0.17 

 2 10.50 -0.43 0.30 -0.21 -0.55 0.76 -1.00 -0.82 -1.97 10 -8052 16184 2.61 0.19 0.27 - 

Forest 

specialists 
1 13.04 1.83 1.14 2.36 -0.83 - 8.03 -4.85 - 8 -9287 18639 0 0.88 0.65 0.51 

Grass 

specialists 
1 2.48 - -0.31 -0.40 0.33 -0.21 -0.41 - 0.64 8 -5386 10836 0 0.55 0.45 0.25 

 2 2.48 -0.12 -0.27 -0.38 0.33 -0.19 -0.50 - 0.65 9 -5382 10836 0.61 0.40 0.45 - 

Shrub 

specialists 
1 2.22 -0.22 0.41 0.18 -0.29 0.68 -1.95 - -1.44 9 -6236 12544 0 0.65 0.57 0.41 

 2 2.22 -0.25 0.42 0.21 -0.29 0.68 -2.13 0.25 -1.30 10 -6233 12544 1.56 0.30 0.57 - 

Residents 1 12.18 -0.68 0.94 -0.76 -0.62 - 0.64 - -1.35 8 -8118 16301 0 0.73 0.29 0.16 

 2 12.18 -0.62 0.91 -0.81 -0.62 - 0.94 -0.43 -1.59 9 -8115 16303 2.48 0.21 0.30 - 
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Long-

distance 

migrants 

1 26.08 - 0.77 - -0.61 - 9.37 -6.56 - 6 -10155 20359 0 0.56 0.46 0.10 

 2 26.08 - 0.64 0.44 -0.60 - 9.03 -6.39 - 7 -10152 20360 1.29 0.29 0.46 - 

Short-

distance 

migrants 

1 21.03 1.27 - - -0.31 - 4.66 -3.98 1.14 7 -8620 17297 0 0.81 0.43 0.03 

Ground 

Nesters 
1 21.12 - - - - 0.66 4.08 -3.49 - 5 -9268 18576 0 0.42 0.17 0.02 

 2 21.12 -0.50 0.43 - - 0.66 3.65 -3.43 - 7 -9268 18576 0.10 0.40 0.18 - 

 3 21.12 - 0.21 - - 0.62 3.99 -3.45 - 6 -9268 18580 3.36 0.08 0.17 - 

Mid-story/ 

Canopy 

nesters 

1 34.62 0.71 1.56 - -1.26 - 10.99 -7.37 - 7 -10486 21027 0 0.41 0.5 0.24 

 2 34.62 0.78 1.61 - -1.44 -0.55 10.46 -7.08 - 8 -10482 21027 0.27 0.36 0.5 - 

 3 34.62 - 1.88 - -1.25 - 10.46 -7.32 - 6 -10490 21029 2.04 0.15 0.5 - 

Threatened 1 2.86 -0.14 -0.38 -0.20 - - 0.42 0.33 - 7 -5260 10576 0 0.45 0.28 0.19 

 2 2.86 -0.15 -0.37 -0.19 - - 0.34 0.48 0.13 8 -5256 10577 1.02 0.27 0.28 - 

 3 2.86 - -0.43 -0.23 - - 0.55 0.30 - 6 -5265 10578 2.63 0.12 0.27 - 

Decreasing 1 22.01 -1.16 -0.34 - - - 2.69 -3.13 1.00 7 -9178 18413 0 0.32 0.28 0.05 

 2 22.01 -1.17 -0.34 - 0.27 - 2.79 -3.16 1.02 8 -9175 18414 0.5 0.24 0.28 - 

 3 22.01 -1.41 - - - - 2.41 -3.01 1.07 6 -9183 18414 1.08 0.19 0.27 - 

 4 22.01 -1.42 - - 0.28 - 2.53 -3.05 1.08 7 -9179 18414 1.18 0.18 0.28 - 

Stable 

increasing 
1 37.28 1.08 2.23 - -1.76 - 10.75 -6.93 -1.04 8 -10800 21663 0 0.76 0.46 0.27 

 2 37.28 0.97 2.31 - -1.75 - 10.17 -5.72 - 7 -10805 21666 3.59 0.13 0.46 - 

Small range 1 4.90 - 1.87 - -0.37 0.51 -2.99 1.26 -2.01 8 -8984 18032 0 0.73 0.36 0.22 

 2 4.90 - 1.80 0.24 -0.37 0.49 -3.19 1.35 -2.02 9 -8981 18035 3.75 0.11 0.36 - 

Large range 1 54.39 - - - -0.96 - 17.03 -11.40 2.19 6 -11678 23404 0 0.60 0.52 0.07 

 2 54.39 - - -0.62 -0.98 - 17.56 -11.67 2.16 7 -11675 23406 2.38 0.18 0.52 - 

 3 54.39 - - - -1.19 -0.69 16.46 -11.36 1.90 7 -11675 23407 2.78 0.15 0.52 - 



100 

 

100 

 

Insectivores 1 32.06 - 1.22 1.01 -1.17 - 10.04 -7.04 -0.92 8 -10539 21142 0 0.64 0.49 0.29 

 2 32.06 - 1.25 1.02 -1.16 - 9.59 -5.97 - 7 -10545 21145 2.96 0.15 0.49 - 

 3 32.06 - 1.18 0.97 -0.98 0.55 10.20 -6.28 - 8 -10541 21146 3.55 0.11 0.49 - 

Granivores 1 11.62 -0.44 0.33 -0.18 - -2.44 0.91 -1.01 - 8 -7489 15043 0 0.92 0.13 0.09 

Frugivores 1 1.29 -0.17 0.32 - -0.15 - 0.38 -0.54 -0.18 8 -3550 7164 0 0.96 0.29 0.21 

Large body 1 34.46 - - -1.83 -0.58 -0.65 5.02 -3.33 - 7 -9931 19918 0 0.79 0.20 0.12 

 2 34.46 -0.35 - -1.69 -0.55 -0.60 4.72 -3.29 - 8 -9929 19922 3.85 0.12 0.20 - 

Small body 1 24.77 - 2.18 1.41 -1.14 - 8.20 -6.54 - 7 -10198 20453 0 0.42 0.52 0.33 

 2 24.77 - 2.12 1.38 -0.98 0.49 8.74 -6.81 - 8 -10195 20453 0.75 0.29 0.52 - 

 3 24.77 0.53 1.98 1.28 -1.15 - 8.70 -6.63 - 8 -10195 20454 1.78 0.17 0.52 - 

 4 24.77 0.48 1.95 1.26 -1.01 0.45 9.15 -6.87 - 9 -10192 20456 3.72 0.06 0.52 - 
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Table 8: Results of linear regressions between the individual DHIs based on Landsat for overall species richness and richness of 21 

functional bird guilds at four spatial extents: ecoregions, full BBS route, first ten stops, and first stop over 1991-2000. The adjusted R2 

values are shown for each model; the highest values of adjusted R2 within a functional guild are highlighted in bold. Abbreviations: “l” 

= linear and “q” = quadratic indicate the type of regression; Cum DHI = cumulative DHI, Min DHI = minimum DHI, Var DHI = 

variation DHI. 

Species richness Extents 
 Landsat 

Cum DHI 

 Landsat 

Min DHI 

 Landsat 

Var DHI 

Overall Species 

Richness 

Ecoregion q 0.19 l 0.18 q 0.01 

Full route q  0.34 q 0.03 q 0.08 

10-Stops q 0.35 q 0.08 q 0.06 

1-Stop l 0.02  -  - 

Forest Affiliates 

Ecoregion q 0.01 l 0.03 q 0.06 

Full route q 0.45 l 0.06 q 0.02 

10-Stops q 0.45 l 0.11 q 0.01 

1-Stop l 0.19 l 0.05  - 

Grassland Affiliates 

Ecoregion q 0.26 q 0.29 q 0.14 

Full route q 0.36 q 0.27 q 0.12 

10-Stops q 0.29 q 0.16 q 0.07 

1-Stop l 0.18 l 0.09 l 0.05 

Shrubland Affiliates 

Ecoregion q 0.45 l 0.06 q 0.10 

Full route l 0.04 q 0.04 q 0.05 

10-Stops q 0.01 q 0.08 q 0.06 

1-Stop q 0.04 q 0.04 l 0.04 

Forest Specialists 

Ecoregion q 0.03  - q 0.08 

Full route q 0.35 q 0.04 q 0.02 

10-Stops l 0.32 q 0.05  - 

1-Stop l 0.08 q 0.02 l 0.02 

Grassland Specialists 

Ecoregion q 0.17 l 0.23 q 0.21 

Full route q 0.25 q 0.20 q 0.20 

10-Stops q 0.22 q 0.15 q 0.14 
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1-Stop l 0.13 l 0.07 l 0.05 

Shrubland Specialists 

Ecoregion q 0.49 l 0.04 q 0.18 

Full route q 0.30 l 0.03 q 0.14 

10-Stops q 0.19 q 0.01 q 0.10 

1-Stop l 0.10 q 0.02 l 0.02 

Residents 

Ecoregion q 0.26  - q 0.14 

Full route q 0.15 q 0.20 q 0.11 

10-Stops q 0.16 q 0.29 q 0.17 

1-Stop q 0.14 q 0.14 l 0.14 

Long-Distance 

Migrants 

Ecoregion l -0.01 q 0.11 q 0.22 

Full route q 0.39 q 0.05 q 0.10 

10-Stops q 0.36 q 0.06 q 0.05 

1-Stop l 0.06  -  - 

Short-Distance 

Migrants 

Ecoregion l 0.20 q 0.33 q 0.13 

Full route q 0.12 q 0.06 q 0.25 

10-Stops q 0.18 q 0.03 q 0.18 

1-Stop q 0.08 q 0.08 l 0.08 

Ground Nesters 

Ecoregion q 0.27 l 0.29 q 0.05 

Full route q 0.16 q 0.03 q 0.09 

10-Stops q 0.16 q 0.06 q 0.05 

1-Stop  -  -  - 

Mid-Story/Canopy 

Nesters 

Ecoregion q 0.10 l 0.08 q -0.01 

Full route q 0.39 q 0.03 q 0.06 

10-Stops q 0.39 q 0.07 q 0.04 

1-Stop l 0.04  -  - 

Threatened 

Ecoregion  - q 0.05 q 0.16 

Full route q 0.19 q 0.19 q 0.03 

10-Stops q 0.17 q 0.22 l 0.06 

1-Stop l 0.07 l 0.05 l 0.02 

Decreasing 

Ecoregion l 0.19 q 0.29 q 0.15 

Full route q 0.19 q 0.05 q 0.21 

10-Stops q 0.14 q 0.06 q 0.15 

1-Stop q 0.03 l 0.03 l 0.03 
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Stable/ Increasing 

Ecoregion q 0.17 l 0.08 l -0.01 

Full route q 0.36 q 0.04 q 0.02 

10-Stops q 0.42 q 0.11 q 0.02 

1-Stop l 0.10 l 0.01  - 

Small-Ranged 

Ecoregion q 0.35 l 0.02 q 0.17 

Full route q 0.06 q 0.02 q 0.16 

10-Stops q 0.04 q 0.01 q 0.13 

1-Stop q 0.03 q 0.03 l 0.03 

Large-Ranged 

Ecoregion l -0.01 l 0.14 q 0.43 

Full route q 0.41 q 0.03 q 0.17 

10-Stops q 0.38 q 0.07 q 0.09 

1-Stop l 0.03 q 0.01 l 0.01 

Insectivores 

Ecoregion q 0.01 q 0.08 q 0.06 

Full route q 0.41 q 0.06 q 0.05 

10-Stops q 0.39 q 0.10 q 0.03 

1-Stop l 0.09 l 0.01  - 

Granivores 

Ecoregion q 0.27 q 0.21 l 0.03 

Full route q 0.22 q 0.04 q 0.10 

10-Stops q 0.24 q 0.12 q 0.08 

1-Stop l 0.01  -  - 

Frugivores 

Ecoregion q 0.15 q 0.05 q -0.01 

Full route q 0.10 q 0.01  - 

10-Stops q 0.06  - q 0.01 

1-Stop  -  -  - 

Large body 

Ecoregion q 0.42 l 0.22 l -0.01 

Full route q 0.30 q 0.05 q 0.09 

10-Stops q 0.24 q 0.13 q 0.06 

1-Stop  -  -  - 

Small body 

Ecoregion  - l 0.07 q 0.07 

Full route q 0.30 q 0.01 q 0.06 

10-Stops q 0.30 q 0.02 q 0.04 

1-Stop l 0.04 q 0.02 l 0.02 
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Figure 7. Average species richness for 21 bird guilds and overall species richness modeled at 

four sets of all species over 2011-2019. Note: the y-axis scale changes for overall species 

richness. 
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Figure 8: Subset of plots illustrating different type of relationship between species richness and 

the individual DHIs based on Landsat calculated for 2011-2020 at four spatial extents: (first 

column) ecoregion, (second column) full BBS route, (third column) first ten stops, and (fourth 

column) first stop. 
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Figure 9: Standardized coefficients with 95% confidence interval for explanatory variables in 

top-ranked models for overall species richness and 21 functional bird guilds. Variables with no 

values were not included in top-ranked models.  
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Appendix 3: Workflow of the modeling our four objectives. 
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Appendix 4: a) A histogram showing the distribution of terrain ruggedness index (TRI) within a 

5-km square buffer around centered on first-stop locations of BBS routes, b) Number of BBS 

routes depending on terrain ruggedness. 
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Appendix 5: Spearman correlation between explanatory variables in the combined model. 

