
IMPROVING FOREST FRAGMENTATION DETECTION IN MEXICO, 

AND ASSESS JAGUAR HABITAT IN CENTRAL MEXICO 

 

By 

Carlos Daniel Ramirez Reyes 

 

 

A dissertation submitted in partial fulfillment of 

the requirements for the degree of 

 

Doctor of Philosophy 

(Forestry) 

 

at the 

UNIVERSITY OF WISCONSIN-MADISON 

2016 

Date of final oral examination: 8/30/2016 

 

The dissertation is approved by the following members of the Final Oral Committee: 

Volker C. Radeloff, Department of Forest and Wildlife Ecology 

Jennifer Alix-Garcia, Department of Agriculture and Applied Economics 

Mutlu Ozdogan, Department of Forest and Wildlife Ecology 

Tim Van Deelen, Department of Forest and Wildlife Ecology 

Alberto Vargas, Latin American and Caribbean Studies



i 
 

 

IMPROVING FOREST FRAGMENTATION DETECTION IN MEXICO, AND 

ASSESS JAGUAR HABITAT IN CENTRAL MEXICO 

Carlos Daniel Ramirez Reyes 

Under the supervision of Professor Volker Radeloff 

at the University of Wisconsin-Madison 

 

Abstract 

Deforestation decreases both biodiversity and other ecosystem services that 

forests provide, such as climate regulation and water regulation. Given high rates of 

deforestation across the world, especially in tropical forests, international efforts have 

implemented forest protection programs to offer payments for ecosystem services (PES). 

Monitoring the performance of these programs over large areas can be difficult, 

especially in areas with limited satellite data availability. Furthermore, even when 

deforestation data is available, it is often unclear how deforestation has affected levels of 

forest fragmentation or habitat availability for wildlife species including predators. The 

goal of this dissertation was to monitor forest fragmentation and deforestation in tropical 

forests, and to map potential habitat and its connectivity for jaguars. I found a gradient of 

forest fragmentation across Mexico, moving from lower levels of fragmentation in the 

north, to higher levels of fragmentation in the south and east of the country. The highest 

levels of forest core were lost within tropical forests. Forests that were enrolled in the 

PES program had less fragmentation than those that were not. To improve detection of 

deforestation, I combined Landsat and MODIS images to assess deforestation in areas 

with strong phenology, and where original Landsat imagery was lacking. From this 
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assessment, I calculated deforestation rates across Mexico, which confirmed the gradient 

of low deforestation in the north to high deforestation in the south. At the local level, I 

generated a potential habitat suitability map for jaguars in the Sierra Gorda Biosphere 

Reserve in Central Mexico and identified the areas that were most important for habitat 

connectivity. Moreover, I developed new methods to identify optimal thresholds of 

minimum patch size and habitat suitability for connectivity analyses. My approaches can 

be easily transferred to other systems where there is a need to assess deforestation with 

limited imagery, forest fragmentation, and habitat connectivity. 
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Overview 

Conservation of forest ecosystems is important, as these areas host a number of 

wildlife species and regulate surface energy, water, and greenhouse gas fluxes (Foley et 

al., 2005). Deforestation is of great concern across the globe, because it leads to negative 

effects such as loss in biodiversity, destruction of the hydrological cycle, altered regional 

climate, decreased water quality, and accelerated soil erosion (Broadbent et al., 2008; 

Geist and Lambin, 2002; Huppe, 2008). In addition, deforestation can lead to 

environmental and economic costs both in the areas where it occurs and also in 

downstream areas that no longer receive the benefits of forest services (Metzger et al., 

2006). Globally, nearly 40% of all forests have been lost over the last two centuries 

(Shvidenko, 2008). In recent decades, deforestation in tropical areas has been especially 

high, with rates of 4.04 × 10
6
 ha yr

−1 
during the 1990s and 6.54 × 10

6
 ha yr

−1 
in the 2000s 

(Kim et al., 2015). 

Deforestation leads to forest fragmentation by increasing edge habitat and 

changing the configuration of remaining forest patches, thereby exposing ecosystems to 

external forces that could degrade them (Harper et al., 2005). While forest fragmentation 

can lead to increased habitat for certain generalist species and shade intolerant species 

(Tabarelli et al., 2012), fragmentation has many negative consequences for forest 

ecosystems. Fragmentation can lead to species isolation, reduction of prey species, 

change in species composition, establishment of invasive species, and changes in the 

physical environment that ultimately affect ecosystem services (Haddad et al., 2015; 

Harper et al., 2005; Lindenmayer and Fischer, 2013). Hence, measures of fragmentation 

can provide a proxy to assess ecosystem services (Dobbs et al., 2011). The fate of forest 
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core areas is especially important, as they provide unique conditions that many species 

require to survive and reproduce (Vogt et al., 2007a). Forest edges are more susceptible 

to edge effects such as tree mortality, changes in species composition and invasions by 

exotic species (Harper et al., 2005). 

Despite the importance of ecosystem services provided by forests, forest owners 

often receive few direct benefits from forest conservation. The reason is that these 

benefits are frequently of less monetary value than the ones of alternative land uses, such 

as conversion to cropland or pasture (Castillo et al., 2005). In such cases, payments for 

ecosystem services (PES) can help to make conservation a more attractive option for 

landowners, by offering them incentives to protect their forests (Pagiola et al., 2005). In 

order to reduce high deforestation rates, the Mexican National Forest Commission, 

CONAFOR, established a PES program in 2003. The aim was to provide forest 

landowners with economic incentives to maintain forests on their land, thereby 

benefitting watershed protection (Alix-Garcia et al., 2005; Corbera et al., 2009). Since 

2003, the program was gradually expanded, and more than 2.3 million ha were enrolled 

by 2011 (CONAFOR, 2012). The PES program works in coordination with the United 

Nations as part of their Reducing Emissions from Deforestation and Forest Degradation 

(REDD) initiative in developing countries, which aims to mitigate greenhouse emissions 

by enhancing forest management in developing countries. Similar economic incentive 

programs are becoming increasingly popular as a way to manage ecosystems (Farley and 

Costanza, 2010), making Mexico’s PES an important benchmark for learning from its 

experience. 
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Although individual properties receiving funds from the program are being 

monitored to verify their eligibility after 3 years of being enrolled, measuring the effects 

at large scales is complicated because of the large magnitude of the PES program. 

Multiple studies have measured the performance of the PES program at the local level, 

putting emphasis on evaluating particular elements of the environment such as water 

quality (Martínez et al., 2009), local economies (Bautista and Torres, 2003; Corbera et 

al., 2009), and cultural perceptions (Kosoy et al., 2008). These local studies have reported 

a range of failures and successes. For instance, individual properties or small groups of 

properties have not complied with the program rules (Costedoat et al., 2015; Le Velly et 

al., 2015). On the other hand, other studies reported good performance in terms of 

preventing forest loss and also a satisfactory perception of the people participating in the 

PES (Caro-Borrero et al., 2015; Manzo-Delgado et al., 2014; Rico García-Amado et al., 

2013). More recently, extensive nation-wide evaluations found that Mexico’s PES 

program has been successful in preventing deforestation (Sims and Alix-Garcia, 2015) 

and poverty alleviation (Alix-Garcia et al., 2015). Although these assessments have 

highlighted the effectiveness of the PES for preventing forest loss, we remain uncertain 

of the patterns that deforestation has created in the landscapes, which could affect the 

provision of ecosystem services. 

Monitoring deforestation and fragmentation at large scales is best done using 

remote sensing, and is facilitated by increasing data availability and computer processing 

power (Hansen and Loveland, 2012). However, despite recent advances in remote 

sensing to investigate land cover change patterns (Aide et al., 2013; Hansen et al., 2013), 
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there is still uncertainty about forest cover changes in areas with challenging 

environmental conditions, such as mixed and deciduous forests, high cloud persistence, 

and pronounced topography. This problem is amplified if there is not enough image 

availability to capture similar phenological conditions when making comparisons 

between two or more dates. Thus, in order to overcome low image availability, new 

methods have been designed to combine different types of satellite imagery (Gao et al., 

2006). These image fusion analyses can combine coarse images with high temporal 

resolution, such as MODIS, with images that have lower temporal but higher spatial 

resolution, like Landsat. This combination of MODIS and Landsat imagery allows us to 

capture smaller deforestation events (Hilker et al., 2009; Jia et al., 2014). 

Another consideration is that deforestation assessments are mostly done in a 

binary way, where forest is either present or absent, and do not capture intermediate 

events such as partial tree removal. Binary deforestation evaluations are common because 

it is difficult to capture changes in vegetation that are smaller than the unit of analysis, 

which is dictated by the pixel size of the image used. For this purpose, sub-pixel analysis 

techniques are available, such as spectral mixture analysis, which assess the proportion of 

a pixel that is occupied by a particular land cover type (Adams et al., 1986). Although 

spectral mixture analysis has been known for some time and has provided good 

evaluations of forest cover in different landscapes (Dawelbait and Morari, 2012; 

Matricardi et al., 2010; Yang et al., 2012), we are not aware of any prior studies that 

applied spectral mixture analysis to fusion images, which could potentially fill a gap in 

forest degradation analysis. 
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Besides impacts on ecosystem service provision, deforestation often affects 

wildlife populations, as species depend on specific conditions to survive, and 

deforestation diminishes the habitat in which species live, feed, and reproduce (Haines-

Young, 2009). Large predators are particularly important to study because they can be 

indicators of the health of ecosystems. These species often occupy large areas for their 

biological needs including hunting, nesting, and reproduction (Woodroffe, 2000). 

Moreover, the presence of predators can indicate the presence of the species that they 

feed on (Lantshener et al., 2012). Because of deforestation in central Mexico, jaguar 

populations (Phanthera onca) have shrunk. Jaguar populations were once widespread 

across Mexico, but few suitable habitat areas in the central region remain. It is therefore 

important to locate the remaining habitat for this species and to evaluate the connectivity 

of this habitat. In addition, by looking at the configuration of the potential habitat of this 

species, we could also learn about this predator’s responses to fragmentation. 

The overarching goal of my dissertation research was to identify strategies to 

monitor forest fragmentation in tropical forests. This goal was especially important 

because many other developing countries are either considering or applying forest 

protection as part of the REDD+ and other global efforts to limit carbon emissions due to 

deforestation (Kemkes et al., 2010; Kanowski et al., 2011). My specific research 

questions were: 

1. What are the patterns of forest fragmentation in Mexico and did the 

Payment for Ecosystems Services program limit fragmentation? 
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2. Does combining MODIS and Landsat satellite imagery, and applying 

spectral mixture analysis improve deforestation detection? 

3. Where is the potential habitat for jaguars in the Sierra Gorda Biosphere 

Reserve and how well is it connected? 

These questions correspond to three different levels of analysis: country level, 

regional level and local level. In order to address these questions, I divided this 

dissertation into three chapters. In the following pages I provide a synopsis for each of 

the chapters.  
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Chapter 1 summary 

Research question: What are the patterns of forest fragmentation in Mexico 

and did the Payment for Ecosystems Services program limit fragmentation? 

Given high deforestation rates over the past decades in Mexico, the Mexican 

government implemented a payment for ecosystem services program in 2003. Although 

overall deforestation rates have decreased in PES areas, measuring levels of forest 

fragmentation would provide another indication of the performance of the program to 

prevent ecological damages at the national level. By measuring rates of forest 

fragmentation across Mexico, it would be possible to determine which regions and forest 

types are subject to greater land use change. 

My goal for this chapter was to determine whether areas enrolled in the PES 

program had lower rates of forest fragmentation than areas that did not participate in the 

program. I was particularly interested in: a) calculating the differences in forest 

morphological patterns in Mexico, b) identifying the forest types that are most affected 

by fragmentation, c) measuring the performance of the PES to prevent fragmentation, and 

d) comparing the differences between PES areas and protected areas to prevent 

fragmentation. 

I generated forest fragmentation maps for all of Mexico based on global forest 

cover assessments between 2000 and 2012 (Hansen et al., 2013). I divided the country 

into a grid of 1.98-km resolution microlandscapes for making comparisons. For each cell 

in the grid, I calculated the occupancy of multiple forest categories, based on 

morphological spatial pattern analysis and fragmentation metrics. By comparing grid 
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cells with similar characteristics, I was able to compare forest changes between PES areas 

and non-PES areas, as well between PES areas and protected areas. 

 

My analyses showed both that the majority of Mexico’s forests are within core 

areas, and that the majority of the deforestation occurred in these core areas. I also found 

that, on average, properties that received PES support had lower forest fragmentation 

compared to the properties that did not receive protection funds. These differences were 

strongest in the south of the country, and minimal in the north. Among forest types, mid 

and high-stature tropical forest experienced the highest rates of forest conversion, while 

oak and pine forests had the lowest. Compared to protected areas of Mexico’s National 

Protected Area System, the properties with PES status had a similar performance to 

general protected areas, but lower performance than the strict core areas within biosphere 

reserves. 

Overall, core forest in Mexico showed high fragmentation rates in the southern 

regions of the country, where the tropical forests occur. The PES reduced fragmentation 

in areas of high deforestation, but did not stop it completely. The PES program performed 

similarly to other established protected areas, so a combination of both strategies could 

extend protection in sensitive regions. In this context, there are opportunities to target 

areas with higher deforestation risk in the southern part in the country for conservation, 

while other areas in the north may not represent big risks for forest fragmentation. 



15 
 

 

Resulting paper: Ramirez-Reyes, C., Sims, K., and Radeloff, V.C. Payment for 

ecosystem services in Mexico reduced forest fragmentation. Anticipated submission: Sep 

2016 to Landscape Ecology  
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Chapter 2 summary 

Research question: Does combining MODIS and Landsat satellite imagery, 

and applying spectral mixture analysis improve deforestation detection? 