Variables are elevation, terrain ruggedness index (TRI), the proportion of forest, grassland, and 

shrubland land cover, cumulative DHI, minimum DHI, and variation DHI. 
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Appendix 6: Spatial patterns of overall species richness and 21 functional bird guilds across four spatial extents. 
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Appendix 7: Average species richness for 21 bird guilds and overall species richness over 2011-

2019 and 1991-2000 and the difference between the two periods. 

Species group Years Ecoregion Full route 10-Stops 1-Stop 

Overall Species 

Richness 

2011-2019 111.19 59.29 39.83 13.64 

1991-2000 112.45 60.54 34.30 10.76 

difference -1.26 -1.25 5.53 2.87 

Forest Affiliates 

2011-2019 51.55 26.86 17.63 5.55 

1991-2000 53.09 27.38 14.69 4.40 

difference -1.54 -0.52 2.94 1.15 

Grassland 

Affiliates 

2011-2019 7.20 3.08 1.96 0.67 

1991-2000 7.36 3.15 1.60 0.44 

difference -0.16 -0.07 0.36 0.23 

Shrubland 

Affiliates 

2011-2019 22.14 10.50 7.01 2.77 

1991-2000 22.56 10.90 6.11 2.17 

difference -0.42 -0.40 0.91 0.60 

Forest Specialist 

2011-2019 27.34 13.04 8.39 2.67 

1991-2000 28.39 13.48 6.99 2.24 

difference -1.05 -0.44 1.39 0.43 

Grassland 

Specialists 

2011-2019 5.02 2.48 1.64 0.61 

1991-2000 5.19 2.64 1.50 0.47 

difference -0.16 -0.16 0.13 0.13 

Shrubland 

Specialists 

2011-2019 6.52 2.22 1.45 0.46 

1991-2000 6.65 2.32 1.19 0.29 

difference -0.13 -0.11 0.26 0.17 

Residents 

2011-2019 25.74 12.18 8.09 2.48 

1991-2000 24.55 11.74 6.41 1.83 

difference 1.19 0.43 1.68 0.65 

Long-Distance 

Migrants 

2011-2019 49.64 26.08 16.73 5.48 

1991-2000 51.11 26.85 14.21 4.21 

difference -1.47 -0.77 2.52 1.27 

Short-Distance 

Migrants 

2011-2019 35.81 21.03 15.01 5.68 

1991-2000 36.79 21.94 13.68 4.73 

difference -0.98 -0.91 1.33 0.95 

Ground Nesters 

2011-2019 43.84 21.12 14.73 6.10 

1991-2000 45.18 22.07 13.13 5.00 

difference -1.34 -0.94 1.60 1.11 

Mid-

Story/Canopy 

Nesters 

2011-2019 61.85 34.62 22.75 6.67 

1991-2000 62.44 35.23 19.24 5.11 

difference -0.59 -0.61 3.51 1.56 

Threatened 

2011-2019 6.04 2.86 1.65 0.42 

1991-2000 6.54 3.17 1.57 0.42 

difference -0.51 -0.31 0.08 0 

Decreasing 2011-2019 42.27 22.01 13.99 3.92 
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1991-2000 44.07 23.83 12.73 3.23 

difference -1.80 -1.82 1.25 0.68 

Stable/ 

Increasing 

2011-2019 68.92 37.28 25.84 9.72 

1991-2000 68.38 36.71 21.57 7.53 

difference 0.54 0.57 4.28 2.19 

Small-Ranged 

2011-2019 20.53 4.90 2.60 0.59 

1991-2000 20.88 5.09 2.00 0.41 

difference -0.35 -0.19 0.61 0.18 

Large-Ranged 

2011-2019 90.66 54.39 7.23 13.04 

1991-2000 91.56 55.44 32.30 10.36 

difference -0.91 -1.05 4.93 2.69 

Insectivores 

2011-2019 62.84 32.05 20.37 5.98 

1991-2000 63.95 33.27 17.25 4.50 

difference -1.12 -1.21 3.12 1.48 

Granivores 

2011-2019 21.24 11.62 8.19 3.55 

1991-2000 20.84 11.46 7.09 2.84 

difference 0.40 0.16 1.11 0.71 

Frugivores 

2011-2019 2.85 1.29 0.61 0.05 

1991-2000 3.00 1.27 0.44 0.03 

difference -0.15 0.02 0.16 0.01 

Large body 

2011-2019 60.31 34.46 23.92 8.62 

1991-2000 60.66 34.93 20.83 6.99 

difference -0.35 -0.48 3.08 1.63 

Small body 

2011-2019 50.88 24.76 15.91 5.02 

1991-2000 51.79 25.60 13.47 3.77 

difference -0.91 -0.84 2.45 1.25 
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Appendix 8: Summary statistics of top-ranked models for overall species richness and 21 bird 

guilds. 

Species 

group 

Term Estimate Std. 

error 
Statistic p Lower 

CI 

Upper 

CI 
VIF 

Overall 

species 
Intercept 59.29 0.22 264.86 0.00 58.85 59.73 - 

 Terrain ruggedness 1.85 0.23 8.19 0.00 1.41 2.30 1.02 

 Proportion 

grassland 
-1.50 0.24 -6.27 0.00 -1.96 -1.03 1.13 

 Cumulative DHI 13.61 0.37 37.21 0.00 12.89 14.32 2.67 

 Minimum DHI -10.07 0.35 -28.85 0.00 -10.76 -9.39 2.43 

Forest 

affiliates 
Intercept 26.86 0.14 190.78 0.00 26.59 27.14 - 

 Elevation 2.28 0.23 9.79 0.00 1.83 2.74 2.75 
 Terrain ruggedness 1.58 0.18 8.98 0.00 1.24 1.93 1.56 
 Proportion forest 1.36 0.20 6.93 0.00 0.98 1.75 1.96 

 Proportion 

grassland 
-1.49 0.15 -9.92 0.00 -1.78 -1.19 1.14 

 Cumulative DHI 13.40 0.35 38.29 0.00 12.71 14.09 6.18 
 Minimum DHI -7.22 0.23 -30.85 0.00 -7.68 -6.76 2.77 

Grass 

affiliates 
Intercept 3.08 0.03 105.04 0.00 3.02 3.14 - 

 Terrain ruggedness -0.40 0.03 -12.45 0.00 -0.46 -0.33 1.18 
 Proportion forest -0.25 0.04 -6.49 0.00 -0.33 -0.17 1.73 

 Proportion 

grassland 
0.41 0.03 13.15 0.00 0.35 0.47 1.14 

 Cumulative DHI -0.96 0.04 -23.76 0.00 -1.04 -0.88 1.91 
 Variation DHI 0.32 0.03 9.60 0.00 0.25 0.38 1.29 

Shrub 

affiliates 
Intercept 10.50 0.06 165.69 0.00 10.37 10.62 - 

 Elevation -0.50 0.10 -4.88 0.00 -0.70 -0.30 2.62 
 Terrain ruggedness 0.28 0.08 3.49 0.00 0.12 0.43 1.55 

 Proportion 

grassland 
-0.54 0.07 -7.25 0.00 -0.69 -0.39 1.38 

 Proportion 

shrubland 
0.75 0.09 8.06 0.00 0.57 0.94 2.18 

 Cumulative DHI -1.23 0.16 -7.64 0.00 -1.54 -0.91 6.45 
 Minimum DHI -0.72 0.18 -4.11 0.00 -1.06 -0.38 7.65 

 Variation DHI -1.96 0.13 -15.17 0.00 -2.21 -1.71 4.16 

Forest 

specialists 
Intercept 13.04 0.10 136.94 0.00 12.86 13.23 - 

 Elevation 1.83 0.16 11.58 0.00 1.52 2.14 2.75 
 Terrain ruggedness 1.14 0.12 9.58 0.00 0.91 1.37 1.56 
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 Proportion forest 2.36 0.13 17.71 0.00 2.10 2.62 1.96 

 Proportion 

grassland 
-0.83 0.10 -8.18 0.00 -1.03 -0.63 1.14 

 Cumulative DHI 8.03 0.24 33.91 0.00 7.56 8.49 6.18 
 Minimum DHI -4.85 0.16 -30.64 0.00 -5.16 -4.54 2.77 

Grass 

specialists 
Intercept 2.48 0.03 94.63 0.00 2.43 2.53 - 

 Terrain ruggedness -0.31 0.03 -10.77 0.00 -0.37 -0.25 1.21 
 Proportion forest -0.40 0.03 -11.64 0.00 -0.47 -0.33 1.74 

 Proportion 

grassland 
0.33 0.03 10.61 0.00 0.27 0.39 1.37 

 Proportion 

shrubland 
-0.21 0.04 -5.38 0.00 -0.28 -0.13 2.13 

 Cumulative DHI -0.41 0.05 -8.43 0.00 -0.51 -0.32 3.52 
 Variation DHI 0.64 0.03 18.68 0.00 0.58 0.71 1.73 

Shrub 

specialists 
Intercept 2.22 0.03 63.91 0.00 2.15 2.29 - 

 Elevation -0.22 0.06 -3.87 0.00 -0.33 -0.11 2.74 
 Terrain ruggedness 0.40 0.04 9.31 0.00 0.32 0.49 1.57 
 Proportion forest 0.18 0.05 3.83 0.00 0.09 0.27 1.86 

 Proportion 

grassland 
-0.29 0.04 -7.02 0.00 -0.37 -0.21 1.38 

 Proportion 

shrubland 
0.68 0.05 13.23 0.00 0.58 0.78 2.18 

 Cumulative DHI -1.95 0.08 -25.53 0.00 -2.10 -1.80 4.84 
 Variation DHI -1.44 0.05 -31.45 0.00 -1.53 -1.35 1.73 

Residents Intercept 12.18 0.07 185.92 0.00 12.05 12.31 - 
 Elevation -0.75 0.11 -6.93 0.00 -0.96 -0.54 2.71 
 Terrain ruggedness 0.94 0.08 11.46 0.00 0.78 1.10 1.57 
 Proportion forest -0.73 0.09 -8.20 0.00 -0.91 -0.56 1.85 

 Proportion 

shrubland 
0.20 0.09 2.33 0.02 0.03 0.38 1.79 

 Cumulative DHI 0.94 0.14 6.93 0.00 0.68 1.21 4.31 
 Variation DHI -1.20 0.08 -14.57 0.00 -1.36 -1.04 1.59 