Mexican forests are diverse, with multiple vegetation types including deciduous 

and mixed forest. During the growing season, there is often a constant cloud cover over 

many of Mexico’s forests, making detection of forest change difficult. While medium 

resolution satellites like Landsat are good sources of imagery for detecting vegetation 

change, the frequent cloud cover in Mexico leads to a small pool of images that can be 

used for forest change detection, and even fewer available images at the same 

phenological stages. New algorithms have been developed to combine higher acquisition 

frequency images from MODIS, with less frequent Landsat images. However, we do not 

know whether or not these fusion images can be used to detect small vegetation changes 

at the subpixel level, which would improve deforestation detection in areas with low 

image availability. 

My goal was to evaluate the performance of fusion images for detecting 

deforestation in Mexico. I was interested in: a) measuring deforestation rates in different 

areas of Mexico, and b) evaluating the potential use of Landsat-MODIS combined 

imagery as a basis for spectral mixture analysis. 

I evaluated the potential use of fusion imagery as a basis for spectral mixture 

analysis by comparing a) surface reflectance images, b) radiometric normalized images 

and c) fusion images. I compared results from the three image types for both 2000 and 

2010 in a northern, central, and southern Landsat footprint. Based on the resulting 
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images, I generated vegetation fraction maps, and used sensitivity analysis to calculate 

deforestation rates. In this sensitivity analysis, I determined the threshold at which 

differences in vegetation fraction maps could be considered deforestation events.  

I found that by using these predicted Landsat images, the assessment of 

deforestation improved in areas where original Landsat imagery was lacking. This 

method allowed us to compare images with similar phenological development. However, 

when Landsat imagery was available to make comparisons at times with similar 

phenology stages, the use of original Landsat images was best for identifying 

deforestation. The deforestation rates that I obtained had a north-to-south gradient, where 

southern areas experienced the largest forest changes. 

In conclusion, my research showed that the combination of Landsat-MODIS 

fusion imagery can improve the accuracy of deforestation estimates, particularly in areas 

where phenological differences are pronounced, and where Landsat images are scarce. 

This opens the possibility of using similar approaches to study forest cover loss in a 

continuous way, rather than the frequently used binary forest-non-forest approach. 

 

Resulting paper: Ramirez-Reyes, C., and Radeloff V. C. Use of Spectral Mixture 

Analysis in STARFM fusion images to assess deforestation in diverse forest types in 

Mexico. Anticipated submission: Sep 2016 to Remote Sensing of Environment 
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Chapter 3 

Research question: Where is the potential habitat for jaguars in the Sierra 

Gorda Biosphere Reserve and how well is it connected? 

Habitat loss is one of the major causes of declining wildlife populations. A 

decrease in habitat has many potential negative consequences for species, such as 

limiting their range, limiting food sources, and increasing exposure to diseases. 

Moreover, changes in habitat configuration can diminish the connectivity among areas 

occupied by different populations of a given species. This is why there is an interest in 

locating and protecting the remaining habitat of species. Predators are particularly 

interesting, because they are species whose presence can indicate healthy ecosystems. 

My goal was to assess potential habitat for jaguars (Panthera onca) and its 

connectivity in the Sierra Gorda Biosphere Reserve in central Mexico. I was interested in 

examining the effects of different thresholds of both habitat suitability and minimum 

patch size on resulting habitat connectivity. I sought to develop a new approach for 

identifying the optimal combination of these thresholds. 

I first generated a potential habitat model for jaguars in the Sierra Gorda reserve 

and its surroundings, based on a database of the occurrences of jaguars in the region, and 

the environmental conditions that could explain the presence of these felines. Since my 

connectivity analysis required a binary habitat no-habitat map, I conducted a sensitivity 

analysis to determine the optimal thresholds of habitat suitability and minimum patch 

size. I then described the connectivity of the potential habitat using the map resulting 

from the best combination of thresholds. 
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I found that jaguar’s potential habitat was primarily within oak and pine forests in 

the reserve. The best-connected areas were the large habitat patches located in the central 

and eastern parts of the reserve. These potential habitat areas were predominantly within 

the buffer zone of the reserve, while the highly protected core areas showed little 

suitability for the species. Based on the connectivity assessments, I determined that 

jaguars can occupy potential habitat areas as small as 2 km
2
, and that a 0.3 threshold for 

the habitat suitability model best described the presence data. 

From these results, I concluded that minimum patch size and habitat suitability 

thresholds greatly affect subsequent connectivity analysis. Therefore, it is important to 

apply a sensitivity analysis to determine the appropriate thresholds to use. Jaguars 

generally prefer large habitat areas, but they can also occupy smaller habitat patches in 

fragmented landscapes. Although the conditions may not be optimal, the buffer zones of 

the Sierra Gorda Biosphere Reserve could potentially host jaguars, with opportunities for 

increased protection outside of the reserve in highly suitable areas. 

 

Resulting paper: Ramirez-Reyes, C., Bateman, B. L., and Radeloff V. C. Effects 

of habitat suitability and minimum patch size thresholds on the assessment of landscape 

connectivity for Jaguars in the Sierra Gorda, Mexico. Biological Conservation. Under 

review  
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Overall significance 

The PES program in Mexico is one of the largest and oldest of the world. It is thus 

important to evaluate its performance. As such, my work provides useful information to 

the program’s managers, so they can modify and potentially improve it. CONAFOR is 

making an effort to evaluate landcover changes in relation to the PES program, and my 

study provides a broad assessment by identifying fragmentation both in areas receiving 

funds from the program and in areas that did not. Moreover, with the growing increase of 

conservation efforts, there is also an increasing need of outcome evaluations. Therefore 

my work builds on these efforts to improve forest change detection using fusion imagery. 

Finally, my work contributes to wildlife management needs, as it provides a way to 

improve potential habitat and connectivity assessments.  

My research goal and objectives are important for several fields because I addressed 

questions of interest to specialists in remote sensing, conservation biology, environmental 

management and local and international actors. Thus, my research made contributions in 

three dimensions: Scientific, methodological and also in terms of conservation. 

Scientific contributions  

In Chapter 1, I contributed to the understanding of the relationships between incentive 

programs for environmental protection and forest fragmentation. This work also 

illustrated how deforestation rates are translated into fragmentation rates, and also how 

different vegetation types are more subject to fragmentation processes. In Chapter 2, I 

demonstrated how different image products produced deforestation estimations. I 
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explored avenues to use fusion imagery to overcome low image availability in the 

assessment of forest degradation. This analysis could be particularly important for dry 

ecosystems and forest where cuts occur progressively. In Chapter 3, I demonstrated how 

different thresholds for minimum patch size affect the extent and configuration of 

potential habitat. The variation of these will greatly affect further connectivity analysis. 

Methodological contribution 

Mexico’s latitude, topography and closeness to oceans are the cause for very complex 

ecosystems that provide challenging conditions for remote sensing analysis and wildlife 

studies. For this reason there were numerous methodological opportunities to advance in 

remote sensing science and wildlife habitat modeling. In Chapter 1, I analyzed 

worldwide assessment of deforestation via image morphology analysis to generate forest 

fragmentation maps. In Chapter 2, I tested the use of fusion images in spectral mixture 

analysis to improve deforestation detection. This opened opportunities to study forest 

degradation using fusion imagery. In Chapter 3, I developed a new method to identify 

optimal thresholds for both minimum patch area and habitat suitability. This technique 

can be applied to other places where minimum patch size is critical for the species of 

interest.  

Conservation and applied research contribution 

My work has direct applications for CONAFOR, which is restructuring its PES program. 

In Chapter 1, I assessed the performance of the PES program in preventing forest 

fragmentation. The results could give this Mexican agency an indicator of the 
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performance of the program to prevent deforestation and forest fragmentation at broad 

spatial scales. In Chapter 2, I analyzed deforestation rates based on fusion images, which 

could provide the images needed to measure forest cover and partial tree removal in areas 

where images are lacking. In Chapter 3, I provided a map of potential habitat that the 

conservation NGO Grupo Ecologico Sierra Gorda could use when taking decision 

regarding the protection of the species. This NGO is interested in having an assessment 

of jaguar habitat beyond the borders of the reserve and thus could benefit from my habitat 

estimation both within the reserve as well as in the surrounding area. 

  



23 
 

 

Literature cited 

Adams, J.B., Smith, M.O., Johnson, P.E., 1986. Spectral mixture modeling: A new 

analysis of rock and soil types at the Viking Lander 1 Site. J. Geophys. Res. 91, 

8098–8112. doi:10.1029/JB091iB08p08098 

Aide, T.M., Clark, M.L., Grau, H.R., López-Carr, D., Levy, M.A., Redo, D., Bonilla-

Moheno, M., Riner, G., Andrade-Núñez, M.J., Muñiz, M., 2013. Deforestation 

and Reforestation of Latin America and the Caribbean (2001-2010). Biotropica 

45, 262–271. doi:10.1111/j.1744-7429.2012.00908.x 

Alix-Garcia, J., Janvry, A. de, Sadoulet, E., 2005. A Tale of Two Communities: 

Explaining Deforestation in Mexico. Institutional Arrange. Rural poverty Reduct. 

Resour. Conserv. 33, 219–235. doi:10.1016/j.worlddev.2004.07.010 

Alix-Garcia, J.M., Sims, K.R.E., Yañez-Pagans, P., 2015. Only one tree from each seed? 

Environmental effectiveness and poverty alleviation in Mexico’s payments for 

ecosystem services program. Am. Econ. J. Econ. Policy 7, 1–40. 

doi:10.1257/pol.20130139 

Bautista, H., Torres, J., 2003. Valoración económica del almacenamiento de carbono del 

bosque tropical del ejido Noh Bec, Quintana Roo, México. Rev. Chapingo 9, 69–

75. 

Broadbent, E.N., Asner, G.P., Keller, M., Knapp, D.E., Oliveira, P.J.C., Silva, J.N., 2008. 

Forest fragmentation and edge effects from deforestation and selective logging in 



24 
 

 

the Brazilian Amazon. Biol. Conserv. 141, 1745–1757. 

doi:10.1016/j.biocon.2008.04.024 

Caro-Borrero, A., Corbera, E., Neitzel, K.C., Almeida-Leñero, L., 2015. “We are the city 

lungs”: Payments for ecosystem services in the outskirts of Mexico City. Land 

use policy 43, 138–148. doi:10.1016/j.landusepol.2014.11.008 

Castillo, A., Magaña, A., Pujadas, A., Martínez, L., Godínez, C., 2005. Understanding the 

interaction of rural people with ecosystems: a case study in a tropical dry forest of 

Mexico. Ecosystems 2005, 630–643. 

CONAFOR, 2012. Servicios Ambientales y Cambio Climatico. CONAFOR, 

Guadalajara, Mexico. 

Corbera, E., Soberanis, C.G., Brown, K., 2009. Institutional dimensions of Payments for 

Ecosystem Services: An analysis of Mexico’s carbon forestry programme. Ecol. 

Econ. 68, 743–761. doi:10.1016/j.ecolecon.2008.06.008 

Costedoat, S., Corbera, E., Ezzine-de-Blas, D., Honey-Rosés, J., Baylis, K., Castillo-

Santiago, M.A., 2015. How effective are biodiversity conservation payments in 

Mexico? PLoS One 10, e0119881. doi:10.1371/journal.pone.0119881 

Dawelbait, M., Morari, F., 2012. Monitoring desertification in a Savannah region in 

Sudan using Landsat images and spectral mixture analysis. J. Arid Environ. 80, 

45–55. doi:10.1016/j.jaridenv.2011.12.011 



25 
 

 

Farley, J., Costanza, R., 2010. Payments for ecosystem services: From local to global. 

Spec. Sect. - Payments Ecosyst. Serv. From Local to Glob. 69, 2060–2068. 

doi:10.1016/j.ecolecon.2010.06.010 

Foley, J.A., Defries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, 

F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., 

Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., 

Ramankutty, N., Snyder, P.K., 2005. Global consequences of land use. Science 

309, 570–4. doi:10.1126/science.1111772 

Gao, F., Masek, J., Schwaller, M., Hall, F., 2006. On the blending of the Landsat and 

MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE 

Trans. Geosci. Remote Sens. 44, 2207–2218. doi:10.1109/TGRS.2006.872081 

Geist, H.J., Lambin, E.F., 2002. Proximate causes and underlying driving forces of 

tropical deforestation. Bioscience 52, 143–150. 

Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., 

Lovejoy, T.E., Sexton, J.O., Austin, M.P., Collins, C.D., King, A.J., Laurance, 

W.F., Levey, D.J., 2015. Habitat fragmentation and its lasting impact on Earth’s 

ecosystems. Sci. Adv. doi:10.1126/sciadv.1500052 

Hansen, M.C., Loveland, T.R., 2012. A review of large area monitoring of land cover 

change using Landsat data. Remote Sens. Environ. 122, 66–74. 

doi:10.1016/j.rse.2011.08.024 



26 
 

 

Hansen, M.C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., 

Thau, D., Stehman, S. V, Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, 

A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global 

maps of 21st-century forest cover change. Science 342, 850–3. 

doi:10.1126/science.1244693 

Harper, K. a., Macdonald, E., Burton, P., Chen, J., Brosofske, K.D., Saunders, S.C., 

Euskirchen, E.S., Roberts, D., Jaiteh, M.S., Esseen, P.-A., 2005. Edge influence 

on forest structure and composition in fragmented landscapes. Conserv. Biol. 19, 

768–782. doi:10.1111/j.1523-1739.2005.00045.x 

Hilker, T., Wulder, M.A., Coops, N.C., Seitz, N., White, J.C., Gao, F., Masek, J.G., 

Stenhouse, G., 2009. Generation of dense time series synthetic Landsat data 

through data blending with MODIS using a spatial and temporal adaptive 

reflectance fusion model. Remote Sens. Environ. 113, 1988–1999. 

doi:10.1016/j.rse.2009.05.011 

Huppe, H., 2008. The Forests of Mexico: Sustaining Mexico’s Cultural, Biological and 

Economic Values for the Future [WWW Document]. 

Jia, K., Liang, S., Zhang, L., Wei, X., Yao, Y., Xie, X., 2014. Forest cover classification 

using Landsat ETM+ data and time series MODIS NDVI data. Int. J. Appl. Earth 

Obs. Geoinf. 33, 32–38. doi:10.1016/j.jag.2014.04.015 



27 
 

 

Kim, D.-H., Sexton, J.O., Townshend, J.R., 2015. Accelerated deforestation in the humid 

tropics from the 1990s to the 2000s. Geophys. Res. Lett. 42, 3495–3501. 

doi:10.1002/2014GL062777 

Kosoy, N., Corbera, E., Brown, K., 2008. Participation in payments for ecosystem 

services: Case studies from the Lacandon rainforest, Mexico. Placing Splintering 

Urban. 39, 2073–2083. doi:10.1016/j.geoforum.2008.08.007 

Le Velly, G., Dutilly, C., de Blas, E., Fernandez, C., 2015. PES as compensation ? 

Redistribution of payments for forest conservation in Mexican common forests. 

Études Doc. CERDI 28, 1–25. 

Lindenmayer, D.B., Fischer, J., 2013. Habitat Fragmentation and Landscape Change: An 

Ecological and Conservation Synthesis. Island Press. 

Manzo-Delgado, L., López-García, J., Alcántara-Ayala, I., 2014. Role of forest 

conservation in lessening land degradation in a temperate region: The Monarch 

Butterfly Biosphere Reserve, Mexico. J. Environ. Manage. 138, 55–66. 

doi:10.1016/j.jenvman.2013.11.017 

Martínez, M.L., Pérez-Maqueo, O., Vázquez, G., Castillo-Campos, G., García-Franco, J., 

Mehltreter, K., Equihua, M., Landgrave, R., 2009. Effects of land use change on 

biodiversity and ecosystem services in tropical montane cloud forests of Mexico. 

For. Ecol. Manage. 258, 1856–1863. doi:10.1016/j.foreco.2009.02.023 



28 
 

 

Matricardi, E.A.T., Skole, D.L., Pedlowski, M.A., Chomentowski, W., Fernandes, L.C., 

2010. Assessment of tropical forest degradation by selective logging and fire 

using Landsat imagery. Remote Sens. Environ. 114, 1117–1129. 

doi:10.1016/j.rse.2010.01.001 

Metzger, M.J., Rounsevell, M.D.A., Acosta-Michlik, L., Leemans, R., Schröter, D., 2006. 

The vulnerability of ecosystem services to land use change. Scenar. Stud. Futur. 

L. Use Eur. 114, 69–85. doi:10.1016/j.agee.2005.11.025 

Pagiola, S., Arcenas, A., Platais, G., 2005. Can Payments for Environmental Services 

Help Reduce Poverty? An Exploration of the Issues and the Evidence to Date 

from Latin America. Institutional Arrange. Rural poverty Reduct. Resour. 

Conserv. 33, 237–253. doi:10.1016/j.worlddev.2004.07.011 

Rico García-Amado, L., Ruiz Pérez, M., Barrasa García, S., 2013. Motivation for 

conservation: Assessing integrated conservation and development projects and 

payments for environmental services in La Sepultura Biosphere Reserve, Chiapas, 

Mexico. Ecol. Econ. 89, 92–100. doi:10.1016/j.ecolecon.2013.02.002 

Sims, K.R., Alix-Garcia, J.M., 2015. It’s complicated: Direct vs. incentive-based land 

conservation in Mexico. Work. Pap. 

Tabarelli, M., Peres, C.A., Melo, F.P.L., 2012. The “few winners and many losers” 

paradigm revisited: Emerging prospects for tropical forest biodiversity. Biol. 

Conserv. 155, 136–140. doi:10.1016/j.biocon.2012.06.020 



29 
 

 

Yang, J., Weisberg, P.J., Bristow, N.A., 2012. Landsat remote sensing approaches for 

monitoring long-term tree cover dynamics in semi-arid woodlands: Comparison 

of vegetation indices and spectral mixture analysis. Remote Sens. Environ. 119, 

62–71. doi:10.1016/j.rse.2011.12.004 

  

 

 



30 
 

 

Chapter 1:  Payments for ecosystem services in Mexico 

reduced forest fragmentation 

Contributors: Ramirez-Reyes, C
1
, Radeloff, Volker. C.

 1
, and Sims, Katherine R. E. 

2 

1
 SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 

1630 Linden Drive, Madison WI 53706, USA. 

2
 Department of Economics, AC 2201, Amherst College, Amherst, MA 01002, USA 

1-1 Abstract 

Forest fragmentation is a problem because it reduces wildlife habitat, increases 

forest edges, and exposes forest to disturbances. Different programs aim to protect 

forests, including programs that offer payment for ecosystem services (PES), and Mexico 

was one of the first countries to implement a broad-scale PES program enrolling over 2.3 

million ha and decreasing deforestation rates. However, it is not clear if this reduction in 

deforestation also prevented forest fragmentation. Our goal was to determine whether 

Mexican forests enrolled in the PES program had less forest fragmentation than those 

who did not participate in the program, and if the PES effects varied among forest types. 

We analyzed forest cover change maps from 2000 to 2012, applied image morphology, 

and measured fragmentation to calculate the amount of forest core, edges, number of 

deforestation patches, and the maximum deforested patch area. We summarized 

fragmentation according to forest types in four socioeconomic zones. We used matching 

analysis to investigate the effects of the PES to protect forest across Mexico, and 

compared the effects of the PES program with that of protected areas. We found that 
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forest area in Mexico decreased by 3.4% percent from 2000 to 2012, resulting in 9.3% 

less core areas. Fragmentation rates were highest in the southern part of the country, and 

high-stature evergreen tropical forest type lost the most core areas (-17%), while oak 

forest lost the least (-2%). The PES program limited forest loss and forest fragmentation. 

Edge, forest islets, and maximum deforested patch area increased only half as much in 

areas enrolled in the PES program compared to non-enrolled areas. Compared to the 

National Protected Areas System in Mexico, PES areas performed similarly in preventing 

fragmentation, but not as well as biosphere reserve core areas. We concluded that the 

PES was successful in limiting forest fragmentation at the regional and country level. 

However, the program could be improved by targeting areas where forest changes are 

more frequent, especially in southern Mexico. Fragmentation analysis like ours should be 

implemented in other areas to monitor the outcomes of protection programs such as 

REDD+ and PES. 

Keywords: Deforestation, land use change, MSPA, image morphology, protected 

areas   
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1-2 Introduction 

One common consequence of deforestation is the increasing fragmentation of 

forest ecosystems, which results from reducing forest area, increasing forest edges, and 

increasing smaller noncontiguous fragments (Broadbent et al., 2008; Laurance, 2000). 

Forest fragmentation has many negative effects, such as loss of biodiversity (Butchart et 

al., 2010), changes in species composition (Laurance et al., 2007), reduced habitat 

connectivity (Dixo et al., 2009) and promotion of non-native species (With, 2004). 

Furthermore, fragmentation is difficult to reverse after it has occurred, making it a long-

lasting problem (Ferraz et al., 2003; Gibson et al., 2013; Vellend et al., 2006). In order to 

prevent these negative effects, multiple conservation efforts have been promoted, 

including the creation of protected areas. However, despite a growing number of 

protected areas, deforestation rates are still high in many forests, resulting in more 

fragmentation (DeFries et al., 2005). 

Global deforestation assessments indicate that although deforestation has slowed 

overall, there are still hotspots of forest loss (Hansen et al., 2013; Keenan et al., 2015), 

and this is where fragmentation rates are also most likely high (Wade et al., 2003). 

Indeed, while only 3.2% of all forests were lost globally between 2000 and 2012, a full 

9.9% of interior forests were lost (Riitters et al., 2016). This highlights why 

fragmentation analyses are crucial in order to identify whether deforestation is affecting 

forest core areas, which are ecologically most valuable (Vogt et al., 2007a), or areas 

along forest edges (Harper et al., 2005). 
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Among all forest types, tropical forests have the highest rates of deforestation, 

while other forests are most stable (Hansen et al., 2013). This has been the case for 

several decades, and particularly in the last 20 years, when tropical forest increased their 

deforestation rates (Kim et al., 2015). Tropical deforestation is partly due to an increasing 

demand for wood, and also due to the conversion of forests to agricultural and pasture 

lands (Geist and Lambin, 2002; Gibbs et al., 2010). However, it is in the tropics where 

species richness is highest (Myers et al., 2000). Moreover, preventing forest loss in the 

tropics could inhibit changes in the hydrological regime and emission of green houses to 

the atmosphere (Fearnside, 2005; Geissen et al., 2009). 

 Several protection programs have been proposed to limit tropical deforestation 

outside of protected areas. Examples of these efforts are the payment for ecosystems 

services (PES), and more recently, reducing emissions from deforestation and forest 

degradation, and foster conservation, sustainable management of forests, and 

enhancement of forest carbon stocks, REDD+ (Hosonuma et al., 2012). Mexico, which 

has experienced high deforestation rates (Mas et al., 2004; Velazquez et al., 2002) has 

initiated a major PES program in 2003, being one of the first of its kind. By the year 2010 

over 3,300 properties were enrolled in the program, covering >2.3 million ha. This PES 

program is managed by Mexico’s National Forest Commission, CONAFOR, and pays 

rural landowners in high-deforestation-risk areas to not deforest and to improve their 

livelihoods. Local studies that evaluated this PES program reported a range of outcomes, 

including non-compliance with PES rules (Costedoat et al., 2015; Le Velly et al., 2015), 

but also successes and positive perception of the PES program (Caro-Borrero et al., 2015; 
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Manzo-Delgado et al., 2014; Rico García-Amado et al., 2013). Recent nation-wide 

assessments showed that the PES program successfully reduced deforestation, and 

provided economic benefits for landowners (Alix-Garcia et al., 2015; Sims et al., 2014), 

but it is not yet known whether the program is also preventing forest fragmentation. 

Our goal was to determine whether areas enrolled in Mexico’s PES program had 

lower forest fragmentation that non-enrolled areas. Our objectives were to a) calculate the 

differences in forest fragmentation in Mexico between 2000 and 2012, b) identify the 

forest types that were most affected by fragmentation, c) assess the performance of the 

PES to prevent fragmentation, and d) compare the performance of the PES program with 

that of protected areas to diminish forest fragmentation. 

1-3 Methods 

1-3.1  STUDY AREA 

We studied forest fragmentation in Mexico, which is varied in topography, 

influenced by two oceans, and located in the transition zone of the neotropical and 

neoartic realms. These environmental conditions result in multiple vegetation types 

across the country, including evergreen tropical forest, deciduous forest, temperate forest, 

and deserts (Rzedowski, 2006). We divided the country in four regions, i.e., north, 

central, southwest and southeast, based on their socioeconomic and vegetation 

similarities, in order to detect regional variation in the fragmentation.. 

1-3.2 DATA 
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Forest cover 

We analyzed forest fragmentation from 2000 to 2012 based on the Global Forest 

Change dataset, GFC, which provides wall-to-wall forest cover, forest loss, and forest 

gain based on Landsat satellite images (Hansen et al., 2013). We analyzed the 30-m 

resolution forest cover layer for 2000 as the baseline for our analysis. In order to define a 

forest-non forest binary map, we considered any pixel with >30% tree cover as forested. 

We chose this threshold because previous forest fragmentation studies used the same 

value, thereby ensuring comparability of our results (Haddad et al., 2015; Lira et al., 

2012). In order to obtain net forest cover in 2012, we added the 2000-12 forest gain to the 

2000 forest cover, and then subtracted 2000-12 forest loss. 

PES properties 

We analyzed all the properties that were enrolled in the PES between 2003 and 

2010 according to a CONAFOR dataset. This dataset included 6297 polygons of enrolled 

properties ranging in size from 2 to 7287 ha with a mean of 362 ha. 

1-3.3 FOREST MORPHOLOGY  

In order to quantify forest patterns, we used the Morphological Spatial Pattern 

Analysis software ‘MSPA’ (Soille and Vogt, 2009). This tool has been previously used to 

analyze forest fragmentation (e.g., Estreguil and Mouton, 2009; Vogt et al., 2007b) and 

lauded as a cost-effective tool to monitor forest change (Bucki et al., 2012). With MSPA, 

we calculated several forest morphology classes, including core (interior area), islets 

(forest area too small to be considered core), perforation (holes in core area), edge 
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(external perimeter), bridge (corridor connecting core areas), loop (habitat corridor 

ending in same core area), and branch (small area connected to core) (Figure 2). We 

obtained forest morphology for the forest present in both 2000 and 2012, and applied the 

8 neighbor rule, in which a forest cell is connected if any of their sides or corners is in 

contact with another forest cell, and a one-pixel edge. This neighbor rule and edge width 

has been used previously to calculate forest patches and their connectivity (Locke and 

Rissman, 2012; Sorte et al., 2004). We also calculated the number of deforested patches 

and area of the largest deforested patch using the R package SDMTools (VanDerWal et 

al., 2014). 

1-3.4 MICROLANDSCAPES 

Because the PES properties are very different in size, we defined a constant unit 

of analysis in order to compare enrolled and non-enrolled forests based on the 

microlandscape approach (Sims, 2014). Specifically, we divided the country into a 

continuous grid of 1.98 km x 1.98 km microlandscapes. We chose this grid cell size for 

two reasons, first because this resolution is biologically relevant for large carnivores 

(Ramirez-Reyes et al., 2016), and second, because the mean size of PES enrolled areas is 

362 ha (roughly 1.9 km by 1.9 km). In order to ensure that the forest cover pixels (30 m) 

were nested within our microlandscapes, we used a 1980 m x 1980 m (67 by 67 pixels in 

our forest cover data) for the grid cell size. 