Long-

distance 

migrants 

Intercept 26.08 0.13 205.56 0.00 25.83 26.33 - 

 Terrain ruggedness 0.77 0.13 6.00 0.00 0.52 1.02 1.02 

 Proportion 

grassland 
-0.61 0.14 -4.51 0.00 -0.87 -0.34 1.13 

 Cumulative DHI 9.37 0.21 45.20 0.00 8.96 9.77 2.67 
 Minimum DHI -6.56 0.20 -33.13 0.00 -6.95 -6.17 2.43 

Short-

distance 

migrants 

Intercept 21.03 0.08 275.42 0.00 20.88 21.18 - 

 Elevation 1.27 0.10 12.74 0.00 1.07 1.46 1.69 
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 Proportion 

grassland 
-0.31 0.08 -3.82 0.00 -0.47 -0.15 1.13 

 Cumulative DHI 4.65 0.16 29.16 0.00 4.34 4.97 4.37 
 Minimum DHI -3.98 0.21 -19.05 0.00 -4.39 -3.57 7.47 

 Variation DHI 1.14 0.15 7.73 0.00 0.85 1.43 3.71 

Ground 

Nesters 
Intercept 21.12 0.09 223.32 0.00 20.94 21.31 - 

 Proportion 

shrubland 
0.66 0.12 5.58 0.00 0.43 0.90 1.59 

 Cumulative DHI 4.08 0.18 22.61 0.00 3.72 4.43 3.63 

 Minimum DHI -3.49 0.16 -22.28 0.00 -3.80 -3.18 2.74 

Mid-story/ 

Canopy 

nesters 

Intercept 34.62 0.14 244.59 0.00 34.34 34.90 - 

 Elevation 0.71 0.22 3.17 0.00 0.27 1.15 2.51 
 Terrain ruggedness 1.56 0.17 8.92 0.00 1.22 1.90 1.53 

 Proportion 

grassland 
-1.26 0.15 -8.35 0.00 -1.55 -0.96 1.13 

 Cumulative DHI 10.99 0.29 38.35 0.00 10.43 11.56 4.10 
 Minimum DHI -7.37 0.22 -33.27 0.00 -7.81 -6.94 2.45 

Threatened Intercept 2.86 0.03 113.97 0.00 2.81 2.91 - 
 Elevation -0.14 0.04 -3.26 0.00 -0.22 -0.05 2.74 
 Terrain ruggedness -0.38 0.03 -12.04 0.00 -0.44 -0.32 1.56 
 Proportion forest -0.20 0.04 -5.59 0.00 -0.27 -0.13 1.95 
 Cumulative DHI 0.42 0.06 6.75 0.00 0.30 0.54 6.02 
 Minimum DHI 0.32 0.04 7.82 0.00 0.24 0.41 2.74 

Decreasing Intercept 22.01 0.09 239.65 0.00 21.83 22.19 - 
 Elevation -1.16 0.15 -7.89 0.00 -1.44 -0.87 2.55 
 Terrain ruggedness -0.34 0.11 -3.01 0.00 -0.57 -0.12 1.55 
 Cumulative DHI 2.69 0.21 12.91 0.00 2.28 3.09 5.13 
 Minimum DHI -3.13 0.25 -12.33 0.00 -3.63 -2.63 7.63 

 Variation DHI 1.00 0.18 5.63 0.00 0.65 1.35 3.76 

Stable 

increasing 
Intercept 37.28 0.16 237.32 0.00 36.97 37.59 - 

 Elevation 1.08 0.25 4.29 0.00 0.58 1.57 2.55 
 Terrain ruggedness 2.23 0.20 11.41 0.00 1.85 2.61 1.55 

 Proportion 

grassland 
-1.76 0.17 -10.53 0.00 -2.09 -1.43 1.14 

 Cumulative DHI 10.75 0.36 29.70 0.00 10.04 11.46 5.31 
 Minimum DHI -6.93 0.43 -15.97 0.00 -7.79 -6.08 7.64 

 Variation DHI -1.04 0.30 -3.41 0.00 -1.64 -0.44 3.77 

Small range Intercept 4.90 0.09 56.87 0.00 4.73 5.07 - 
 Terrain ruggedness 1.87 0.09 21.03 0.00 1.69 2.04 1.06 

 Proportion 

grassland 
-0.37 0.10 -3.62 0.00 -0.56 -0.17 1.37 
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 Proportion 

shrubland 
0.51 0.13 4.06 0.00 0.26 0.76 2.12 

 Cumulative DHI -2.99 0.20 -15.27 0.00 -3.37 -2.60 5.15 
 Minimum DHI 1.26 0.24 5.34 0.00 0.80 1.72 7.48 

 Variation DHI -2.01 0.17 -11.61 0.00 -2.35 -1.67 4.04 

Large range Intercept 54.39 0.21 259.00 0.00 53.98 54.80 - 

 Proportion 

grassland 
-0.96 0.22 -4.29 0.00 -1.40 -0.52 1.13 

 Cumulative DHI 17.03 0.39 43.43 1.63 16.26 17.80 3.49 

 Minimum DHI -11.39 0.57 -19.91 0.00 -12.52 
-

10.27 
7.42 

 Variation DHI 2.19 0.40 5.42 0.00 1.40 2.98 3.69 

Insectivores Intercept 32.05 0.14 222.42 0.00 31.77 32.34 - 
 Terrain ruggedness 1.22 0.16 7.77 0.00 0.91 1.53 1.18 
 Proportion forest 1.01 0.19 5.26 0.00 0.64 1.39 1.79 

 Proportion 

grassland 
-1.17 0.15 -7.61 0.00 -1.47 -0.87 1.14 

 Cumulative DHI 10.04 0.31 32.44 0.00 9.43 10.64 4.61 
 Minimum DHI -7.04 0.40 -17.58 0.00 -7.83 -6.26 7.72 

 Variation DHI -0.92 0.28 -3.31 0.00 -1.46 -0.37 3.70 

Granivores Intercept 11.62 0.05 221.25 0.00 11.52 11.73 - 
 Elevation -0.44 0.09 -5.08 0.00 -0.61 -0.27 2.76 
 Terrain ruggedness 0.33 0.07 5.07 0.00 0.20 0.46 1.58 
 Proportion forest -0.81 0.07 -11.04 0.00 -0.96 -0.67 1.96 

 Proportion 

shrubland 
-0.48 0.07 -7.06 0.00 -0.61 -0.35 1.67 

 Cumulative DHI 0.91 0.14 6.42 0.00 0.63 1.19 7.35 
 Minimum DHI -1.01 0.09 -10.79 0.00 -1.19 -0.82 3.16 

Frugivores Intercept 1.29 0.01 90.18 0.00 1.26 1.31 - 
 Elevation -0.17 0.02 -7.36 0.00 -0.21 -0.12 2.55 
 Terrain ruggedness 0.32 0.02 18.20 0.00 0.29 0.36 1.55 

 Proportion 

grassland 
-0.15 0.02 -9.82 0.00 -0.18 -0.12 1.14 

 Cumulative DHI 0.38 0.03 11.61 0.00 0.32 0.45 5.31 
 Minimum DHI -0.54 0.04 -13.78 0.00 -0.62 -0.47 7.64 

 Variation DHI -0.17 0.03 -6.31 0.00 -0.23 -0.12 3.77 

Large body Intercept 34.46 0.12 292.44 0.00 34.23 34.69 - 
 Proportion forest -1.83 0.15 -12.37 0.00 -2.12 -1.54 1.58 

 Proportion 

grassland 
-0.58 0.14 -4.22 0.00 -0.84 -0.31 1.34 

 Proportion 

shrubland 
-0.65 0.16 -3.99 0.00 -0.97 -0.33 1.91 

 Cumulative DHI 5.02 0.29 17.11 0.00 4.44 5.59 6.19 
 Minimum DHI -3.33 0.21 -15.54 0.00 -3.76 -2.91 3.32 

Small body Intercept 24.76 0.13 192.39 0.00 24.51 25.02 - 
 Terrain ruggedness 2.18 0.14 15.58 0.00 1.91 2.45 1.18 
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 Proportion forest 1.41 0.17 8.22 0.00 1.08 1.75 1.79 

 Proportion 

grassland 
-1.14 0.14 -8.32 0.00 -1.41 -0.87 1.14 

 Cumulative DHI 8.20 0.25 33.03 0.00 7.71 8.68 3.72 
 Minimum DHI -6.54 0.21 -31.01 0.00 -6.95 -6.12 2.68 
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Chapter 3: Explaining bird abundance with the Dynamic Habitat Indices across the 

Western United States 

Abstract 

Biodiversity is declining and for effective management it is crucial to understand the 

underlying mechanisms influencing spatial patterns of species abundance over broad scales. The 

Dynamic Habitat Indices (DHIs) are three measures of vegetation productivity – cumulative, 

minimum, and variation DHI – that provide information about habitat quality and foraging 

conditions. Our goal was to test the usefulness of the DHIs to predict bird abundance. We 

analyzed point count data obtained from the Integrated Monitoring in Bird Conservation Regions 

(IMBCR) Program for twenty bird species across the Western United States. To estimate 

detection-corrected avian abundance, we used hierarchical distance-sampling models with the 

three DHIs as abundance covariates, and primary habitat, start time, and year as detection 

covariates. The DHIs were calculated from the Normalized Difference Vegetation Index 

(NDVI), based on 30-m Landsat data from 2011-2020. We predicted that higher cumulative DHI 

and minimum DHI and lower variation DHI would be associated with higher abundances, and 

we tested the More Individuals Hypothesis (MIH), postulates that areas with greater food 

resources support higher total numbers of individuals in a community. We also assessed whether 

different components of the DHIs are associated with different migratory habits of birds. We 

found that the DHIs were significant for predicting abundance of 17 of the 20 species tested, 

however higher bird abundance of only 5 species associated with higher productivity. Among the 

three DHIs, minimum DHI and variation DHI were more often included in top-ranked bird 

abundance models. We observed stronger relationships between the DHIs and abundance of rare 

species than common species. Residents and long-distance migrants showed stronger 

associations with minimum DHI and variation DHI, while short distance migrants showed 
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stronger relationships with cumulative DHI. Our results highlight the usefulness of the Landsat 

DHIs for modeling avian abundance at broad scales, especially for rare bird species, and that the 

DHIs can be used to inform conservation planning. 

Introduction 

According to the North American Bird Conservation Initiative (NABCI), 37% of all birds 

in North America are at risk of extinction, with many species in coastal, grassland, and arid 

habitats declining steeply (NABCI 2016, Rosenberg et al. 2019). With limited resources, 

conservationists want to maximize conservation return (Wilson et al. 2011), and consequently 

often focus on identifying and protecting areas with higher biodiversity. To do so, there are 

different biodiversity indices focusing on species richness, or the functional diversity of species 

in given area. However, none of these metrics provide information about how many individuals 

of a given species live in an area. Monitoring abundance highlights when a species starts to 

decline, which may trigger changes in the abundance of other species (Rosenberg et al. 2019). 

Moreover, there are many uncertainties about species responses to climate change (Langham et 

al. 2015). Thus, it is also important to monitor species abundances. 

Obtaining accurate estimates of abundance data is difficult and time consuming 

(Buckland et al. 2008, Callaghan et al. 2021), especially in remote and hard-to-reach areas. 

Moreover, abundance can fluctuate from year to year because there many factors influence 

species abundance, including weather, low primary productivity, predation, disturbance (fire, 

wind fall, clear cuts, etc.), competition, and disease (Currie et al. 1993). Even if it is possible to 

obtain all these data for one species or over a small spatial extent, it is infeasible to obtain it for 

all species or across large extents. Another approach is to assess the underlying mechanisms 

influencing spatial patterns of species abundance over broad scales. Remote sensing provides a 
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great opportunity for monitoring species abundance because it provides information about 

environmental characteristics of habitat, and captures dynamic changes on the ground. Moreover, 

data are collected systematically and provide wall-to-wall global coverage (Nagendra 2013).  