We differentiated the microlandscape cells according to their protection level. We 

considered as PES microlandscapes all grid cells with >50% of their area (majority) 

enrolled in the PES program. The microlandscapes with <5 0% of PES enrolled area 
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where treated as non-PES microlandscapes. Similarly, we considered as protected areas 

all the microlandscapes with >50% of their area within the boundaries of the Mexico’s 

National Protected Areas System (CONANP, 2016). Last but not least, we wanted to 

identify those microlandscapes within core areas in the Biosphere Reserves in Mexico, 

which have the highest level of protection since human activities are restricted to research 

and conservation. For that reason we performed another filter for the microlandscapes, in 

which we selected those with >80% within the Biosphere Reserves’ core areas. This 

threshold was applied to ensure that most of the pixel was within the core area. 

1-3.5 MATCHING MICROLANDSCAPES 

We selected a set of microlandscapes that did not participate in PES as a control 

group, to be compared to areas that received PES incentives using the R package MatchIt 

(Ho et al., 2013). In order to identify microlandscapes that were comparable, we 

identified covariates that might influence both deforestation and the protection status of a 

property enrolled the PES, such as the distance to roads and cities, and slope (full set of 

covariates in Table 1). Based on these covariates, we selected microlandscapes that did 

not participate in the PES but have similar geographic characteristics (Randolph et al., 

2014; Stuart and Rubin, 2008). We did the matching separately for each of the four zones 

in the country and only considered microlandscapes with >50% forest cover in 2000 

using Mahalanobis distance with replacement following prior studies (Sims, 2014). We 

also performed a similar process to match microlandscapes enrolled in the PES, with 

microlandscapes within protected areas. 
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We summarized forest morphology transitions between 2000 and 2012 for the 

whole country, and also for each forest type according to a vegetation map for Mexico 

(CONABIO, 1998), using the percent change formula: (% forest MSPA class 2012*100)/ 

% forest MSPA class 2000) -100. At the regional level, we calculated the percent change 

of forests for each of the main forest morphology classes (core, islets, perforation, and 

edge), the number of deforested patches, and the maximum deforested patch area. We 

performed t-test on the matched sets of microlandscapes in order to test for significant 

differences between: a) PES enrolled areas vs non-PES areas, b) PES areas vs protected 

areas and c) PES areas vs core protected areas. 

1-4 Results 

1-4.1 FOREST MORPHOLOGY IN MEXICO 

According to our morphology analysis for 2012, forests in Mexico were mainly 

core areas (67%) or edges (11%), while the other forest categories ranged between 3 and 

5%. Between 2000 and 2012, there were substantial changes in the proportion of the 

different forest morphology classes, with most of the fragmentation effects happening in 

the east, central and southern parts of the country (Figure 3). Core areas were lost at 

particularly high rates in the Yucatan peninsula and along the Gulf of Mexico, while 

higher changes in forest perforation were also observed in the Yucatan peninsula. We 

found a total of 21,700 km
2
 that were deforested, which accounted 3.4% of the forest 

present in year 2000. The majority of what was deforested were core forest areas (69%), 

while edges and branches contributed with 9% and 5% respectively. As a consequence of 
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this deforestation, forest core areas diminished by 9.3%. More than half of the forest core 

that was lost transitioned to other forest categories, such as perforation (24%) and edges 

(11%), while 40% became non-forest. In case of forest islets, 90% of their surface 

remained, while 7% became deforested and the rest transitioned to other category such as 

branches (1%). From the total forest classified as perforation in year 2000, 76.2% 

remained until 2012, and the rest of forest in that category was either lost (4.1%), or 

transitioned to forest edge (7.5%), core (5.7), or to other categories in smaller proportion. 

In the case of forest edges, 90.9% of their surface remained, while 3.2% transitioned to 

non-forest, 1.7% to bridge, 1.4% to branch, 1.1% to core, and the rest to other categories. 

1-4.2  FRAGMENTATION ACCORDING THE FOREST TYPES 

Forest fragmentation had different intensities depending on the forest type. The 

forest that experienced the most deforestation were the mid and high-stature evergreen 

and semi-evergreen tropical forests, which lost 7.4 and 7.3% of forest cover respectively, 

followed by mid-stature deciduous and semi-deciduous tropical forest, which each lost 

6.3%. This deforestation caused a core forest reduction of 17% for high-stature evergreen 

and semi-evergreen tropical forests, 13% for mid- stature evergreen and semi-evergreen 

tropical forests and 8% for cloud forest. Some of this loss of core forest transitioned to 

another more edge-sensitive forest category, such as islets, perforation, and edges, which 

increased between 20 and 94% in the same period (Figure 4). The forests types that 

experienced the least deforestation were oak (-0.7%), conifers other than pine (-0.7%), 

mangrove (-1%), and pine (-1%). These forest types also presented the least reduction in 
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core forest (between -2 and -4%), and the least increase of islets, perforation and edge 

(<7%). 

1-4.3 FRAGMENTATION IN PES AREAS 

At the national level, the microlandscapes that were enrolled in the PES program 

had lower fragmentation compared to those that were not enrolled. On average, forest 

core in PES areas decreased by 2.3%, while areas without protection decreased 3.5%. For 

other forest categories, forest changes were almost twice as high in areas that were not 

enrolled in the PES. For instance, forest islets increased on average by 14.4% for PES 

and 38.4% for non-PES, while edge increased by 44.5% in PES areas, but 87.7 % in non-

PES areas. The maximum deforested patch area was also smaller for PES areas (1.87 ha), 

and higher in non-PES areas (3.4 ha). The number of deforestation patches was 9.5 for 

PES and 12.9 for non-PES areas (Table 3). 

At the regional level, the effects of the PES program to prevent fragmentation 

were most clearly evident in the southwest and southeast (Figure 5). For instance, in the 

southeast forest core changed about twice as much in non-PES (-8.1%) compared to PES 

(-4%). Edges also changed twice as much in non-PES areas (106.4%) compared to PES 

(236.1%), while islets increased three times more (122.1 and 44.1% respectively). There 

was a similar trend in for the maximum deforested patch area, where non-PES areas 

deforested 4.9 ha, while non-PES averaged 11.1 ha. Nevertheless, there were no 

significant differences between PES and non-PES areas in the central and north regions. 

1-4.4 FRAGMENTATION IN PROTECTED AREAS 
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Areas that were protected in the National Protected Areas System in Mexico had 

similar outcome as those that were enrolled in the PES in terms of protecting forest core 

areas, which changed 2.1 and 2% respectively (Fig 6.). However, the PES properties had 

higher increase in forest perforation (117%) compared to protected areas (62.7%).We 

also found a significant difference between the maximum area of the largest deforested 

patch, which was 8.38 ha in the PES areas, and 7.15 ha in the protected areas. Forest 

islets, edge, and maximum patch area were not significantly different. Similarly, there 

were no significant differences in change of forest core, edge, and islets, between the PES 

and the core areas of Biosphere reserves. However, core areas had less increase in 

perforation (61.3%), in the number of deforested patches (7.1%) and in the maximum 

area of deforested patch (1 ha). In the case of PES areas, the same categories changed 

125%, 8.56% and 1.5 ha respectively. 

1-5 Discussion 

Our analysis found that forest became more fragmented in Mexico, and especially 

in tropical forest which are losing core areas, and increasing their edges. However, 

properties enrolled in the PES program had lower rates of forest fragmentation, 

particularly in the south, where most of the deforestation occurred. Compared to 

protected areas, the PES performed similarly well in preventing forest fragmentation. 

However, when compared to core areas of biosphere reserves, the PES performed less 

well, and did not match the effectiveness of protection of these most-strictly protected 

areas. 
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Deforestation is one of the main causes of forest disturbance in Mexico, as there 

is constant pressure for new agriculture, and housing development (Calderon-Aguilera et 

al., 2012). Despite that, deforestation rates have decreased in Mexico (Roth et al., 2016). 

We found that the majority of forests in Mexico are within core areas (69%), which is 

also where the majority of deforestation happened (69.2% of the total deforested area). 

Hence, deforestation in the country occurred both in forest interior and along their edges. 

We found that the net forest loss was 3.4%, and the loss of core forest was 9.32%. These 

results are similar to the global fragmentation trends reported for the same period, in 

which the net forest loss was 3.2% and the forest interior was reduced in 9.9% (Riitters et 

al., 2016). This highlights that even when deforestation rates are low, fragmentation may 

proceed rapidly. In our analysis half of the forest core that was lost transitioned to non-

forest, while the other half transitioned to another forest category. In consequence, forest 

categories that are typical for fragmented forests, such as perforation, loop, bridge, and 

edge increased 16-17% across the country. Although forest edges could provide some 

benefits such as increasing habitat for certain generalist species (Carrara et al., 2015), 

they have overall negative effects (Haddad et al., 2015), and edge effects can penetrate 

into core areas (Laurance, 2000). 

Among forest types, tropical forests experienced the most forest changes in 

Mexico. High- and mid-stature tropical forest had the highest rates of loss of core forest 

(17 and 13% respectively) and also the highest edge gain (47 and 62%). These high 

fragmentation rates are likely due to the close proximity of tropical forest to human 

disturbances in Mexico, where only 12 % of its forests are isolated enough to avoid such 
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influences (Moreno-Sanchez et al., 2012). The high fragmentation rates that we found are 

a concern because tropical forest provides multiple ecosystem services, and therefore are 

of priority for protection (Myers et al., 2000). Some of the effects that fragmentation have 

in tropical forest are a decrease in primary forest species including insectivores and 

canopy frugivores (Barlow et al., 2007), decrease bat populations (Arroyo-Rodríguez et 

al., 2016), and changes in forest composition (Herrerías-Diego et al., 2008). Cloud forest 

is another forest type that lost forest core areas rapidly (11%). Despite that cloud forest 

represents only a small proportion of the total forest in Mexico (3.5%), it is a 

conservation priority because it is high in biodiversity and provides important ecosystem 

services such as water catchment (Martínez et al., 2009). On the opposite side of the 

spectrum, forest types that are fairly widespread, such as pine forest (20%), low-stature 

deciduous forest (15%), and oak forest (13%), had the least forest core loss (4, 4, and 2% 

respectively). These forest types are relatively resilient to fragmentation, because they 

harbor more edge-adapted species, but they can still be affected by invasives (Harper et 

al., 2005). Our observed forest fragmentation in temperate forest is consistent with trends 

seen in other countries, where these forest types had lower forest loss, or even gained 

extension (Chazdon, 2008). In Mexico, a large proportion of pine forest (23%) is isolated 

from human influences and thus preventing its deforestation (Moreno-Sanchez et al., 

2012). 

The PES program in Mexico has reduced the risk of deforestation between 40–

51% (Alix-Garcia et al., 2015), and we found a concomitant reduction in fragmentation 

within PES areas. However, the PES program had only minor effects in protecting forest 



44 
 

 

in the north, perhaps because of low access and low population density near forest, which 

resulted in low rates of fragmentation regardless of whether forests were enrolled in the 

PES program or not. On the contrary, the PES areas have performed well to prevent 

fragmentation in the southern parts of the country, particularly in the southeast zone. Part 

of this reduction in fragmentation is because the Mexican authorities have increased the 

scope of the PES program, and are targeting high-risk deforestation areas (Sims et al., 

2014). Is was not surprising that the south exhibited higher rates of fragmentation, given 

the high deforestation risk due to physical geographic conditions, high population 

density, and history, particularly along the gulf of Mexico (González-Abraham et al., 

2015). 

Protected areas are generally effective in terms of preventing deforestation across 

the world (Naughton-Treves et al., 2005), and we found also positive effects in Mexico, 

similar to other studies (Sims and Alix-Garcia, 2015). Part of the success of the protected 

areas is because they have lower human pressures that their surroundings (Gonzalez-

Abraham et al., 2016). Another reason is because protected areas can have mixed use 

management, and funding that facilitates monitoring, enforcement, and planning 

(Blackman et al., 2015). In our analysis, the PES program performed similarly well as 

protected areas in terms of preventing forest fragmentation. The effects of protection of 

the PES program, however, were lower compared to core areas of biosphere reserves. 

This is possibly because core areas have restricted human activities for longer time, while 

PES areas could have deforestation inertia. Since human activities are restricted in core 

areas of biosphere reserves, these areas can be used as a proxy to differentiate natural 
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(e.g. hurricanes and fires) vs human forest disturbances (e.g. logging and agriculture 

expansion). We could thus assume that the fragmentation rates observed in core areas are 

mostly due of natural disturbances and higher rates elsewhere would be due to human 

disturbances. As most of the forest fragmentation changes in PES are higher than in core 

areas, we can assume that PES protection decreased human disturbances, but did not stop 

them entirely. 

1-6 Conclusions 

We found that Mexico’s PES program works well to limit forest fragmentation, 

particularly in the southwest and southeast parts of the country, where forest edges have 

doubled or tripled in areas that were not enrolled, and where tropical forests were lost and 

fragmented. Mexico’s deforestation affected especially forest core areas, which either 

transitioned to edge or to non-forest. Compared to other protection schemes, the PES 

program performs similar to protected areas in limiting forest fragmentation. This is 

encouraging, because many countries have implemented PES programs in recent years. 

The data that we used, i.e., the global analysis for deforestation is available worldwide 

(Hansen et al., 2013), forest fragmentation assessments using MSPA could, and possibly 

should, be conducted elsewhere in order to monitor the effects of programs that prevent 

deforestation.  
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1-8 Tables 

Table 1-1 Variables used for matching 

Variable Source 

Average slope NASA, Shuttle Radar Topography Mission 

Maximum slope NASA, Shuttle Radar Topography Mission 

Average elevation NASA, Shuttle Radar Topography Mission 

Maximum elevation NASA, Shuttle Radar Topography Mission 

Average distance to urban areas INEGI, Carta de poblaciones 

Maximum distance to major road INEGI, Carta de Carreteras 

Maximum distance to any road INEGI, Carta de Carreteras 

Average distance to streams INEGI, Carta topografica 

Average distance to border ESRI, World border map  
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Table 1-2 Transition between different forest morphology classes from 2000 to 2012. 

a)Transition matrix in percentage 

    
2012 

  
  

Non forest 

Forest  

   
Core Islet Perforation Edge Loop Bridge Branch 

 
No forest 99.74 0.12 0.04 0.01 0.04 0.01 0.02 0.03 

2
0

0
0

 

Fo
re

st
  

Core 4.03 90.68 0.09 2.34 1.16 0.68 0.65 0.37 

Islet 7.02 0.32 90.79 0.04 0.49 0.15 0.21 0.98 

Perforation 4.18 5.70 0.25 76.22 7.58 2.59 1.99 1.49 

Edge 3.25 1.16 0.48 0.26 90.89 0.76 1.71 1.49 

Loop 5.24 4.02 0.74 1.37 2.21 77.77 6.58 2.07 

Bridge 4.37 1.81 0.59 0.27 1.99 1.47 87.35 2.15 

Branch 4.66 0.75 2.23 0.18 1.01 0.46 0.84 89.89 

b) Transition matrix in area (km2) 

    
2012 

  
  

Non forest 

Forest  

   
Core Islet Perforation Edge Loop Bridge Branch 

 
No forest 1416297 1651 521 175 508 174 300 402 

2
0

0
0

 

Fo
re

st
  

Core 15028 338028 325 8719 4311 2544 2424 1381 

Islet 1042 47 13479 5 73 23 31 146 

Perforation 1049 1431 62 19138 1904 649 500 375 

Edge 1883 674 280 151 52717 443 990 865 

Loop 638 490 90 167 269 9472 801 252 

Bridge 910 377 122 56 414 306 18173 447 

Branch 1150 184 550 44 248 113 207 22195 
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Table 1-3 Percent change in forest morphology classes 

PES vs non-PES 

    

 

Zone 

Mean 

PES Mean no PES t df p value  Sig.
1
 

Δ % Core Country -2.34 -3.5 -7.23 4825 5.24E-13 *** 

 N -0.85 -1.01 -1.1 1340.8 0.26 

  C -1.98 -1.76 0.94 1424.9 0.34 

  SW -2.5 -4.19 -6.05 1220.3 1.86E-09 *** 

 SE -4.03 -8.12 -8.62 934.23 2.20E-16 *** 

Δ % Islet Country 14.41 38.09 3.48 3754.2 5.02E-04 *** 

 

N 3.08 19.36 1.56 743.9 0.11 

 

 

C 6.74 20.5 1.24 713.82 0.21 

 

 

SW 11.82 26.93 1.19 917.12 0.23 

 

 

SE 41.16 122.1 3.4 827.32 7.04E-04 *** 

Δ % Perforation Country 114.2 90.31 -1.73 4896.4 0.08 

 

 

N 14.84 9.25 -1.06 1227.8 0.28 

 

 

C 73.64 19.89 -2.97 879.81 3.63E-05 *** 

 

SW 155.84 120 1.23 955 0.216 

 

 

SE 271.27 296.7 -0.37 972.51 0.71 

 Δ % Edge Country 44.5 87.79 2.08 4737.1 0.03 * 

 

N 3.78 20.94 2.48 684.62 0.01 * 

 

C 34.55 43.42 0.48 1388.4 0.62 

 

 

SW 43.65 99.35 1.8 929.89 0.07 

 

 

SE 106.41 236.1 1.86 1047.2 0.06 

 Number of patches Country 9.52 12.92 8.06 5200.6 9.28E-16 *** 

 

N 4.01 4.87 2.07 1249.3 0.03 ** 

 

C 7.99 8.2 0.29 1435.7 0.76 

 

 

SW 11.43 16.77 6.77 1259 1.95E-11 *** 

 

SE 14.57 23.77 8.84 1105.6 2.20E-16 *** 

Max. Patch area ha Country 1.87 3.46 6.18 4249.8 6.73E-10 *** 

 

N 0.54 0.71 0.88 1282.9 0.37 

 

 

C 0.98 1.21 0.78 1394.5 0.43 

 

 

SW 1.15 1.87 3.4 1024.8 6.98E-04 *** 

 

SE 4.9 11.13 6.89 903.53 1.20E-11 *** 

PES vs protected areas 

   

 

Zone 

Mean 

PES 

Mean protected 

area t df p value 

 Δ % Core All protected -2.04 -2.12 -0.62 3639 0.51 

  Core protected -2.11 -1.7 1.52 2379.2 0.12 

 Δ % Islet All protected 10.02 14.97 1.25 2771.4 0.2 

 

 

Core protected 9.82 15.18 0.65 2005.5 0.51 

 Δ % Perforation All protected 117.18 62.75 -3.25 1893.6 1.15E-03 ** 

 

Core protected 125.06 61.38 -3.07 2040 2.13E-03 ** 

Δ % Edge All protected 41.27 49.53 0.42 2260.4 0.67 

 

 

Core protected 42.91 18.36 -1.12 1848.1 0.26 

 Number of patches All protected 8.38 7.15 -3.68 2468.7 2.38E-04 *** 

 

Core protected 8.56 4.25 -10.15 2832.7 2.20E-16 *** 

Max. Patch area ha All protected 1.53 1.4 -0.81 2371.8 0.41 

 

 

Core protected 1.53 1.01 -2.89 2979.4 4.70E-03 ** 
1
 Significance levels: * p<.05; ** p<.01; *** p<.001 
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1-9 Figures 

 

Figure 1-1: Our study area in Mexico, including the properties enrolled in the PES between 2003 and 

2010, as well as the north, central, southwest and southeast zones that we used for our analysis. 
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Figure 1-2: Example of forest morphology analysis. Depending on the neighborhood cover type, forested 

pixels will be assigned to different categories.  
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Figure 1-3: Percent change for the main forest morphology categories for all of Mexico.  
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Figure 1-4: Top: Map of vegetation type in Mexico in which we only include forests types. Bottom: 

Forest morphology changes in each vegetation type (proportion of the total of forest per category in 

2000).  
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Figure 1-5 Comparison between forest morphology changes in PES and non-PES microlandscapes. We 

calculated the changes in relation to the total forest area in category in 2000, and conducted the analysis 

for each zone. 

  

No PES 
 

PES 
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Figure 1-6 Comparison between forest morphology changes in PES areas and the National Protected 

Areas System. We calculated the changes in relation to the total forest area in category in 2000, and 

conducted the analysis for each zone. 

Protected areas 
 

PES 
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Chapter 2:  Spectral Mixture Analysis of STARFM 1 

fusion images improves deforestation assessments of 2 

diverse forest types in Mexico  3 

Contributors: Ramirez-Reyes, Carlos
1
 and Volker C. Radeloff 

1
 4 

1
 SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-5 

Madison, 1630 Linden Drive, Madison WI 53706, USA 6 

2-1 Abstract 7 

Deforestation greatly diminishes ecosystem services provided by forests and can 8 

threaten people’s livelihood. The analysis of satellite imagery can reveal deforestation, 9 

but requires cloud-free imagery for different phenological stages during the growing 10 

season, and that is often not the case. One potential way to obtain the necessary imagery 11 

is to combine imagery from Landsat, which at 30-m resolution is well suited to monitor 12 

deforestation, but is less frequently available, with that from MODIS, which is more 13 

frequently available, but of coarser resolution, and the STARFM algorithm is designed to 14 

generate Landsat-like imagery from MODIS data. Our objectives were to a) measure 15 

deforestation rates in different areas of Mexico and b) evaluate the usefulness of 16 

STARFM-generated Landsat-like imagery and Spectral Mixture Analysis to assess 17 

deforestation. We applied Spectral Mixture Analysis, and calculated vegetation fraction 18 

maps for three Landsat footprints in Mexico between 2000 and 2010 based on three 19 

different types of imagery: a) raw surface reflectance images, b) radiometrically 20 
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normalized images, and c) STARFM fusion images. Based on these fraction maps, we 21 

calculated change in the vegetation fractions over time, conducted a sensitivity analysis 22 

of the resulting maps of forest change, and assessed their accuracy. We found generally 23 

high rates of deforestation, but a strong north-south gradient with much higher 24 

deforestation rates in the south. In our southeastern Landsat footprint, a full 6.8% of the 25 

forest cover was lost from 2000 to 2010, compared with 5.2% in the central footprint and 26 

only 1.2% in the northern-most one. Deforestation maps based on the STARFM-27 

generated images outperformed those based on radiometrically normalized imagery, and 28 

the raw Landsat reflectance images in areas with high phenology. The average increase in 29 

accuracy when using the STARFM-generated images was 8 percentage points in the 30 

areas with stronger phenology. We conclude that STARFM can improve forest change 31 

analysis by reducing the classification errors caused by comparing images from different 32 

phenological stages. More broadly speaking, remote sensing can provide essential 33 

information for deforestation monitoring, but data from multiple sensors may be required 34 

to capture deforestation rates accurately. 35 

Keywords: Radiometric normalization, phenology, degradation  36 
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2-2 Introduction  37 

Deforestation is a major threat to forest ecosystems and the services they provide 38 

such as sustaining food production, maintaining freshwater and forest resources, as well 39 

as climate and air quality regulation (Foley et al., 2005). Deforestation has accelerated in 40 

recent decades, due to direct human pressures such as logging, grazing, and development 41 

(Yang et al., 2012). Accurate monitoring of deforestation can help to understand changes 42 

in wildlife habitat, water filtration, soil nutrients and human livelihoods (Hansen et al., 43 

2013; Lawley et al., 2015). Because deforestation has the most dramatic environmental 44 

effects on a per-area basis, compared to forest degradation, most assessments of 45 

deforestation evaluate forest loss as a binary variable where forests are either present or 46 

absent (Putz and Redford, 2010). However, forest degradation can also have major 47 

environmental effects (Anderson et al. 2011) even though it may not cause a reduction of 48 

the forest area but rather a decrease in its quality (Davidson et al., 2008). Furthermore, 49 

the threshold at which a certain amount of canopy loss, and hence forest degradation, can 50 

be considered deforestation is not clear. 51 

In general, mapping degradation is more difficult than mapping deforestation. 52 

However, even when the goal is to demarcate deforestation, it can be beneficial to 53 

measure first the loss of forest cover as a continuous variable, and assess deforestation 54 

based on that. Such a forest degradation assessment can be done via a Spectral Mixture 55 

Analysis, SMA (Adams et al., 1986), which estimates the fraction of different cover types 56 

for each pixel (Veraverbeke et al., 2012). SMA has been applied to detect degradation 57 

processes in tropical forests, such as selective logging in the Amazon (Adams et al., 58 
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1995; Matricardi et al., 2010; Souza Jr. et al., 2003). SMA is also useful for assessments 59 

of sparse vegetation in semiarid areas (Smith et al., 1990), degradation of semi-arid 60 

woodlands (Yang et al., 2012), grazing impacts (Röder et al., 2008), and desertification 61 

rates (Dawelbait and Morari, 2012). 62 

Measuring deforestation via SMA, however, requires to compare images that 63 

capture similar phenological stages, particularly when assessing deciduous forests 64 

(Adams and Gillespie, 2006). While Landsat TM, ETM+, and OLI data has the best 65 

spatial resolution to monitor deforestation (30 m), data are often not available for 66 

required dates because of its limited temporal resolution of 16 days, the Scan Line 67 

Correction error for Landsat 7, and persistent cloud cover in some areas (Wulder et al., 68 

2008). Other types of satellite data have the advantage of a much higher temporal 69 

resolution. For instance, MODIS has a temporal resolution of one day. However, 70 

MODIS’ lower spatial resolution (250 – 1000 m, depending on the spectral bands of 71 

interest) means that it does not capture small deforestation events. 72 

One way to overcome the problem of limited Landsat data is to fuse Landsat and 73 

MODIS imagery. Image fusion can be done using the Spatial and Temporal Adaptive 74 

Reflectance Fusion Model algorithm, STARFM (Gao et al., 2006). STARFM has been 75 

successfully used to classify landcover (Xu and Huang, 2014), it also improves detection 76 

of land cover changes in agricultural areas (Chen et al., 2014; Watts et al., 2011; Zhu et 77 

al., 2015) and land cover classifications in forest ecosystems (Hilker et al., 2009; Jia et 78 

al., 2014; Watts et al., 2011). STARFM produces Landsat-like reflectance images using a 79 

pair of MODIS and Landsat images for a day for which could-free imagery is available, 80 
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and then predicting 30-m reflectance values for any date for which only a MODIS image 81 

is available. Thus, STARFM may be useful for obtaining imagery for a specific 82 

phenological stage when Landsat data are lacking, and hence to improve deforestation 83 

assessment. However, the utility of STARFM for detecting forest degradation via SMA 84 

has yet to be tested. If successful, SMA of STARFM fusion images would be particularly 85 

valuable to assess forest degradation in areas with limited image availability. 86 

One place where the availability of Landsat imagery is limited is Mexico, where 87 

there is constant cloud cover over most the country during the growing season, and strong 88 

phenology in many of its dry forests. Further, Mexico’s forest ecosystems are highly 89 

diverse, ranging from dense vegetation in evergreen rainforest to forests where tree cover 90 

is sparse, and shrubs and grasses are intermixed with trees such as the pine-oak forest 91 

(Rzedowski, 2006). Despite great advances in deforestation monitoring with MODIS 92 

(Aide et al., 2013) and Landsat (Hansen et al., 2013), deforestation monitoring in dry 93 

tropical forest continues to be challenging (Barreda-Bautista et al., 2011; Martinez 94 

Morales et al., 2008; Mitchard et al., 2013). Especially, small scale deforestation remains 95 

difficult to detect (Lippitt et al., 2008). 96 

Forests in Mexico are also experiencing high deforestation rates that threaten the 97 

provision of ecosystem services (Trejo and Dirzo, 2000). Because of these high 98 

deforestation rates, Mexico implemented a payment for ecosystem services program 99 

(PES) in 2003, which aims to prevent deforestation within the REDD framework. For 100 