We explore the effectiveness of the Dynamic Habitat Indices (DHIs) derived from 

remotely sensed vegetation indices to explain bird abundance patterns. Birds can easily move 

over long distances to find suitable habitat. Hence, declines in bird abundance in some areas are 

not always driven by mortality, but can also be caused by outmigration (Pavlacky et al. 2017). 

The DHIs integrate three measures of vegetation productivity that provide information about 

habitat and forage conditions (Coops et al. 2008). Birds are a good taxon for understanding the 

utility of the DHIs because they exhibit a wide range of behaviors and strategies to find food and 

suitable habitat. The More Individuals Hypothesis (MIH) postulates that areas with greater food 

resources support higher total numbers of individuals in a community (Srivastava and Lawton 

1998, Storch et al. 2018). While the MIH was developed to explain spatial patterns of species 

richness, it can be applied to explain patterns of species abundance as well. The underlying 

mechanism of MIH is closely connected to extinction rates, with the assumption that the number 

of species increases with the number of individuals, whereas low population sizes have a higher 

probability of extinction and cannot support high species richness (Srivastava and Lawton 1998, 

Storch et al. 2018). 

The mechanism of the MIH reflects abundance-dependent extinction rates. However the 

relationship between species richness, abundance and available energy might be different for 

common versus rare species (Storch et al. 2018). Because an increase of available energy should 

decrease extinction risk, especially in rare species due to low number of individuals, rare species 

should show stronger species-energy relationships (Evans et al. 2005, 2006). In this regard the 
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DHIs are very promising for testing the MIH for individual species, because these indices 

provide information about available energy over the entire year (cumulative DHI) and during 

winter months (minimum DHI), and show the stability of available energy in the system 

(variation DHI) through photosynthetic activity (Connell and Orias 1964, Wright 1983, Hurlbert 

and Haskell 2003, Radeloff et al. 2019).  

The three different measures of available energy may help explain the abundance of 

different bird species. For example, resident birds stay close to their breeding areas all year 

round, but one limiting factor for this guild is available food resources during winter. Therefore, 

resident birds may have a stronger response to minimum vegetation productivity. Conversely, 

long-distance migrants travel great distances to take advantages of seasonal abundance of insect 

food, so for this guild seasonal variation in productivity may be more important. Prior studies 

show the effectiveness of the DHIs for explaining the abundance of mammals (Michaud et al. 

2014, Razenkova et al. 2020, 2023), but not for the abundance of birds nor different bird guilds. 

Our primary goal was to evaluate the utility of the DHIs to explain bird abundance across 

the Western United States (U.S.). Specifically, we examined the following questions: 

• Does bird abundance vary between productive and less productive areas as the MIH 

predicts? 

• Is available energy more relevant for rare species than for common bird species? 

• Does abundance of resident birds have a stronger relationship with higher minimum 

productivity during winter?  
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• Does abundance of long-distance migrants have a stronger relationship with cumulative 

productivity or seasonal variation in productivity? 

We expected to find support for the MIH and to see higher numbers of individuals in 

more productive areas. Common species would show strong relationships with the DHIs. We 

expected to find that residents have a stronger relationship with minimum DHI, while long-

distance migrants have a stronger response to variation DHI. Whereas Evans et al. (2005) 

assumed a stronger species-energy relationship in rare birds, we expected to find weak or no 

relationship between the DHIs and abundance for rare species, because vegetation productivity is 

not the limiting factor for these species.  

Methods 

Study Area 

Our study area encompassed 8 of the 67 North American Bird Conservation Regions 

(BCRs), including: Great Basin (BCR 9), Northern Rockies (BCR 10), Prairie Potholes (BCR 

11), Southern Rockies/Colorado Plateau (BCR 16), Badlands And Prairies (BCR 17), Shortgrass 

Prairie (BCR 18), Central Mixed Grass Prairie (BCR 19), and Sierra Madre Occidental (BCR 34; 

Figure 10). We excluded BCR 15 and 33, because we had less than 100 detection points for our 

species in those regions (see bird data preprocessing).  

The Dynamic Habitat Indices 

We used the Dynamic Habitat Indices (DHIs) calculated from the Normalized Difference 

Vegetation Index (NDVI) based on 30-m Landsat data from 2011-2020 (Razenkova et al. n.d.). 

The DHIs are three measure of vegetation productivity: overall productivity (cumulative DHI), 

minimum productivity (minimum DHI), and seasonal variation in vegetation productivity 
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(variation DHI). To calculate NDVI, we used bands 4 and 5 based on Landsat 8. We removed 

clouds, cloud shadows, and water bodies (Hansen et al. 2013). Pixels with snow and ice we 

replaced by zero. We extracted median NDVI values for each month from a time series of 2011-

2020. In total, we had twelve NDVI values that represent a phenology curve. For some areas, we 

had pixels with fewer NDVI values, and for these areas, we applied linear interpolation to fill up 

to four months of missing data. In total, we interpolated 6.8% of missing data for conterminous 

U.S. From the resulting monthly NDVI composites we calculated the DHIs as follows: 1) 

cumulative DHI is the sum of monthly NDVI composites; 2) minimum DHI is the lowest value 

among monthly NDVI composites; and 3) variation DHI is the coefficient of variation of 

monthly NDVI composites (for additional details about the calculation of DHIs see (Razenkova 

et al. n.d., Hobi et al. 2017, Radeloff et al. 2019). The DHIs data are available at 

https://silvis.forest.wisc.edu/data/dhis/. 

Bird data 

We obtained data from the Integrated Monitoring in Bird Conservation Regions 

(IMBCR) Program (Pavlacky et al. 2017). The main advantages of IMBCR data are that they are 

collected using a rigorous sampling design that allows to monitor bird abundance at broad scales. 

Data are publicly available for the Western US since 2005. The IMBCR design defines sampling 

units as 1-km² cells, each containing 16 evenly-spaced sample points, 250 m apart (Figure 1) 

(Woiderski et al. 2018). Trained field observers conducted six-minute point counts during which 

they recorded all non-independent detections of birds, and provided a variety of data for 

estimating incomplete detection. We analyzed data collected from 2010 to 2020 to match our 

remotely sensed data. We selected twenty bird species with different migration strategies and 

IUCN statuses for which a sufficient number of observations were available (Table 9, Table 10). 

https://silvis.forest.wisc.edu/data/dhis/
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Prior to any analyses, we cleaned the data by removing observations that did not meet the 

following criteria: the observer had conducted at least 100 surveys, the data had a valid survey 

start time, the habitat type was specified, the survey occurred in June or July. Additionally, we 

selected only one randomly chosen survey for each location. To avoid double counting the same 

species at two adjacent locations, we limited our buffer zone to 125 m and truncated any 

observations beyond this distance. We considered each point count as an independent single 

survey.  

Statistical analysis 

 To estimate detection-corrected avian abundance, we used hierarchical distance-sampling 

abundance models (Buckland et al. 2001) implemented in the “unmarked” R package (Royle et 

al. 2004, Chandler et al. 2011). To model the relationship between detection probability and 

distance we used a ‘half-normal’ detection function, which is commonly used for birds that are 

increasingly hard to detect at greater distances (Buckland et al. 2001, Royle et al. 2004). We 

considered several possible abundance models for each species, first testing Poisson regression, 

but switching to negative binomial in the case of overdispersion. To select the appropriate 

distribution, we fitted a model with only one explanatory variable and checked the goodness-of-

fit using parametric bootstrapping, in which 100 simulated data sets generated from our model 

were refit to the same model and the values of the reference and observed distributions were 

compared using the Freeman-Tukey fit statistic (Sillett et al. 2012). Model fit is indicated by the 

observed value not being beyond the 0.05 percentile of the reference distribution (Sillett et al. 

2012). We also tested for overdispersion using the Chi-squared statistic (Reidy et al. 2014, Kéry 

and Royle 2016). After selecting the distribution, we built a null model for each species that did 

not contain any detection or abundance covariates and calculated the Akaike Information 
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Criterion (AIC) score for this model. Next, we ran models with one of the three DHIs 

(cumulative, minimum, or variation DHI) as abundance covariates and did not include any 

detection covariates. Because the three DHIs are correlated, we did not run any combinations of 

the DHIs. Instead, in our multivariate models we used one of the components of the DHIs as an 

abundance covariate and a unique combination of three detection covariates including type of 

primary habitat, year of the survey, and start time of the survey. In total we ran 25 candidate 

models for each species (the null model plus three abundance covariates times eight detection 

covariates). We used the AIC score to identify the top models for which ΔAIC <4. From the five 

top models, we selected the most parsimonious model (i.e., the model with the fewest variables) 

and double-checked goodness-of-fit and overdispersion, again using parametric bootstrapping 

with 1,000 iterations and the Chi-squared statistic. 

Results  

Bird species  

We analyzed a set of bird species with different IUCN statuses and population trends, 

migratory strategies, and habitat preferences (Table 9). Most of our species were common 

species because we requested data for species which had a high number of point count detections 

and were widely distributed across BCR regions (in order to have a wide range of DHIs values). 

A few species had least concern statuses with increasing population trends based on IUCN, 

including American Crow, Black-capped Chickadee, Gray Vireo, and House Wren (Table 9). 

However, there were also a few species that are rare based on small range for Western US: 

Baird’s Sparrow, Field Sparrow, Gray Vireo, Lark Bunting, Northern Bobwhite, Pinyon Jay, and 

Virginia Warbler. The IUCN trends for these species are decreasing except for Baird’s Sparrow 

and Gray Vireo. Even though Baird’s Sparrow has a least concern status and stable trend based 
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on IUCN, we considered this species to be rare, because of the small range in general, the 

dependence on grasslands and their migration to the Neotropics. Both grassland obligates and 

Neotropical migrant bird species are experiencing declines (Knopf 1994, Thompson et al. 1999, 

Carter et al. 2000, Rosenberg et al. 2019). Similarly, Gray Vireo has a least concern status and an 

increasing population trend, but this species has a restricted range and is a Neotropical migrant 

(Schlossberg 2006, Hargrove and Unitt 2017). We had the highest number of detections for 

Brewer’s Sparrow (37,305 detections) and Chipping Sparrow (26,884) and the lowest number for 

Loggerhead Shrike (509), Gray Vireo (645), and Bullock’s Oriole (983) (Table 2). 

Avian abundance 

We found that for all species except American Crow our top models (selected by ΔAIC 

<4 than other candidate models) included the DHIs rather than a null model (Appendix 9). If 

multiple models were within 4 AIC of the top, we selected the most parsimonious model 

(Appendix 9, Table 11, Appendix 10, Appendix 11). The top model and the most parsimonious 

model were the same for most species except Black-headed Grosbeak, Gray Vireo, Virginia’s 

Warbler, and Yellow Warbler. Even if the most parsimonious model provided the lowest AIC 

score, there were cases where the null model and the most parsimonious model had similar 

performance. For example, Black-billed Magpie, Bullock’s Oriole, Gray Vireo, Loggerhead 

Shrike, Northern Bobwhite, and Pinyon Jay all had null models ranking within 5 AIC of the top 

model (Table 11). We observed that the negative binomial distribution fit better than Poisson 

regression for most of our models and resulted in lower AIC scores (Table 10). Among detection 

covariates, primary habitat appeared in the most models (eight), followed by survey year (seven), 

and finally survey time (two). None of the three detection covariates ever appeared in a top 

model simultaneously. For the most parsimonious model for each species, we checked goodness-
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of-fit and overdispersion, using parametric bootstrapping with 1,000 iterations and the Chi-

squared statistic (Appendix 12).  