PES programs, it is very important to accurately measure deforestation in order to enforce 101 

compliance and assess effectiveness. Unfortunately, despite efforts to monitor 102 
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deforestation at the global level (Hansen et al., 2013), the available data about small-scale 103 

deforestation is still limited, because it is difficult to detect deforestation in dry forests 104 

using binary forest-no-forest classifications, especially when cuts are smaller than single 105 

pixels. Thus, data fusion with STARFM and MODIS to overcome the limited availability 106 

of Landsat data, and analyzing the resulting images with SMA, may be particularly useful 107 

for analyzing forest change in Mexico and other places with similar vegetation. 108 

Our major goal was to evaluate the performance of STARFM fusion images in 109 

Spectral Mixture Analysis to improve deforestation detection in Mexico. Our objectives 110 

were to: 1. Measure deforestation rates in different forest types of Mexico, and 2. 111 

evaluate the potential use of STARFM-generated imagery as the basis for Spectral 112 

Mixture Analysis, which we assessed by comparing a) surface reflectance images, b) 113 

radiometric normalized images, and c) STARFM fusion images. 114 

2-3 Methods 115 

2-3.1 STUDY AREA 116 

We performed our analysis in three Landsat footprints in Mexico (Figure 1). 117 

These footprints are located in northern, central and southeastern Mexico, capturing a 118 

variety of different forest types. In the northern footprint, forest vegetation includes oak 119 

forest, pine forest, and tropical deciduous forest. In the central footprint, there are tropical 120 

deciduous forest, cloud forest, pine forest, and oak forest. In the southern footprint, forest 121 

vegetation includes tropical deciduous forest and evergreen tropical forest. In addition, 122 

the three footprints capture a topographic gradient, ranging from flat wetlands in the 123 
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southern footprint, to mountainous in the other two, and large differences in terms of 124 

socioeconomic activities and population densities among the three footprints, resulting in 125 

different land use patterns. 126 

2-3.2 Image Preprocessing 127 

Landsat 128 

We assessed deforestation from 2000 to 2010 in each of the three footprints. We 129 

analyzed Landsat 7 ETM+ images from the peak growing season in Mexico (July-130 

September) in order to minimize errors due to differences in phenology (Hesketh and 131 

Sánchez-Azofeifa, 2012). In order to also minimize the effects of clouds present in the 132 

imagery, we selected the least cloudy images available in the LANDSAT archives within 133 

a two year window around 2000 (T0) and 2010 (T1) (Table 1). To account for 134 

atmospheric variation between years, we calibrated all the images to surface reflectance 135 

units using the LEDAPS radiometric correction tool (Masek et al., 2013). However, 136 

because cloud cover is persistent during the growing season for most of the country, the 137 

majority of the images contained some clouds. We masked the remaining clouds in each 138 

image using the cloud-masking algorithm F-mask (Zhu and Woodcock 2012). 139 

MODIS 140 

As input for STARFM, we used the MODIS 500-m resolution surface reflectance 141 

product MOD09A1, which is an 8-day image composite, because it minimizes the 142 

amount of clouds (Table 1). Each of the MODIS images was cropped, resampled to 30 m, 143 

and projected to WGS84/UTM zones 13, 14 and 16 for the northern, central, and south 144 
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eastern imagery, respectively, using the MODIS Reprojection Tool (NASA Land 145 

Processes Distributed Active Archive Center) in order to match the corresponding 146 

Landsat scenes. 147 

2-3.3 RELATIVE RADIOMETRIC NORMALIZATION.  148 

In order to further minimize phenological and radiometric differences, we 149 

performed a relative radiometric normalization (RRN). This technique assures that two 150 

images represent comparable atmospheric conditions (Hall et al., 1991). In the northern 151 

footprint, the image with the least clouds was T0, which is why we used it as a reference 152 

to normalize the later T1 scene. For the central and southeastern footprints the least 153 

cloudy image was the T1 image, and we normalized the T0 images. For the normalization, 154 

we sampled 100 random points in each image and visually verified that their land cover 155 

did not change between the two dates using the Landsat imagery. We considered these 156 

non-changing points as the pseudo invariant features (PIF) needed for the radiometric 157 

normalization. Based on these points, we parameterized linear regressions for each of the 158 

image bands and applied the regression equations to the corresponding band of the image 159 

that needed to be normalized. 160 

2-3.4 STARFM 161 

We ran the STARFM algorithm (Gao et al. 2006) for our three footprints to create 162 

Landsat-like images using the MODIS-Landsat pair images in Table 1. STARFM makes 163 

a prediction of the T1 Landsat image based on the T1 MODIS image and the spatial and 164 

spectral differences observed in the T0 Landsat and MODIS calibration pair. In order to 165 
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improve the accuracy of our predictions, we only predicted areas without clouds in both 166 

T0 and T1 Landsat images. The result from this analysis was a synthetic T1 image that was 167 

as close as possible to the calendar date of the T0 image. 168 

2-3.5 SPECTRAL MIXTURE ANALYSIS  169 

Once we obtained all the surface reflectance images with the three approaches: 170 

raw surface reflectance, normalized surface reflectance, and STARFM predicted surface 171 

reflectance, we calculated vegetation fraction maps using linear SMA, which estimates 172 

the proportion of vegetation of each pixel. For the SMA, we identified the spectral 173 

response of pure features in the landscape, known as endmembers, using a combination 174 

of reference endmembers from the USGS spectral library (Clark et al., 1993) (i.e., 175 

GDS91-green vegetation, CDE059 -dry vegetation) and image endmembers collected 176 

from the satellite images themselves (i.e., agriculture soil and sand). We used the same 177 

endmembers for all three footprints, because the endmembers were distinct from each 178 

other and we focused only on the green vegetation endmember to describe changes in 179 

vegetation (Figure 2). With this set of endmembers, we generated vegetation fraction 180 

maps for T0 and T1 for the three footprints for a) the raw Landsat surface reflectance 181 

images, b) radiometric normalized images, and c) STARFM fusion images. 182 

2-3.6 DEFORESTATION ESTIMATION 183 

In order to assess deforestation, we calculated the difference between the T0 and 184 

T1 vegetation fraction maps for each footprint. Based on the resulting difference map, we 185 

conducted a sensitivity analysis in which we used different thresholds (T0 - T1 > 0.1; T0 - 186 
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T1 > 0.2, and T0 - T1 > 0.3) to find the optimal cutoff value at which to designate 187 

deforestation. Second, it order to corroborate our choice of threshold, we applied a 188 

logistic regression in which we created deforestation models based on the vegetation 189 

difference in fraction maps and whether that point was deforested or not. Third, we 190 

parameterized multivariate deforestation models in which we described the observed 191 

deforestation, or absence of it, in our verification dataset in relation with the change in 192 

vegetation fraction plus the initial vegetation proportion, to see if this additional 193 

information could improve the deforestation estimates. 194 

2-3.7 ACCURACY ASSESSMENT 195 

We evaluated the accuracy of each of the resulting deforestation maps focusing on 196 

cloud-free areas considered as forested in a base vegetation map available for Mexico 197 

(CONABIO, 1998). As our reference dataset, we digitized a set of deforestation polygons 198 

using high resolution imagery available in in Google Earth in our study areas. To find 199 

these deforestation polygons, we created a systematic sampling grid that covered about 200 

20 percent of each Landsat footprint. In each of the quadrants of the grid we looked for 201 

all available high resolution imagery and digitized deforestation between 2000 and 2010. 202 

Within the deforestation areas, we sampled 100 random points in the areas that remained 203 

intact forest and 100 random points within the polygons that we identified as deforested. 204 

We visually verified that the land cover of these verification points did not change prior 205 

or after the high-resolution images were captured buy inspecting our Landsat imagery. 206 

This step was necessary because the dates of the Google Earth imagery did not always 207 

include the full 2000 to 2010 time period, and we needed to ensure that the points that we 208 
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mapped in the reference dataset as intact were not deforested after the last date for which 209 

high-resolution Google Earth imagery was available. We calculated the accuracy of each 210 

of the deforestation maps produced at different thresholds based on their ability to detect 211 

the deforestation we observed in our verification dataset.  212 

Finally, we calculated the deforestation rates for each of the footprints with the 213 

most accurate deforestation maps based on the formula FCC(%) = (1/T2−T1) × ln(A2/A1) 214 

× 100; where (T2−T1) is the period analyzed, and A1 and A2 the forest cover at time T1 215 

and T2, respectively (Puyravaud, 2003). 216 

2-4 Results 217 

We estimated vegetation fraction maps for the three types of input imagery: a) 218 

original surface reflectance, b) radiometric normalized images, and c) STARFM fusion 219 

images for each footprint the initial T0 and final T1. We found considerable differences in 220 

the range of vegetation fractions among the three footprints. For instance, in the northern 221 

footprint the vegetation fraction values ranged largely from 0.1-0.7, for the central 222 

footprint from 0.2-0.6, and in the southeastern footprint from 0.4-0.6, which is a 223 

consequence of the vegetation types present on each footprint, with denser forests in the 224 

south and more open forests in the north. In general, we found a positive correlation 225 

between the initial and later vegetation fraction maps, but the strength of the correlations 226 

varied (Figure 3). We expected a strong correlation between the fraction maps of the two 227 

dates, because the majority of the forest cover remained between the two dates. However, 228 

we were interested to see if the strength of the correlations varied systematically 229 

depending on the type of input data. If the correlations between vegetation fraction maps 230 
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were similar among the three types of input data, that would indicate that STARFM or 231 

RRN performed similarly to raw surface reflectance in describing the forest cover. For 232 

the northern footprint, we obtained the strongest correlation between the vegetation 233 

fraction maps obtained with the raw T0 surface reflectance values and the fraction map of 234 

the original surface reflectance values of T1 (r
2
=0.75). For the central footprint, the 235 

strongest correlation occurred for vegetation fraction maps produced with the initial T0 236 

surface reflectance values and the STARFM fusion image values for T1 (r
2
=0.53). In the 237 

case of the southeastern footprint we found generally weaker correlations cases (Figure 238 

3), maybe because of clouds that were not successfully masked out by Fmask. Among the 239 

three vegetation maps that we tested in this footprint, we found the strongest correlate 240 

between the fraction maps based on raw reflectance values, but even for these the 241 

correlation was weak (r
2
=0.24). 242 

The deforestation regression analysis, based on the T0- T1difference in vegetation 243 

fraction maps, performed well (Figure 4), and most of the models were significant (Table 244 

3). The exception was the central footprint for the RRN approach. The inclusion of the 245 

vegetation proportion at T0 in addition to the change in vegetation T0-T1 did not 246 

contribute to describe deforestation for most of the models. The threshold of the 247 

differences in the vegetation fraction map that we selected to identify deforestation, 248 

greatly affected both the amount of deforestation that was mapped, as we had expected, 249 

and the accuracy of our resulting deforestation maps (Table 2). Interestingly, the 250 

thresholds also varied substantially depending on the type of input imagery in some of the 251 

footprints. In the northern footprint, the most accurate deforestation maps resulted from a 252 
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difference threshold of 0.2 for the surface reflectance image, 0.1 for the atmospheric 253 

corrected image, and 0.3 for the STARFM fusion image (Figure 5). For the southeastern 254 

footprint we observed better deforestation detection with a threshold difference of 0.1 for 255 

the original surface reflectance pixels, 0.1 for the atmospherically corrected image, and 256 

0.1 for the STARFM fusion image. For the southeastern footprint, the original surface 257 

reflectance values and the atmospheric corrected values were the most accurate at the 0.1 258 

threshold. For the STARFM fusion image, we obtained the best deforestation estimation 259 

for a threshold of 0.2. These thresholds were very approximate to those thresholds 260 

suggested in the logistic regression analysis above, at which deforestation events 261 

surpassed the inflexion point on the model (Table 3). Also, the addition of the initial 262 

vegetation proportion improved the models in half of the cases. 263 

We calculated the deforestation rates based on the optimal threshold for the 264 

change in the vegetation fraction (Table 4). In the case of the northern footprint 1.7% of 265 

the forest was lost between 2001 and 2010, or 0.19% per year. In the central footprint, 266 

5.2% of the forest has been lost, or 0.48% per year, between 2001 and 2012. In the 267 

southeastern footprint, forests were lost at a rate of 6.88% between 2001 and 2008, or 268 

1.1% per year. 269 

The overall accuracy of our deforestation maps was 78%, 79%, and 72% in the 270 

central, northern, and southeastern footprints, respectively (Table 2). For comparison, we 271 

calculated the accuracy of the Global Forest Change (Hansen et al., 2013) based on our 272 

verification dataset, which was lower for the northern and central footprints (62% and 273 

65% respectively), but higher in the southeastern footprint (83%). 274 
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2-5 Discussion 275 

Combining radiometric normalization with STARFM improved our ability to 276 

detect deforestation in Mexico, and we found widespread deforestation, especially in our 277 

southeastern Landsat footprint. Our results indicated that Landsat-style satellite imagery 278 

generated with STARFM can improve deforestation estimates in areas where the 279 

availability of actual Landsat data is limited. We suggest that our approach is especially 280 

useful in areas with constant cloud cover and areas where phenology changes rapidly. 281 

The accuracy of our deforestation estimates depended on both forest type and how 282 

strong phenology effects were. The available Landsat scenes for the central footprint, in 283 

particular, differed somewhat in terms of their phenology. We tried to limit differences as 284 

much as possible by finding the best image in the Landsat archives, but image availability 285 

was limited, and that is not untypical across the globe (Goward et al., 2006). Our analyses 286 

highlighted the extent to which phenological differences due to limited image availability 287 

can lower the accuracy of deforestation maps when using raw surface reflectance images. 288 

Moreover, even when images from similar dates were available, partial cloud 289 

contamination was a problem, and that is not uncommon (Ju and Roy, 2008). In cases 290 

where phenology is different between the comparing dates, e.g., in our central footprint, 291 

radiometric normalization did result in a decent approximation of the later phenological 292 

stage. However, STARFM-generated images presented the biggest improvement and 293 

minimized differences the most, compared to our relative normalization and raw surface 294 

reflectance approaches. The radiometric normalization process corrected for some 295 

differences in vegetation phenology, but mainly for differences in solar angle, azimuth, 296 
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and topography (Caselles and Lopez Garcia, 1989). In other words, when two images 297 

represented vegetation at different phenological stages, then the radiometric 298 

normalization was not able to account for that and the normalized image did not predict 299 

different phenological stages (Lunetta et al., 2002). The STARFM fusion images, on the 300 

other hand, were able to handle actual difference in phenology, because they incorporated 301 

phenology as captured in the MODIS imagery (Walker et al., 2014; Watts et al., 2011). 302 

Interestingly though, while we achieved higher accuracy using the STARFM-303 

generated imagery for the central footprint, this was not the case for the other footprints. 304 

Thus, the capabilities of these methods changes according to the study area, forest type, 305 

phenology, and the magnitude of difference between phenological stages at the first and 306 

the second date of the Landsat images. The radiometric normalization worked better 307 

when phenological differences were minor. In our study area, that was the case in the 308 

northern and southeastern footprints. In the northern footprint, forests are primarily 309 

coniferous, while the southeastern footprint is dominated by tropical forest, and this 310 

means that phenology is not strong in either footprint. In the central footprint, forests are 311 

primarily deciduous, with a small portion of coniferous forest, and that means that 312 

phenological differences are stronger. Also, in the central footprint, the length of time 313 

between images was the highest (44 days), and this exacerbated phenological difference 314 

so much that the radiometric normalization could not overcome them. 315 

Forests in the southeastern footprint had the highest deforestation rates during our 316 

study period (Figure 6). This pattern is consistent with prior decades, when forest in 317 

southern Mexico were lost rapidly due to higher population densities, increasing 318 
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development, and agriculture expansion (Sohn et al., 1999; Turner et al., 2001). 319 

Furthermore, high deforestation rates in Mexico’s tropical forests are similar to those in 320 

other tropical forests (Kim et al., 2015). In the central footprint, the rates of deforestation 321 

were also high, compared to the north. In this footprint large forest areas have already 322 

been lost, but pressure for land conversion remains high (Trejo and Dirzo, 2000), and this 323 

is why we anticipated large deforestation rates. In the northern footprint, we observed the 324 

lowest deforestation rate, and this was also expected because human population densities 325 

are lower, topography is more rugged, and the land is less suitable for farming. Given 326 

deforestation trends in Mexico (Velazquez et al., 2002a), we believe that most of the 327 

forest loss is caused because of human activities rather than natural disturbances. 328 

We found annual deforestation rates for the three footprints of 0.19% in the north, 329 

0.48% for the central and 1.1% in the southeastern footprint. These deforestation rates are 330 

similar to those between 1976 and 2000, when the deforestation rates for Mexico were as 331 

high as 0.43% per year (Velazquez et al., 2002b), or between 1993 and 2000, when 332 

deforestation rates reached 1-2 % per year (Velazquez et al., 2002a). However, we 333 

caution that our deforestation rates are for three footprints only, and we cannot 334 

extrapolate to other areas of the country. Nevertheless, we suggest that there may have 335 

been a reduction in deforestation rates. 336 

While the STARFM generated images resulted in the most accurate deforestation 337 

maps when phenology effects were higher, they also exhibited more changes in 338 

vegetation that can be confused with deforestation. This situation can be reduced by using 339 

a threshold selection like the one we proposed, in which actual deforestation can be 340 
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differentiated from changes in vegetation due to phenological stages. Furthermore, by 341 

using STARFM images as in input for Spectral Mixture Analysis we obtained a 342 

continuous measure of reductions in forest canopy density, which may reflect forest 343 

degradation. However, we did not have verification data for degradation, which is why 344 

we did not analyze the extent of forest degradation explicitly. 345 

2-6 Conclusions 346 

We found that STARFM fusion imagery can improve the accuracy of 347 

deforestation estimates, especially in areas where phenological differences are 348 

pronounced, and where limited image availability precludes the analysis of Landsat 349 

images from similar phenological stages in different years. However, in areas with low 350 

phenological variability, and better image availability, radiometric normalization 351 

performed better. To our knowledge, our study was one of the first to estimate 352 

deforestation based on a combination of Spectral Mixture Analysis and STARFM data 353 

fusion images. We explored deforestation mapping in a range of tropical and sub-tropical 354 

forest types, which provided some unique challenges because of a wide range of 355 

ecological conditions, and relatively minor spectral differences between forest and non-356 

forest lands in the more arid areas of northern Mexico where forests are sparse. We 357 

suggest that our findings are valid for similar ecosystems where limited availability of 358 

Landsat imagery makes it difficult to capture different phenological stages, and that our 359 

approach can be valuable for forest management and monitoring in such settings, because 360 

it provides a tool to detect deforestation.  361 
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2-8 Tables 520 

Table 2-1: Modis and Landsat image datasets used in the study 521 

Region 

Landsat 7 

Path/Row 

Landsat start 

date  

Landsat 

final date  

MODIS 

MOD09A1 

path row 

Modis 

calibration 

date 
1
  

Modis predicted 

date  

Northern 33/41 9/17/2001 8/9/2010 h08 v06 7/28/2010 9/30/2010 

Central 27/45 7/21/2001 9/5/2012 h08 v06 7/20/2001 9/14/2001 

Southeastern 20/46 7/20/2001 8/24/2008 h09 v06 7/20/2001 8/13/2001 

1 
8-day composite start date

   522 
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Table 2-2: Accuracy of the detected deforestation using different thresholds. 523 

  

Raw Surface 

Reflectance 

Radiometric 

Normalized  STARFM 

           

  
0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 

N
o

rt
h

er
n
 

Overall accuracy 0.73 0.66 0.62 0.74 0.68 0.62 0.77 0.75 0.66 

Deforestation user accuracy 0.94 1.00 1.00 0.83 0.95 1.00 0.73 0.85 1.00 

Deforestation producer 

accuracy 0.40 0.21 0.11 0.48 0.25 0.11 0.73 0.48 0.21 

No deforestation user 

accuracy 0.69 0.63 0.61 0.71 0.64 0.61 0.80 0.71 0.63 

No deforestation producer 

accuracy 0.98 1.00 1.00 0.93 0.99 1.00 0.80 0.94 1.00 

 

          

C
en

tr
al

 

Overall accuracy 0.70 0.66 0.59 0.63 0.55 0.52 0.79 0.71 0.64 

Deforestation user accuracy 0.92 0.96 1.00 0.77 0.88 0.00 0.85 0.91 0.92 

Deforestation producer 

accuracy 0.40 0.30 0.13 0.33 0.08 0.00 0.67 0.44 0.26 

No deforestation user 

accuracy 0.64 0.61 0.56 0.60 0.54 0.52 0.75 0.65 0.59 

No deforestation producer 

accuracy 0.97 0.99 1.00 0.91 0.99 1.00 0.89 0.96 0.98 

 

          

S
o
u
th

er
n
 

Overall accuracy 0.72 0.75 0.65 0.74 0.64 0.58 0.64 0.72 0.69 

Deforestation user accuracy 0.72 0.94 1.00 0.91 1.00 1.00 0.59 0.77 0.95 

Deforestation producer 

accuracy 0.72 0.52 0.28 0.53 0.27 0.15 0.82 0.63 0.40 

No deforestation user 

accuracy 0.73 0.68 0.59 0.68 0.59 0.55 0.73 0.69 0.63 

No deforestation producer 

accuracy 0.73 0.97 1.00 0.95 1.00 1.00 0.46 0.82 0.98 

  524 
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Table 2-3: Regression model coefficients for the models with one and with two terms. 525 

  Model
Ɨ
 Term Estimate S.E. Statistic p value Sig AIC Intercept 

at 0.5* 

N
O

R
TH

 

Raw 1 Δ%Veg 9.64 1.97 4.90 9.80E-07 *** 200.12 0.04 

2 Vegt0 3.85 1.18 3.27 1.08E-03 ** 190.9 0.45 

Δ%Veg 11.33 2.09 5.43 5.67E-08 *** 

Normalized 1 Δ%Veg 11.10 2.04 5.44 5.30E-08 *** 192.78 0.07 

2 Vegt0 1.31 1.58 0.83 4.06E-01  194.1 0.92 

Δ%Veg 10.74 2.02 5.32 1.06E-07 *** 

STARFM 1 Δ%Veg 11.05 1.84 6.01 1.81E-09 *** 182.15 0.13 

2 Vegt0 0.95 1.48 0.64 5.23E-01  183.75 0.15 

Δ%Veg 11.03 1.82 6.07 1.27E-09 *** 

C
EN

TR
A

L 

Raw 1 Δ%Veg 12.87 2.12 6.08 1.21E-09 *** 184.95 0 

2 Vegt0 2.56 0.98 2.62 8.84E-03 ** 179.81 0.23 

Δ%Veg 10.63 2.23 4.77 1.81E-06 *** 

Normalized 1 Δ%Veg 0.26 0.93 0.28 7.80E-01  265.5 0.31 

2 Vegt0 17.37 2.70 6.43 1.25E-10 *** 176.47 0.25 

Δ%Veg 10.67 2.18 4.90 9.77E-07 *** 

STARFM 1 Δ%Veg 7.28 1.26 5.77 7.72E-09 *** 213.94 0.08 

2 Vegt0 4.83 1.10 4.38 1.17E-05 *** 193.7 0.36 

Δ%Veg 4.87 1.37 3.55 3.87E-04 *** 

SO
U

TH
 

Raw 1 Δ%Veg 9.60 1.67 5.74 9.63E-09 *** 210.49 0.13 

2 Vegt0 -3.63 3.13 -1.16 2.46E-01  211.2 0.14 

Δ%Veg 10.49 1.88 5.57 2.58E-08 *** 

Normalized 1 Δ%Veg 10.50 1.86 5.65 1.64E-08 *** 213.65 0.06 

2 Vegt0 -0.40 6.92 -0.06 9.54E-01  215.65 -1.12 

Δ%Veg 10.51 1.86 5.64 1.67E-08 *** 

STARFM 1 Δ%Veg 7.98 1.39 5.76 8.57E-09 *** 215.11 0.19 

2 Vegt0 -5.66 2.49 -2.28 2.29E-02 * 211.59 0.24 

Δ%Veg 10.17 1.80 5.66 1.51E-08 *** 

Ɨ  1= Def~(Δ%Veg); 2= Def~(Δ%Veg,Vegt0 ) 526 

* Intercept at the 0.5 value, which reference the inflexion point.  527 

Sig. *** 0.001 , ** 0.01, * 0.05 528 

  529 
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Table 2-4: Deforestation in the study areas 530 

  

Initial forest 

(ha) Final forest (ha) 

Deforested area 

(ha) 

Deforestation 

rate (%/year) Forest loss (percentage points) 

Northern 2,251,710 2,213,019 38,691 -0.19 1.72 

Central  694,980 658,723 36,257 -0.48 5.22 

Southeastern 1,757,040 1,636,085 120,955 -1.01 6.88 

 531 
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2-9 Figures

 

Figure 2-1: Study area. The three squares represent the northern, central and southeastern Landsat 

footprints that we analyzed in Mexico. We include the path and row for each of the footprints. 
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Figure 2-2: Endmembers used in the spectral unmixing process. 
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Figure 2-3: Correlation between the vegetation fraction maps produced with T0 raw surface 

reflectance values of the T1 fraction maps produced with a) raw surface reflectance, b) 

radiometric normalization and c) STARFM fusion image. We show the r
2 

value of the regression 

lines. The grey area represents a confidence interval for the fitted values of the model.  
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Figure 2-4: Changes between vegetation fraction maps T1 and T0 and the corresponding 

deforestation validation points, where 1 corresponds to a deforested pixel and 0 to an intact forest 

pixel. 
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Figure 2-5: Example of the deforestation found using 0.1, 0.2 and 0.3 threshold values for 

the difference in vegetation fraction maps. This area corresponds to a large deforested 

area in the northern footprint. 
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a) 

 
b) 

 
c) 

Figure 2-6: Example of the deforestation detected using a STARFM fusion image. The images 

correspond to a) the surface reflectance in 2001, b) surface reflectance in 2012, and c) surface 

reflectance in 2012, with the mapped deforestation in orange.  
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3-1 Abstract 

Maintaining habitat and its connectivity is a major conservation goal, especially 

for large carnivores. Assessments of habitat connectivity are typically based on the output 

of habitat suitability models to first map potential habitat, and then identify where 

corridors exist. This requires separating habitat from non-habitat, thus one must choose 

specific thresholds for both habitat suitability and the minimum patch size that can be 

occupied. The selection of these thresholds is often arbitrary, and the effects of threshold 

choice on assessments of connectivity are largely unknown. We sought to quantify how 

habitat-suitability and patch-size thresholds influence connectivity assessments for 

jaguars (Panthera onca) in the Sierra Gorda Biosphere Reserve in central Mexico. We 

modeled potential habitat for jaguars using the species distribution modelling algorithm 

Maxent, and assessed potential habitat connectivity with the landscape connectivity 

software Conefor Sensinode. We repeated these analyses for 45 combinations of habitat 

suitability based thresholds and minimum patch sizes. Our results indicated that the 
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thresholds influenced connectivity assessments greatly, and different combinations of the 

two thresholds yielded vastly different map configurations of suitable habitat for jaguars. 

We developed an approach to identify the pair of thresholds that best matched the jaguar 

occurrence points based on the connectivity scores. Among the combinations that we 

tested, a threshold of 0.3 for habitat suitability and 2 km
2
 for minimum patch size 

produced the best fit (AUC = 0.9). Surprisingly, in our best potential habitat model we 

found low suitable habitat for jaguars in most of the core areas of the reserve, and highly 

suitable areas in the buffer zones and just outside of the reserve. We conclude that the 

best and most connected potential areas for jaguar habitat are in the central eastern part of 

the Sierra Gorda. More broadly, landscape connectivity analyses appears to be highly 

sensitive to the thresholds used to identify suitable habitat, and we recommend 

conducting sensitivity analyses as introduced here to identify the optimal combination of 

thresholds. 