Rare versus common species 

For rare species we found the DHIs were significantly important (p < 0.01) for all except 

Northern Bobwhite (p = 0.06) (Table 11). The most parsimonious top models included detection 

covariates only for Baird’s Sparrow (year) and Field Sparrow (year and time). Minimum DHI 

was selected more often than other components of the DHIs and appeared in four of seven 

models. The relationship between minimum DHI and bird abundance varied from positive for 

Lark Bunting and Pinyon Jay to negative for Field Sparrow and Gray Vireo. Variation DHI 

appeared in two models for rare species with strong negative influence on Northern Bobwhite 

abundance and weak positive effect on Virginia’s Warbler abundance. Cumulative DHI had 

strong negative effect on Baird’s Sparrow abundance. Overall, we found that all three DHIs had 

a strong influence on bird abundance of rare species (except Virginia’s Warbler) and that 

minimum DHI had the strongest effect for rare species (Figure 11). Predicted abundance was low 

for rare species, except Virginia’s Warbler (Figure 12). 

We found that common species were also strongly related to the DHIs, except for 

American Crow (p = 0.42), Bullock’s Oriole (p = 0.15). However, among the top-selected 

models of some species there was a switch from one component of the DHIs to another. For 

example, the top-ranked model for Yellow Warbler included cumulative DHI the second top 

model included variation DHI (Appendix 9). Similarly, we found that competitive models used 

different components of the DHIs for Chipping Sparrow, Loggerhead Shrike, and Yellow 

Warbler; four species that live in open woodland. Based on the most parsimonious models we 

found that variation DHI was selected more often than the other components of the DHIs and 
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appeared in six out of 13 models for common species. Variation DHI had a strong positive effect 

on Grasshopper Sparrow and Black-capped Chickadee and a strong negative influence on House 

Wren (Figure 11). Minimum DHI had negative influence on Black-billed Magpie, Common 

Nighthawk, and Chipping Sparrow, and a weak positive effect on Black-headed Grosbeak. 

Cumulative DHI had a strong positive effect on Loggerhead Shrike, a weak positive influence on 

Northern Flicker, and a negative influence on Bullock’s Oriole. Predicted abundance was high 

for Brewer’s Sparrow, Chipping Sparrow, Grasshopper Sparrow, and House Wren (Figure 12). 

Primary habitat was a detection covariate in the top models of only common species, and 

some of the habitats were significant detection covariates (p < 0.05) (Appendix 10, Appendix 

11). For two common species, Chipping Sparrow and Northern Flicker, none of the primary 

habitats were significant. The primary habitat type varied in importance by bird species (habitat 

descriptions can be found in Appendix 11).  

Productive versus less productive areas 

We hypothesized that sites with higher vegetation productivity, characterized by higher 

values for cumulative and minimum DHI and lower values for variation DHI, would have higher 

bird abundances. By comparing the sign of estimates of our models for each component of the 

DHIs for each species, we found that the relationship between vegetation productivity and bird 

abundance varied substantially (Appendix 13). As expected, we found higher bird abundance 

associated with higher productivity for Black-headed Grosbeak, House Wren, Lark Bunting, 

Loggerhead Shrike, and Pinyon Jay. However, abundances of Baird’s Sparrow, Chipping 

Sparrow, Field Sparrow, Virginia’s Warbler were associated with lower productivity (i.e., 

negative relationship with cumulative DHI and minimum DHI and positive with variation DHI). 

The remaining eleven bird species had divergent patterns. For example, American Crow, Black-
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billed Magpie, and Bullock’s Oriole had a negative relationship with all three DHIs. The most 

common relationship between the DHIs and bird abundance was a positive relationship with 

cumulative DHI and variation DHI, and a negative relationship with minimum DHI. For 

example, Black-capped Chickadee, Brewer's Sparrow, Common Nighthawk, Grasshopper 

Sparrow, Gray Vireo, Northern Flicker, and Yellow Warbler followed this pattern. Northern 

Bobwhite had a unique relationship with the DHIs, showing a negative relationship with 

cumulative and variation DHI and positive with minimum DHI.  

The DHIs for residents and migrant bird species 

The relationships of the DHIs with bird abundance of residents and migrant bird species 

was highly dependent on the bird species. Overall, we found that minimum DHI and variation 

DHI were the strongest predictors for resident species. The directionality of the relationship 

between minimum DHI and resident woodland species varied in that there was a positive 

relationship for Pinyon Jay, but a negative relationship for Black-billed Magpie. Similarly, 

resident forest species such as Black-capped Chickadee had a positive relationship with variation 

DHI, while resident grassland species such as Northern Bobwhite had a negative relationship 

with variation DHI. For long distance migrants, we observed strong associations with variation 

DHI (5 species) and minimum DHI (5 species), but not for cumulative DHI (only 2 species). In 

contrast, short distance migrants showed stronger associations with cumulative DHI (2 species), 

and in lesser degree with minimum DHI (1 species) and variation DHI (1 species). 

Discussion  

Our main goal was to test the Dynamic Habitat Indices derived from 30-m Landsat data 

from 2011-2020 as predictors of bird abundance, using a diverse set of 20 species across the 

Western U.S. as focal species. We found that the DHIs were important predictors in modeling 
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detection-corrected avian abundance for all species, with the exception of American Crow, 

Bullock’s Oriole, and Northern Bobwhite. Models with DHIs as abundance covariates provided 

lower AIC scores than null models that did not contain any abundance or detection covariates. 

Our results demonstrate the usefulness of medium-resolution DHIs for capturing important 

habitat characteristics for individual bird species. This work expands on prior studies that show 

the effectiveness of remote sensing data for mapping suitable habitat (Hunt et al. 2022), for 

explaining species richness (Hurlbert and Haskell 2003, Skidmore et al. 2003, Coops et al. 2009, 

Hobi et al. 2017, Radeloff et al. 2019), as well as explaining mammal abundance (Michaud et al. 

2014, Razenkova et al. 2020, 2023). 

We were skeptical about finding stronger relationship with vegetation productivity for 

rare species because of the limited number of available detections. However, our results show 

that vegetation productivity has a strong influence on rare species. Even for Northern Bobwhite, 

we observed a strong negative influence of variation DHI, although this was not significant (p = 

0.06). For common species, the relationship between bird abundance and vegetation productivity 

was significant, with the exception of American Crow and Bullock’s Oriole. This could indicate 

that many generalist species are sensitive to environmental patterns, and that future changes to 

these patterns could result in population declines. The American Crow is a generalist and far-

ranging species, thus the DHIs probably do not constrict their ability to find food, nest sites, 

shelter from predators, or places for roosts during winter. Moreover, this species is well-adapted 

to human-modified landscapes and can benefit from close proximity to settlements (Shoemaker 

and Phillips 2011), therefore other factors could play a larger role than the DHIs in shaping 

distributions of American Crow. Bullock’s Orioles are also a widespread and common species in 

the Western U.S. As a Neotropical migrant this species is facing many conservation threats, 
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including habitat loss, but at least Bullock’s Oriole can minimize negative effects from nest 

parasitism by recognizing and destroying parasitic eggs (Peer and Sealy 2004). 

We observed that relationships between the three components of the DHIs and bird 

abundance varied among species, indicating complex responses likely driven by habitat 

selection. For example, we found that five species increased in abundance at sites with higher 

vegetation productivity, while in contrast, four species were less abundant at productive sites. 

Responses to the DHIs could also be driven by migration strategy. For example, the majority of 

species that showed the most common relationship to the DHIs (i.e., a positive relationship with 

cumulative DHI and variation DHI, and a negative relationship with minimum DHI) were 

Neotropical migrants. The two exceptions in this group were Northern Flicker (short-distance 

migrant) and Black-capped Chickadee (permanent resident). Both of these species are cavity 

nesters and so this specific habitat requirement may force them to select habitat with high overall 

productivity and high seasonality, which could result in higher tree mortality and thus cavity 

availability. In general, we speculate that the three components of the DHIs are capturing 

different features or qualities that species respond to differently, depending on their life history 

and habitat preferences. 

Our results show that minimum DHI and variation DHI were the strongest predictors for 

both resident and Neotropical bird abundance in our study area. Previous work has shown that 

the richness of the resident bird guild in Thailand is strongly associated with cumulative DHI and 

minimum DHI, but weakly associated with variation DHI (Suttidate et al. 2019). However, our 

resident species persist in a temperate zone or mountain areas with strictly defined seasons, 

which is why variation DHI may be more important in our study area than in the tropics. As we 

expected, long-distance migrants were associated with highly seasonal habitats, showing that the 
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life history strategy of these birds allows them to increase reproductive success by taking 

advantage of habitats that are harsh in the winter but productive in the breeding season (Salewski 

and Bruderer 2007). On the other hand, short-distance migrants respond more strongly to 

cumulative DHI than minimum and variation DHI, potentially because they have more flexibility 

in migration timing and can thus respond to good habitat opportunities. 

Caveats and Limitations 

There were some limitations of our analysis due to both the remote sensing data and the 

bird count data. Some uncertainties come from Landsat DHIs, which required interpolating data 

for some months (6.8 % interpolated data for the conterminous U.S.). Regarding our bird 

abundance estimates, we chose to include all point count locations with at least one survey rather 

than restricting to the subset of point locations with multiple surveys. Having multiple 

observations provides more precise estimates of the bird community, but analyzing only those 

locations would have spatially limited our study area and hence our assessment of the DHIs. 

However, to avoid double counting the same individuals at adjacent point count locations, we 

restricted our analysis to observations within 125-m. Previous work shows significant variation 

in detection distance among bird species, and by using the buffer zone we may have 

underestimated actual abundance of some species (Wolf et al. 1995). To minimize bias 

associated with sampling, we randomly selected the survey year to include for each point count 

location that had been surveyed in multiple years (Thompson 2002). Because point count data 

were collected by many individual observers, we were unable to include ‘observer’ as a detection 

covariate and thus account for observer differences. However, to minimize observer error 

associated with misidentification of bird species, we excluded observations from less 

experienced observers (i.e., observers who had conducted less than 100 surveys for this dataset). 
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Another potential limitation of our study is that point count data were collected during the 

morning, which may have reduced detections of nocturnal species such as Common Nighthawk. 

Point count data are also not ideal for flocking and wide-ranging species such as American 

Crow. However, these two species were frequently detected (>4000 detections) despite these 

limitations. 

Conclusion  

In summary, we showed that all three components of the DHIs captured important habitat 

characteristics for individual bird species and were important in modeling their abundance. Our 

results highlight the complexity of relationships between the DHIs and bird abundance, which 

depend on life history and habitat preferences of our modeled species. The DHIs show promise 

for modeling abundance of rare species as well as common species, which is important because 

common species can mask the trends of rare species. The Landsat DHIs are freely available at 

https://silvis.forest.wisc.edu/data/dhis/. 
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Table 9: List of the bird species in alphabetical order by common name including abbreviation, 

scientific name, IUCN status and trend, migration strategy, and preferable habitat. LC –least 

concern, NT- near threatened, VU-vulnerable. 

Common 

name 

Abbrev

iation 

Scientific 

name 

IU

CN 

stat

us 

IUCN 

trend 

Migration 

Form 
Habitat 

American 

Crow 
AMCR 

Corvus 

brachyrhynch

os 

LC Increasing 

Short 

Distance 

Migrant 

Open 

Woodland 

Baird's 

Sparrow 
BAIS 

Centronyx 

bairdii 
LC Stable 

Neotropical 

Migrant 
Grasslands 

Black-billed 

Magpie 
BBMA 

Pica 

hudsonia 
LC Stable 

Permanent 

Resident 

Open 

Woodland 

Black-capped 

Chickadee 
BCCH 

Poecile 

atricapillus 
LC Increasing 

Permanent 

Resident 
Forest 

Black-headed 

Grosbeak 
BHGR 

Pheucticus 

melanocephal

us 

LC Increasing 
Neotropical 

Migrant 
Forest 

Brewer's 

Sparrow 
BRSP 

Spizella 

breweri 
LC Decreasing 

Neotropical 

Migrant 
Schrub 

Bullock's 

Oriole 
BUOR 

Icterus 

bullockii 
LC Stable 

Neotropical 

Migrant 

Open 

Woodland 

Chipping 

Sparrow 
CHSP 

Spizella 

passerina 
LC Decreasing 

Neotropical 

Migrant 

Open 

Woodland 

Common 

Nighthawk 
CONI 

Chordeiles 

minor 
LC Decreasing 

Neotropical 

Migrant 
Grasslands 

Field Sparrow FISP 
Spizella 

pusilla 
LC Decreasing 

Short 

Distance 

Migrant 

Schrub 

Grasshopper 

Sparrow 
GRSP 

Ammodramus 

savannarum 
LC Decreasing 

Neotropical 

Migrant 
Grasslands 

Gray Vireo GRVI Vireo vicinior LC Increasing 
Neotropical 

Migrant 
Schrub 

House Wren HOWR 
Troglodytes 

aedon 
LC Increasing 

Neotropical 

Migrant 
Schrub 

Lark Bunting LARB 
Calamospiza 

melanocorys 
LC Decreasing 

Neotropical 

Migrant 
Grasslands 

Loggerhead 

Shrike 
LOSH 

Lanius 

ludovicianus 
NT Decreasing 

Short 

Distance 

Migrant 

Open 

Woodland 

Northern 

Bobwhite 
NOBO 

Colinus 

virginianus 
NT Decreasing 

Permanent 

Resident 
Grasslands 
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Northern 

Flicker 
NOFL 

Colaptes 

auratus 
LC Decreasing 

Short 

Distance 

Migrant 

Open 

Woodland 

Pinyon Jay PIJA 

Gymnorhinus 

cyanocephalu

s 

VU Decreasing 
Permanent 

Resident 

Open 

Woodland 

Virginia's 

Warbler 
VIWA 

Leiothlypis 

virginiae 
LC Decreasing 

Neotropical 

Migrant 

Open 

Woodland 

Yellow 

Warbler 
YEWA 

Setophaga 

petechia 
LC Decreasing 

Neotropical 

Migrant 

Open 

Woodland 
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Table 10: List of the bird species in alphabetical order by common name including abbreviation, 

scientific name, IUCN status and trend, migration strategy, and preferable habitat. LC –least 

concern, NT- near threatened, VU-vulnerable. 

Common 

name 

Abbrev

iation 

Scientific 

name 

IU

CN 

stat

us 

IUCN 

trend 

Migration 

Form 
Habitat 

American 

Crow 
AMCR 

Corvus 

brachyrhynch

os 

LC Increasing 

Short 

Distance 

Migrant 

Open 

Woodland 

Baird's 

Sparrow 
BAIS 

Centronyx 

bairdii 
LC Stable 

Neotropical 

Migrant 
Grasslands 

Black-billed 

Magpie 
BBMA 

Pica 

hudsonia 
LC Stable 

Permanent 

Resident 

Open 

Woodland 

Black-capped 

Chickadee 
BCCH 

Poecile 

atricapillus 
LC Increasing 

Permanent 

Resident 
Forest 

Black-headed 

Grosbeak 
BHGR 

Pheucticus 

melanocephal

us 

LC Increasing 
Neotropical 

Migrant 
Forest 

Brewer's 

Sparrow 
BRSP 

Spizella 

breweri 
LC Decreasing 

Neotropical 

Migrant 
Schrub 

Bullock's 

Oriole 
BUOR 

Icterus 

bullockii 
LC Stable 

Neotropical 

Migrant 

Open 

Woodland 

Chipping 

Sparrow 
CHSP 

Spizella 

passerina 
LC Decreasing 

Neotropical 

Migrant 

Open 

Woodland 

Common 

Nighthawk 
CONI 

Chordeiles 

minor 
LC Decreasing 

Neotropical 

Migrant 
Grasslands 

Field Sparrow FISP 
Spizella 

pusilla 
LC Decreasing 

Short 

Distance 

Migrant 

Schrub 

Grasshopper 

Sparrow 
GRSP 

Ammodramus 

savannarum 
LC Decreasing 

Neotropical 

Migrant 
Grasslands 

Gray Vireo GRVI Vireo vicinior LC Increasing 
Neotropical 

Migrant 
Schrub 

House Wren HOWR 
Troglodytes 

aedon 
LC Increasing 

Neotropical 

Migrant 
Schrub 

Lark Bunting LARB 
Calamospiza 

melanocorys 
LC Decreasing 

Neotropical 

Migrant 
Grasslands 

Loggerhead 

Shrike 
LOSH 

Lanius 

ludovicianus 
NT Decreasing 

Short 

Distance 

Migrant 

Open 

Woodland 

Northern 

Bobwhite 
NOBO 

Colinus 

virginianus 
NT Decreasing 

Permanent 

Resident 
Grasslands 
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Northern 

Flicker 
NOFL 

Colaptes 

auratus 
LC Decreasing 

Short 

Distance 

Migrant 

Open 

Woodland 

Pinyon Jay PIJA 

Gymnorhinus 

cyanocephalu

s 

VU Decreasing 
Permanent 

Resident 

Open 

Woodland 

Virginia's 

Warbler 
VIWA 

Leiothlypis 

virginiae 
LC Decreasing 

Neotropical 

Migrant 

Open 

Woodland 

Yellow 

Warbler 
YEWA 

Setophaga 

petechia 
LC Decreasing 

Neotropical 

Migrant 

Open 

Woodland 
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Table 11: List of the bird species in alphabetical order by common name, Bird Conservation 

Regions (BCR) regions included into analysis, number of detection species, and the type of 

distribution for model. 

Common name BCR  

Number 

of 

detection 

Distribution 

American Crow 9, 10, 16, 17, 18, 19 5598 NB 

Baird's Sparrow 11, 17 1304 NB 

Black-billed Magpie 9, 10, 16, 17, 18 6414 NB 

Black-capped 

Chickadee 9, 10, 16, 17, 18 5001 NB 

Black-headed 

Grosbeak 9, 10, 16, 17, 18, 34 5175 Poisson 

Brewer's Sparrow 9, 10, 11, 16, 17, 18 37305 NB 

Bullock's Oriole 9, 10, 17, 18, 19 983 Poisson 

Chipping Sparrow 9, 10, 16, 17, 18, 34 26884 NB 

Common Nighthawk 
9, 10, 11, 16, 17, 

18, 19 4029 Poisson 

Field Sparrow 17, 18, 19 4941 NB 

Grasshopper 

Sparrow 9, 10, 11, 17, 18, 19 19412 NB 

Gray Vireo 9, 16 645 NB 

House Wren 
9, 10, 16, 17, 18, 

19, 34 16708 NB 

Lark Bunting 10, 11, 17, 18 14695 NB 

Loggerhead Shrike 9, 10, 17 509 Poisson 

Northern Bobwhite 18, 19 1295 NB 

Northern Flicker 9, 10, 16, 17, 18, 34 13487 NB 

Pinyon Jay 9, 10, 16, 34 1753 NB 

Virginia's Warbler 16, 34 2227 NB 

Yellow Warbler 9, 10, 11, 16, 17, 18 6902 NB 
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Table 12: Results of modeling bird abundance using the Poisson and negative-binomial 

regression. Results are reported for the null model (without either abundance or detection 

covariates), and the most parsimonious model (i.e., the model with the fewest variables) based on 

lowest AIC score for bird species in alphabetical order by common name. Estimates, standard 

error, p-value, and the AIC score are shown for each model. Lowest AIC score are highlighted in 

bold. Note: for the models that included primary habitat as detection covariates only the first 

habitat is listed.  

Common name Model Variable Estimate 
Standard 

error 

p-

value 
AIC 

American Crow 

Null model (Intercept ) -3.56 0.09 0 7112 

Top model (Intercept ) -3.56 0.09 0 
7113 

 Variation DHI -0.04 0.05 0.42 

Baird's Sparrow 

Null model (Intercept ) -1.05 0.08 <0.01 5879 

Top model (Intercept ) -1.06 0.08 <0.01 

5855  Cumulative DHI -0.29 0.08 <0.01 

Detection Year -0.13 0.03 <0.01 

Black-billed 

Magpie 

Null model (Intercept ) -2.51 0.06 0 14630 

Top model (Intercept ) -2.52 0.06 0 
14627 

 Minimum DHI -0.10 0.04 0.02 

Black-capped 

Chickadee 

Null model (Intercept ) -0.86 0.03 <0.01 28847 

Top model (Intercept ) -0.86 0.03 <0.01 

28729  Variation DHI 0.22 0.03 <0.01 

Detection Habitat AS 0.04 0.08 0.62 

Black-headed 

Grosbeak 

Null model (Intercept ) -1.22 0.03 0 31438 

Top model (Intercept ) -1.20 0.03 0 

31211  Minimum DHI 0.04 0.02 <0.01 

Detection Habitat AS 0.68 0.18 <0.01 

Brewer's 

Sparrow 

Null model (Intercept ) 1.23 0.02 0 74388 

Top model (Intercept ) 1.23 0.02 <0.01 

74358 
 Variation DHI 0.08 0.02 <0.01 

Detection Habitat AS -0.05 0.04 0.26 

 Year -0.01 0.005 0.03 

Bullock's Oriole 

Null model (Intercept ) -2.72 0.07 0 7680 

Top model (Intercept ) -2.73 0.07 0 

7680  Cumulative DHI -0.06 0.04 0.15 

 Year -0.04 0.02 0.09 

Chipping 

Sparrow 

Null model (Intercept ) 1.29 0.02 0 103164 

Top model (Intercept ) 1.29 0.02 <0.01 103105 
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 Minimum DHI -0.07 0.01 <0.01 

Detection Habitat AS 0.00 0.03 0.94 

 Year 0.01 0.004 <0.01 

Common 

Nighthawk 

Null model (Intercept ) -2.14 0.04 0 18400 

Top model (Intercept ) -2.14 0.04 0 

18367  Minimum DHI -0.11 0.03 <0.01 

Detection Habitat AS -0.61 0.23 <0.01 

Field Sparrow 

Null model (Intercept ) -1.21 0.05 <0.01 14142 

Top model (Intercept ) -1.17 0.05 <0.01 

14064 
 Minimum DHI -0.37 0.04 <0.01 

Detection Year 0.10 0.07 0.17 

 Time 0.13 0.09 0.15 

Grasshopper 

Sparrow 

Null model (Intercept ) 1.34 0.02 0 56920 

Top model (Intercept ) 1.31 0.02 <0.01 

56744 
 Variation DHI 0.28 0.02 <0.01 

Detection Year -0.01 0.004 <0.01 

 Time 0.02 0.004 <0.01 

Gray Vireo 

Null model (Intercept ) -1.78 0.09 <0.01 4751 

Top model (Intercept ) -1.77 0.09 <0.01 
4746 

 Minimum DHI -0.17 0.08 0.03 

House Wren 

Null model (Intercept ) 0.51 0.02 <0.01 58761 

Top model (Intercept ) 0.50 0.02 <0.01 

58678  Variation DHI -0.16 0.02 <0.01 

Detection Habitat AS -0.04 0.05 0.44 

Lark Bunting 

Null model (Intercept ) -0.15 0.03 <0.01 32833 

Top model (Intercept ) -0.16 0.03 <0.01 
32773 

 Minimum DHI 0.25 0.03 <0.01 

Loggerhead 

Shrike 

Null model (Intercept ) -3.1 0.09 <0.01 4473 

Top model (Intercept ) -3.10 0.09 <0.01 
4472 

 Cumulative DHI 0.09 0.05 0.05 

Northern 

Bobwhite 

Null model (Intercept ) -2.08 0.07 <0.01 3005 

Top model (Intercept ) -2.28 0.13 <0.01 
3004 

 Variation DHI -0.23 0.12 0.06 

Northern 

Flicker 

Null model (Intercept ) -1.06 0.03 0 44039 

Top model (Intercept ) -1.06 0.03 0 

43974 
 Cumulative DHI 0.04 0.02 0.02 

Detection Habitat AS -0.27 0.54 0.62 

 Year 0.01 0.02 0.52 

Pinyon Jay 

Null model (Intercept ) -2.99 0.10 <0.01 5045 

Top model (Intercept ) -2.98 0.10 <0.01 
5041 

 Minimum DHI 0.17 0.07 0.02 

Virginia's 

Warbler 

Null model (Intercept ) 0.33 0.05 <0.01 11382 

Top model (Intercept ) 0.32 0.05 <0.01 
11377 

 Variation DHI 0.08 0.03 0.01 

Yellow Warbler 
Null model (Intercept ) -0.50 0.03 <0.01 29445 

Top model (Intercept ) -0.49 0.03 <0.01 29401 
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 Variation DHI 0.10 0.03 <0.01 

Detection Habitat AS -0.14 0.08 0.06 
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Figure 10: Bird Conservation Regions (BCR) across the conterminous United States. Shaded 

areas indicate BCRs included in our analysis. All detection points are shown in dark blue, with 

inset showing a 1-km2 sampling unit used in the IMBCR design. The projection of the map is 

Albers Equal Area. 
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Figure 11: Standardized coefficients with 95% confidence interval for explanatory variables for 

most parsimonious models for 20 bird species. The species are AMCR - American Crow, BAIS -

Baird's Sparrow, BBMA - Black-billed Magpie, BCCH - Black-capped Chickadee, BHGR - 

Black-headed Grosbeak, BRSP - Brewer's Sparrow, BUOR - Bullock's Oriole, CHSP - Chipping 

Sparrow, CONI - Common Nighthawk, FISP - Field Sparrow, GRSP - Grasshopper Sparrow, 

GRVI - Gray Vireo, HOWR - House Wren, LARB - Lark Bunting, LOSH - Loggerhead Shrike, 
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NOBO - Northern Bobwhite, NOFL - Northern Flicker, PIJA - Pinyon Jay, VIWI - Virginia's 

Warbler, and YEWA - Yellow Warbler. 
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Figure 12: Predicted bird abundance for 20 bird species. The species are AMCR - American Crow, BAIS -Baird's Sparrow, BBMA - 

Black-billed Magpie, BCCH - Black-capped Chickadee, BHGR - Black-headed Grosbeak, BRSP - Brewer's Sparrow, BUOR - 

Bullock's Oriole, CHSP - Chipping Sparrow, CONI - Common Nighthawk, FISP - Field Sparrow, GRSP - Grasshopper Sparrow, 

GRVI - Gray Vireo, HOWR - House Wren, LARB - Lark Bunting, LOSH - Loggerhead Shrike, NOBO - Northern Bobwhite, NOFL - 

Northern Flicker, PIJA - Pinyon Jay, VIWI - Virginia's Warbler, and YEWA - Yellow Warbler. 
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Appendix 9: The top five competitive models for which ΔAIC < 4 sorted in order from lowest to 

highest AIC scores. “+” indicates that this models was selected as the most parsimonious 

models, “-“ indicates that the model was not selected. 

Species Model 
Abundance 

covariates 
Detection covariates AIC 

Parsimo

nious 

model 

American Crow Model 1 Variation DHI  7113 + 

 Model 2 Minimum DHI  7113 - 

 Model 3 Cumulative DHI  7114 - 

 Model 4 Minimum DHI Year 7115 - 

 Model 5 Variation DHI Year 7115 - 

Baird's Sparrow Model 1 Cumulative DHI Year 5855 + 

Black-billed 

Magpie 
Model 1 Minimum DHI  14627 + 

 Model 2 Minimum DHI Year 14627 - 

 Model 3 Minimum DHI Habitat 14628 - 

 Model 4 Minimum DHI Time 14629 - 

 Model 5 Minimum DHI Year + Time 14629 - 

Black-capped 

Chickadee 
Model 1 Variation DHI Habitat 28729 + 

Black-headed 

Grosbeak 
Model 1 Minimum DHI Habitat + Time 31211 - 

 Model 2 Minimum DHI Habitat + Time + Year 31213 - 

 Model 3 Minimum DHI Habitat 31213 + 

 Model 4 Minimum DHI Habitat + Year 31214 - 

Brewer's 

Sparrow 
Model 1 Variation DHI Habitat + Year 74358 + 

Bullock's Oriole Model 1 Cum DH Year 7680 + 

Chipping 

Sparrow 
Model 1 Minimum DHI Habitat + Year 103105 + 

 Model 2 Minimum DHI Habitat + Time + Year 103106  

 Model 3 Cumulative DHI Habitat + Year 103107  

Common 

Nighthawk 
Model 1 Minimum DHI Habitat 18367 + 

 Model 2 Minimum DHI Habitat + Time 18369  

 Model 3 Minimum DHI Habitat + Time + Year 18370  

Field Sparrow Model 1 Minimum DHI Year + Time 14064 + 

Grasshopper 

Sparrow 
Model 1 Variation DHI Year + Time 56744 + 

Gray Vireo Model 1 Minimum DHI Habitat 4746 - 

 Model 2 Minimum DHI  4746 + 

 Model 3 Minimum DHI Habitat + Time + Year 4746 - 
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 Model 4 Minimum DHI Habitat + Time 4746 - 

 Model 5 Variation DHI Habitat + Year 4748 - 

House Wren Model 1 Variation DHI Habitat 58678 + 

 Model 2 Variation DHI Habitat + Time 58679 - 

 Model 3 Variation DHI Habitat + Year 58680 - 

 Model 4 Variation DHI Habitat + Time + Year 58681 - 

Lark Bunting Model 1 Minimum DHI  32773 + 

 Model 2 Minimum DHI Year 32775 - 

 Model 3 Minimum DHI Time 32775 - 

 Model 4 Minimum DHI Year + Time 32777 - 

Loggerhead 

Shrike 
Model 1 Cumulative DHI  4472 + 

 Model 2 Cumulative DHI Time 4472 - 

 Model 3 Cumulative DHI Year 4474 - 

 Model 4 Variation DHI Time 4474 - 

Northern 

Bobwhite 
Model 1 Variation DHI  3004 + 

 Model 2 Minimum DHI  3005 - 

 Model 3 Variation DHI Year 3006 - 

 Model 4 Variation DHI Time 3006 - 

 Model 5 Cumulative DHI  3006 - 

Northern 

Flicker 
Model 1 Cumulative DHI Habitat + Year 43974 + 

Pinyon Jay Model 1 Minimum DHI  5041 - 

 Model 2 Minimum DHI Time 5043 - 

 Model 3 Variation DHI  5044 - 

 Model 4 Minimum DHI Habitat 5045 - 

Virginia's 

Warbler 
Model 1 Variation DHI Time 11377 - 

 Model 2 Variation DHI Year + Time 11378 - 

 Model 3 Variation DHI  11378 + 

 Model 4 Variation DHI Year 11379 - 

Yellow Warbler Model 1 Cumulative DHI Habitat + Time 29401 - 

 Model 2 Variation DHI Habitat + Time + Year 29401 - 

 Model 3 Cumulative DHI Habitat + Time + Year 29402 - 

 Model 4 Variation DHI Habitat 29403 + 

 Model 5 Cumulative DHI Habitat 29403 - 
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Appendix 10: Results of modeling bird abundance using the Poisson and negative-binomial 

regression. Results are reported for the parsimonious models that included habitat as detection 

covariates based on lowest AIC score for bird species in alphabetical order by common name. 

Estimates, standard error, p-value, and the AIC score are shown for each model. Two-letter code 

to describe primary habitat at breeding landbird survey point are available below in Table S3.  

Common name Model Variable Estimate 
Standard 

error p-value 

Black-capped 

Chickadee 
Top model (Intercept ) -0.86 0.03 <0.01 

  Variation DHI 0.22 0.03 <0.01 

 Detection Habitat AS 0.04 0.08 0.62 

  Habitat BU 0.25 0.09 0.01 

  Habitat CR 0.12 0.11 0.27 

  Habitat DS 0.18 0.13 0.15 

  Habitat DW 0.11 0.14 0.43 

  Habitat GR 0.10 0.06 0.11 

  Habitat II -0.13 0.11 0.25 

  Habitat LP 0.38 0.10 <0.01 

  Habitat MC 0.26 0.07 <0.01 

  Habitat MM 5.33 NaN NaN 

  Habitat OA 0.00 0.14 1.00 

  Habitat PJ 0.03 0.07 0.65 

  Habitat PP 0.20 0.07 <0.01 

  Habitat RI 0.22 0.08 <0.01 

  Habitat SA 0.23 0.06 <0.01 

  Habitat SF 0.15 0.08 0.05 

  Habitat SH 0.08 0.08 0.27 

Black-headed 

Grosbeak 
Top model (Intercept ) -1.20 0.03 0 

 
 

Minimum 

DHI 
0.04 0.02 <0.01 

 Detection Habitat AS 0.68 0.18 <0.01 

  Habitat BU 0.09 0.11 0.40 

  Habitat CR -0.15 0.11 0.19 

  Habitat DS -0.08 0.12 0.52 

  Habitat DW -0.11 0.16 0.48 

  Habitat GR -0.15 0.07 0.03 

  Habitat II 0.33 0.18 0.06 

  Habitat LP -0.06 0.10 0.53 

  Habitat MC 0.05 0.08 0.51 

  Habitat MM 0.53 0.22 0.02 
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  Habitat OA 2.00 2.87 0.49 

  Habitat PJ 0.24 0.09 0.01 

  Habitat PP 0.13 0.08 0.11 

  Habitat RI -0.02 0.08 0.83 

  Habitat SA -0.08 0.07 0.28 

  Habitat SF 0.36 0.11 <0.01 

  Habitat SH 0.20 0.09 0.04 

Brewer's Sparrow Top model (Intercept ) 1.23 0.02 <0.01 

  Variation DHI 0.08 0.02 <0.01 

 Detection Habitat AS -0.05 0.04 0.26 

  Habitat BU 0.00 0.04 0.96 

  Habitat CR 0.02 0.05 0.75 

  Habitat DS 0.03 0.04 0.47 

  Habitat DW -0.05 0.05 0.32 

  Habitat GR -0.06 0.03 0.04 

  Habitat II 0.00 0.06 0.96 

  Habitat LP -0.01 0.04 0.73 

  Habitat MC 0.00 0.03 0.91 

  Habitat MM -0.04 0.05 0.40 

  Habitat OA -0.24 0.07 <0.01 

  Habitat PJ -0.05 0.03 0.16 

  Habitat PP -0.08 0.03 0.02 

  Habitat RI 0.00 0.03 0.89 

  Habitat SA -0.04 0.03 0.16 

  Habitat SF -0.07 0.04 0.07 

  Habitat SH -0.02 0.03 0.51 

  Year -0.01 0.00 0.03 

Chipping 

Sparrow 
Top model (Intercept ) 1.29 0.02 <0.01 

 
 

Minimum 

DHI 
-0.07 0.01 <0.01 

 Detection Habitat AS 0.00 0.03 0.94 

  Habitat BU 0.05 0.03 0.15 

  Habitat CR -0.02 0.04 0.56 

  Habitat DS 0.00 0.04 0.92 

  Habitat DW -0.01 0.05 0.78 

  Habitat GR -0.05 0.02 0.07 

  Habitat II 0.05 0.05 0.24 

  Habitat LP 0.03 0.03 0.47 

  Habitat MC 0.01 0.03 0.70 

  Habitat MM 0.00 0.04 0.91 

  Habitat OA 0.05 0.04 0.30 

  Habitat PJ 0.02 0.03 0.50 

  Habitat PP 0.01 0.03 0.64 

  Habitat RI 0.00 0.03 0.91 

  Habitat SA -0.04 0.03 0.09 
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  Habitat SF 0.00 0.03 0.92 

  Habitat SH -0.04 0.03 0.14 

  Year 0.01 0.00 0.01 

Common 

Nighthawk 
Top model (Intercept ) -2.14 0.04 0 

 
 

Minimum 

DHI 
-0.11 0.03 <0.01 

 Detection Habitat AS -0.61 0.23 0.01 

  Habitat BU -0.40 0.25 0.10 

  Habitat CR -0.88 0.25 <0.01 

  Habitat DS -0.98 0.25 <0.01 

  Habitat DW -0.34 0.35 0.34 

  Habitat GR -0.30 0.21 0.15 

  Habitat II -0.68 0.26 0.01 

  Habitat LP -0.16 0.27 0.57 

  Habitat MC -0.16 0.22 0.47 

  Habitat MM -0.52 0.27 0.05 

  Habitat OA -0.57 0.29 0.05 

  Habitat PJ -0.42 0.22 0.06 

  Habitat PP -0.43 0.21 0.05 

  Habitat RI -0.10 0.24 0.67 

  Habitat SA -0.29 0.21 0.17 

  Habitat SF -0.05 0.27 0.85 

  Habitat SH -0.20 0.23 0.38 

House Wren Top model (Intercept ) 0.50 0.02 <0.01 

  Variation DHI -0.16 0.02 <0.01 

 Detection Habitat AS -0.04 0.05 0.44 

  Habitat BU -0.01 0.05 0.80 

  Habitat CR -0.19 0.05 <0.01 

  Habitat DS -0.15 0.06 0.02 

  Habitat DW -0.17 0.09 0.07 

  Habitat GR -0.07 0.03 0.05 

  Habitat II -0.14 0.08 0.07 

  Habitat LP -0.25 0.06 <0.01 

  Habitat MC -0.07 0.04 0.05 

  Habitat MM 0.00 0.07 0.95 

  Habitat OA -0.03 0.06 0.59 

  Habitat PJ -0.09 0.04 0.02 

  Habitat PP -0.13 0.04 <0.01 

  Habitat RI -0.04 0.04 0.34 

  Habitat SA -0.01 0.03 0.73 

  Habitat SF -0.05 0.04 0.27 

  Habitat SH -0.12 0.04 <0.01 

Northern Flicker Top model (Intercept ) -1.06 0.03 0 

 
 

Cumulative 

DHI 
0.04 0.02 0.02 
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 Detection Habitat AS -0.27 0.54 0.62 

  Habitat BU -0.49 0.52 0.35 

  Habitat CR -0.92 0.50 0.07 

  Habitat DS -0.69 0.52 0.19 

  Habitat DW -0.66 0.57 0.25 

  Habitat GR -0.81 0.48 0.09 

  Habitat II -0.76 0.52 0.14 

  Habitat LP -0.86 0.49 0.08 

  Habitat MC -0.53 0.48 0.28 

  Habitat MM 1.26 8.18 0.88 

  Habitat OA 0.92 5.35 0.86 

  Habitat PJ -0.23 0.51 0.65 

  Habitat PP -0.81 0.48 0.09 

  Habitat RI -0.57 0.49 0.24 

  Habitat SA -0.88 0.48 0.07 

  Habitat SF -0.52 0.50 0.29 

  Habitat SH -0.73 0.49 0.13 

  Year 0.01 0.02 0.52 

Yellow Warbler Top model (Intercept ) -0.49 0.03 <0.01 

  Variation DHI 0.10 0.03 <0.01 

 Detection Habitat AS -0.14 0.08 0.06 

  Habitat BU 0.15 0.09 0.08 

  Habitat CR 0.23 0.13 0.08 

  Habitat DS -0.05 0.12 0.71 

  Habitat DW -0.09 0.17 0.60 

  Habitat GR 0.07 0.06 0.23 

  Habitat II -0.23 0.11 0.03 

  Habitat LP -0.25 0.07 <0.01 

  Habitat MC 0.05 0.06 0.46 

  Habitat MM -0.02 0.11 0.87 

  Habitat OA -0.03 0.14 0.84 

  Habitat PJ -0.03 0.07 0.65 

  Habitat PP 0.06 0.07 0.35 

  Habitat RI -0.06 0.07 0.36 

  Habitat SA -0.03 0.06 0.60 

  Habitat SF -0.10 0.07 0.18 

  Habitat SH -0.07 0.07 0.32 
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Appendix 11: Two-letter code to describe primary habitat at breeding landbird survey point copied from (Blakesley and Timmer 

2019).  

Two-

Letter 

Code 

Habitat Description 

AS 

Aspen: Overstory dominated by aspen although scattered ponderosa pine or Douglas-fir may be present. The overstory 

cover should be ≥10% and consist of ≥50% aspen. Aspen stands often have an abundant and diverse shrub layer. 

Typical shrub species in aspen habitats include snowberry, willow, sagebrush, mountain mahogany, and oak. On 

occasion there may be no shrub layer. Typically the ground under aspen stands is covered by grasses and forbs. 

BU 
Burned: Forest habitat where ≥50% of canopy is dead and shows evidence of severe fire scars or where ≥50% of trees 

have burned and fallen. 

CR 

Cliff/Rock: Area is dominated by rock and/or generally lacking vegetative cover (e.g., talus slopes, boulder fields, and 

rocky outcroppings). Areas described as Cliff/Rock should have ≤10% shrub cover and <10% canopy cover. Bare rock 

should make up ≥20% of the exposed ground cover. 

DS 

Dry Shrubland: Dry landscape containing shrubs, but lacking a co-dominant grass component. % shrub cover should be 

≥10. Shrubs often include sagebrush, greasewood, Fremont mahonia and saltbush. Sagebrush must comprise ≤30% of 

the shrub composition (see Sage Shrubland). Ground cover layer is typically dominated by bare ground and rock with 

limited forbs and grasses present. Grass and forbs make up ≤20% of ground cover (see Shrubland). 

DW 

Habitat consisting of ≥10% canopy cover that is dominated by deciduous species other than Aspen or Oak species. 

Native deciduous species should comprise ≥50% of the canopy cover and Aspen or Oak spp. must comprise ≤50% of 

the canopy cover. The 50m radius should not include a permanent or seasonal water source (see Riparian). 

GR 

Ground cover: Landscape lacking an overstory and significant shrub component. Ground cover is dominated by grasses 

and perhaps some forbs. Shrub component must be <10% (see Shrubland). The sum of live and dead standing grass 

must be ≥10%. 
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II 
Forested habitat with ≥10% of the overstory composition dead or sickly - typically referring to pine and spruce bark 

beetles affecting several species of pine and spruce trees. Canopy cover must be ≥10%. 

LP 

Lodgepole pine: Habitat consisting of ≥10% canopy cover that is dominated by lodgepole pine. Canopy may have other 

conifer species or some aspen, but lodgepole pine must comprise ≥50% of the overstory cover. Shrub layer can be 

conspicuous or nearly absent.  

MC 

Mixed Conifer: Forested habitat consisting of several species of conifers, such as ponderosa pine, lodgepole pine, 

Douglas-fir, or spruce/fir spp. If the area is dominated by Douglas-fir, use Mixed Conifer as the primary habitat type. 

Canopy cover should be ≥10%. Overstory may range from very dense to relatively open. Undergrowth is complex and 

typically contains deciduous shrubs and/or conifer saplings. Stands with dense overstory may have little or no shrub 

and ground cover. 

MM 

Mountain Meadow: Areas with little to no overstory that are surrounded by forests. Elevations should be ≥2,133 m. 

Soils should be moist to wet with forbs or grass as the dominant ground cover. Canopy cover should be ≤10%. Shrub 

layer should be ≤10%.  

OA 

Oak: Habitat dominated by oaks (Quercus spp.), often accompanied by juniper, ponderosa pine, pinyon pine, or 

Chihuahuan Pine. The overstory and shrub cover must sum to ≥10% cover, with oak species making up ≥50% of that 

cover. In some instances there may be little or no overstory because the Oak species that are present are <3 m high. In 

southern Arizona this habitat code should be used for Madrean woodlands.  

PJ 

Pinyon Juniper: Vegetative communities largely influenced by pinyon pine, juniper, or a combination of the two 

species. The overstory and shrub cover must sum to ≥10%. Semi-arid conditions often produce a relatively short 

overstory. Juniper tends to dominate at lower elevations while pinyon dominates at higher elevations. Typically, shrub 

layer includes sagebrush, rabbit brush, oak, or mahogany. Ground cover is usually dominated by grasses with fewer 

forbs. In some instances there may be little or no overstory because the PJ that is present is <3 m high.  

PP 

Ponderosa Pine: Areas with ≥5% overstory cover that is made up primarily of ponderosa pine. This habitat often 

includes other tree types such as fir, pine, and aspen, but ponderosa pine should comprise ≥50% of the overstory layer. 

Shrub layer relatively open and often includes common juniper, oak, cliffrose, and currants. Ground cover typically 

dominated by grass species. This code should be used even if there is a significant oak understory.  
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RI 

Riparian: Stands or strips of trees or shrubs near a permanent or seasonal water source. Typical tree and shrub species 

include cottonwood, box elder, maple, aspen, alder, and willows. Riparian areas are typically discrete habitats, often 

surrounded by coniferous forest, grassland, shrubland or sagebrush habitat. If riparian habitat is present within the 50-m 

radius, this should be the primary habitat type. 

SA 
Sagebrush: Habitat where grasses and shrubs are co-dominant and the shrub cover is ≥10%. Shrub species must consist 

of ≥30% sagebrush. Typical ground cover is dominated by grasses with limited forbs and bare ground.  

SF 

Spruce/Fir: Coniferous forest that is dominated by spruce and fir species (typically occurring at elevations ≥2,133 m). 

Note that Douglas-fir is not a true fir species (see Mixed Conifer). Overstory cover should be ≥10% with spruce and fir 

species comprising ≥50% of the overstory cover. Variable understory typically includes shrubs and forbs with few 

grasses.  

SH 

Shrub: Landscape co-dominated by grass and shrub species. Shrub cover must be ≥10%. Sagebrush must be <30% of 

shrub layer (see Sage Shrubland). Typical shrub species include ceonothus, manzanita, sage, rabbitbrush, currant, 

skunkbrush, serviceberry, and plum. Grass and forbs should make up ≥20% of ground cover (see Desert/Semi desert 

Shrubland). 
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Appendix 12: Results for goodness-of-fit of the most parsimonious models. The FreemanTukey 

test statistic and Chi-squared (overdispersion) are reported for the top model for each species. 

Freeman Tukey test statistics above 0.05 and below 0.95 indicate good model fit, and Chi-

squared values below two indicate that there is no overdispersion.  

Species Freeman Tukey Chi-squared 

American Crow 0.51 1.13 

Baird's Sparrow 0.45 0.92 

Black-billed Magpie 0.48 1.12 

Black-capped Chickadee 0.52 1.10 

Black-headed Grosbeak 0.11 1.22 

Brewer's Sparrow 0.79 0.86 

Bullock's Oriole 0.41 1.35 

Chipping Sparrow 0.12 0.07 

Common Nighthawk 0.35 1.34 

Field Sparrow 0.55 1.10 

Grasshopper Sparrow 0.75 0.93 

House Wren 0.27 1.13 

Lark Bunting 0.68 0.92 

Loggerhead Shrike 0.55 1.02 

Northern Bobwhite 0.60 0.78 

Northern Flicker 0.51 1.04 

Pinyon Jay 0.52 1.35 

Virginia's Warbler 0.48 1.02 

Yellow Warbler 0.32 1.19 
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Appendix 13: The sign of the estimates of the models that included cumulative DHI, minimum 

DHI, or variation DHI or each species. 

Common name Abbreviation Cumulative DHI Minimum DHI Variation DHI 

American Crow AMCR - - - 

Baird's Sparrow BAIS - - + 

Black-billed Magpie BBMA - - - 

Black-capped 

Chickadee BCCH 
+ - + 

Black-headed 

Grosbeak BHGR 
+ + - 

Brewer's Sparrow BRSP + - + 

Bullock's Oriole BUOR - - - 

Chipping Sparrow CHSP - - + 

Common Nighthawk CONI + - + 

Field Sparrow FISP - - + 

Grasshopper Sparrow GRSP + - + 

Gray Vireo GRVI + - + 

House Wren HOWR + + - 

Lark Bunting LARB + + - 

Loggerhead Shrike LOSH + + - 

Northern Bobwhite NOBO - + - 

Northern Flicker NOFL + - + 

Pinyon Jay PIJA + + - 

Virginia's Warbler VIWA - - + 

Yellow Warbler YEWA + - + 

 