Keywords: Maxent, Conefor Sensinode, species distribution modeling, Panthera 

onca  
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3-2 Introduction 

Wildlife habitat and species’ ranges are diminishing rapidly due to landscape 

modification (Lindenmayer and Fischer, 2013; Newbold et al., 2015), and human 

activities such as agriculture, livestock, mining, and the expansion of urban areas (Wood 

et al., 2013). In addition to the loss of habitat, changes in habitat configuration can 

diminish the connectivity among areas occupied by different populations of a given 

species (Tischendorf and Fahrig, 2000). This could reduce the ability of species to 

survive extreme events such as fires, diseases, and predation (Clark et al., 2011), thereby 

increasing the risk of extinction (Reed, 2004). Changes in landscape connectivity are 

particularly detrimental to apex predators that require large areas of suitable habitat, and 

securing habitat corridors for these species is critical for their long-term conservation 

(Soisalo and Cavalcanti, 2006). Thus, it is important to both preserve the remaining 

habitat available for species and to maintain or enhance habitat connectivity (Peterson, 

2011; Sanderson et al., 2002). 

Mapping species distributions is the first step when developing conservation 

management strategies that account for population and habitat patterns at local and 

landscape scales (Cavalcanti & Gese, 2009; Turner et al., 2001). Often, obtaining the 

actual species distribution is not possible because of time constraints or incomplete data. 

This is why presence-only models are often used to estimate potential habitat based on 

occurrences and predictor variables that are biologically meaningful for the species 

(Bradley et al., 2012). The resulting models can then be used to identify additional areas 

with similar environmental conditions that could potentially serve as habitat for the 
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species of interest. Once these potential habitat areas are identified, they can be analyzed 

in terms of their spatial configuration and connectivity. 

Connectivity can be measured in many different way, either focusing only on 

patches of suitable habitat, or on the entire landscape (Calabrese and Fagan, 2004). 

However, connectivity assessments based on the graph theory, which quantify the 

arrangement of habitat patches, have become popular for conservation purposes (Correa 

Ayram et al., 2015). In the graph theory framework (Bunn et al., 2000), a potential 

habitat network is organized in patches of potential habitat (nodes) that are connected via 

edges (Urban and Keitt, 2001). In this context, there are several challenges associated 

with the assessment of habitat connectivity. First, because the output of potential 

distribution models is a continuum of suitability values, it is necessary to choose a 

threshold to differentiate habitat from non-habitat. Different techniques have been 

proposed to define suitable habitat areas, such as using an arbitrary threshold (Manel et 

al., 1999) or to determine the threshold that minimizes the error rate for positive and 

negative observations in a potential habitat model (Jiménez-Valverde & Lobo, 2007; Liu 

et al., 2013). A second challenge is that any threshold of habitat suitability will result in 

patches that are highly variable in size, but many species can only occur in patches of a 

certain minimum patch size (Schutltz and Crone, 2005). Ultimately, the selection of both 

the suitable habitat and the minimum patch size thresholds may greatly affect the 

configuration of potential habitat patches (Saura and Martinez-Mlian, 2001; Turner, 

1989; Wu, 2004) and therefore affect subsequent habitat connectivity analysis. 
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Analyses of habitat connectivity are inherently place and species specific, but case 

studies are valuable, especially in areas with high biodiversity and when the results can 

be translated to other ecosystems. One such area is Mexico, which has a high diversity of 

mammals, including several species of felines (CONABIO, 2008). Felines are considered 

a keystone species because they can control herbivore populations (Miller et al., 2001; 

Terborgh et al., 2001). Furthermore, felines are an important target for conservation 

plans, and their presence can indicate healthy ecosystems (Sanchez et al., 2002; Terborgh 

et al., 2001). However, populations of many felines, including jaguar (Panthera onca), 

have decreased in Mexico, and their habitats have become increasingly fragmented 

(Polisar et al., 2003). Prior studies have analyzed the potential habitat distribution of 

jaguars throughout Mexico (Cevallos et al., 2007; Rodríguez-Soto et al., 2011). There are 

also some local studies of jaguar habitat in southern (Figel et al., 2009), central (Monroy-

Vilchis et al., 2008), and northern Mexico (Navarro-Serment et al., 2005), and jaguar 

habitat connectivity at local level in the north east of Puebla state (Petracca et al., 2014). 

However, there is still uncertainty about landscape-scale jaguar habitat patterns, i.e., the 

scales where most conservation decisions are made. In terms of management, 

understanding habitat connectivity is important for the prioritization of conservation 

efforts, and to promote the effective allocation of conservation resources (Moilanen et al., 

2009). Furthermore, studies on habitat connectivity are missing, despite their importance 

for the long-term conservation of wide-ranging species such as jaguar (Soisalo and 

Cavalcanti, 2006). 
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In this study, our goals were to a) assess potential habitat for jaguars and its 

connectivity in the Sierra Gorda reserve in Central Mexico, b) examine in detail the 

effects of different thresholds of habitat suitability and minimum patch size on the 

resulting connectivity, and c) develop a new approach to identify the optimal 

combination of these thresholds. Our hypothesis is that larger habitat patches obtained 

with lower thresholds will promote better landscape connectivity within the landscape for 

jaguars. With the integration of potential habitat and connectivity, we hope to develop a 

new approach that can be used to better understand the landscape and habitat use by 

jaguars in the area, and to assess habitat connectivity for other species and in other areas 

more accurately. 

3-3  Methods 

3-3.1 STUDY AREA 

We conducted our study in the Sierra Gorda Biosphere Reserve (Sierra Gorda) in 

central Mexico, and all areas within 20 km of its border (11,548 km
2
, Figure 1). The 

Sierra Gorda is situated in the Sierra Madre mountain range and contains many 

vegetation types, including semi-deserts, evergreen and deciduous tropical forest, oak, 

pine and cloud forests. Elevation ranges from 300-3160 m above sea level. Because of 

this variety of conditions, the reserve hosts a diversity of wildlife species and is one of 

the last refuges for jaguars in central western Mexico. The reserve contains a buffer zone, 

in which some human activities are allowed including agriculture and forestry in 

temperate areas and grazing on drier lands (INE, 1999). There are also eleven core zones 
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within the Sierra Gorda reserve, in which human use is limited to conservation and 

research-related activities. All of the core areas are located at the edge of the reserve, 

which is different from the more typical pattern, where core areas are near the center of 

the reserves (Figure 1). 

3-3.2 INPUT DATA: JAGUAR OCCURRENCES AND ENVIRONMENTAL DATA 

We obtained a digital georeferenced database of 117 jaguar occurrence points in 

the Sierra Gorda. The database was collected by the conservation group Grupo Ecologico 

Sierra Gorda between 2006 and 2009. The database includes direct animal observations 

(i.e., visual observations, camera trap photos), and indirect observations (i.e., footprints, 

droppings, reported cattle attacks). We assumed the database was accurate, as jaguars 

have a distinct appearance that is not easily confused with other species in the area. 

Although this database has not been updated since 2009, jaguars have been reported in 

the area since then (GESG, 2014). For the training and testing of our model, we divided 

the jaguar occurrence points into two sets. For model testing, we randomly selected 26 

points (22% of total) that were at least 2 km apart from each other. For the remaining 91 

occurrence points we conducted spatial filtering to eliminate points based on climatic 

heterogeneity using the SDM toolbox (Brown, 2014). The spatial filtering used the first 

three principal components of the environmental variables to find areas with low or high 

climate heterogeneity. Based on this assessment, we reduced the number of presence 

points in areas with similar climatic conditions to one point location for every 5 km
2
, 

which is the minimum home range for female jaguars (Rodríguez-Soto et al., 2011). We 

applied this filtering to prevent the over-fitting of our model to environmental conditions 
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present in clusters of points with low variability (Boria et al., 2014). The final training 

point database included 26 occurrence points. This number is low, but working with a 

limited number of points is common and when working with a rare species such as jaguar 

as it is preferable to have fewer number of training data rather than spatially 

autocorrelated points (Bean et al., 2012; Hernandez et al., 2006; van Proosdij et al., 

2016). For the purpose of comparison, we also generated a model including the whole 

117 points dataset and split it into two parts for training: 91 for training and 26 for 

testing. 

We included six environmental predictor variables from multiple sources (Table 

1) associated with the presence of jaguars (Spangle et al., 2014; Valera-Aguilar, 2010). 

These variables were temperature, precipitation, land cover, ecoregions, elevation and 

slope. We retained all of these environmental variables after confirming that there was no 

strong correlation among them (Table A.1). All the environmental information was 

converted and scaled into raster format with 30-m resolution. 

3-3.3 POTENTIAL HABITAT MODELING 

We performed a series of analyses to determine jaguars’ potential habitat and 

connectivity for the Sierra Gorda (Figure 2). To identify the areas of potential habitat for 

jaguars, we used the maximum entropy algorithm Maxent (Phillips et al., 2006). This 

machine-learning method uses species occurrence and environmental constraints from the 

study area, or background data, to estimate the probability of occurrence of the species 

based on the principle of maximum entropy. We restricted the calibration of our Maxent 

model to the areas within the Sierra Gorda found as suitable jaguar habitat in a previous 
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coarse-scale analysis for jaguars in Mexico, which used a different jaguar dataset and a 

coarser resolution (Rodríguez-Soto et al., 2011). We did this to ensure that the 

background points were not taken at places that are widely afar from our occurrence data 

(Van Der Wal et al., 2009). We ran Maxent with the default settings (Phillips and Dudík, 

2008), i.e., with a regularization multiplier of 1; and a maximum number of background 

points of 10,000, and we ran 10 replicates with cross-validation. We then extrapolated the 

model to the rest of the study area to map potential habitat of jaguars within the entire 

Sierra Gorda. 

3-3.4 CONNECTIVITY ANALYSIS 

In order to calculate habitat connectivity, we had to differentiate areas of habitat 

from non-habitat. We identified two types of thresholds to separate the areas suitable for 

jaguars from areas that are not suitable. The first threshold is based on Maxent’s habitat 

suitability index, a continuous value ranging from zero to one across the study area, with 

values below the selected cutoff deemed to be non-habitat. The second threshold was 

based on the minimum patch size, with values below the selected cutoff deemed to be 

unsuitable, even if the habitat suitability value indicated the patch to be suitable. We 

performed 45 analyses using different values for our two thresholds to test how different 

combinations affected the subsequent connectivity assessment (Figure 2). We first 

constructed multiple habitat suitability maps, where suitable habitat was defined as values 

greater than or equal to 0.1, 0.2, 0.3,…, 0.9 in Maxent’s habitat suitability index, 

increasing in steps of 0.1 units. We then eliminated potential jaguar habitat patches 

smaller than 2, 5, 10, 15, and 20 km
2
 in each of the previous habitat suitability maps, for 
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a total of 45 different potential habitat maps. We selected this range of minimum patch 

values because jaguars generally prefer large habitat patches of at least 20 km
2
 (Núñez et 

al., 2002) but can temporarily occupy areas as small as 2 km
2
 (Chavez and Cevallos, 

2007). We measured the effects on landscape configuration caused by varying the 

thresholds in the resulting potential habitat maps. For this reason we calculated four 

landscape fragmentation metrics (number of patches, total patch area, mean patch area, 

and edge density) for each of the potential habitat networks obtained by each threshold 

combination using the software Fragstats (McGarigal et al., 2012).  

 We used Conefor Sensinode (Saura and Pascual-Hortal, 2007) to assess 

the patch connectivity within each potential habitat map obtained with a particular 

combination of thresholds. Conefor Sensinode is a decision-support tool that 

complements habitat analyses by quantifying the importance of specific habitat patches 

for overall landscape habitat connectivity (Ziółkowska et al., 2012). Conefor Sensinode 

calculates several connectivity indices, and we report here the delta of the Integrated 

Index of Connectivity (dIIC) because it has been proposed as ideal for connectivity 

analysis (Pascual-Hortal and Saura, 2007). The dICC ranges from 0-100 and assigns a 

value to each habitat patch, where small values indicate low importance for the overall 

connectivity of the habitat patch network and large values indicate high importance. 

3-3.5 IDENTIFICATION OF THE OPTIMAL COMBINATION OF THRESHOLDS 

In order to identify the optimal combination of thresholds for habitat suitability 

index and minimum patch size that describe our data best we performed a sensibility 

analysis. For this we created 45 potential habitat maps using the connectivity scores as 
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the only environmental input for habitat modeling and evaluated the performance of the 

model to describe our jaguar presence dataset (Figure 2). We started with the maps 

obtained from the connectivity analysis, which contain the dIIC values obtained, and 

transformed it into a raster format. We then used Maxent with each of these maps with 

dIIC values as the only predictor variable for our jaguar presence points. Finally, we 

ranked the performance of each of the new runs using the area under the curve (AUC) for 

both the training and testing presence points. AUC scores above 0.5 are considered better 

than random predictions and values above 0.9 considered highly accurate (Bateman et al., 

2012; Guisan et al., 2007). In this way we could identify which model combination of 

thresholds best described the relationship between the connectivity values obtained and 

the occurrence points. 

3-4 Results 

We obtained a potential habitat model based on the spatially filtered jaguar 

occurrences (n = 26). The model had an AUC of 0.91 for the training data and an AUC of 

0.83 for the testing data. For comparison purposes, we obtained a model using all 117 

occurrence data that resulted in an AUC of 0.92 for training and 0.86 for testing. The 

model results based on all occurrence points were overall very similar, but predicted a 

smaller area as highly suitable habitat than the model with the subset of points (Appendix 

1). The model we used for subsequent analysis was the one produced with the subset of 

presence points because of the potential autocorrelation of the training points in the 

model produced with the full dataset of points. 
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We found that two of the eleven core zones of the reserve contained highly 

suitable habitat for jaguars (Figure 3). Most of the potential habitat was located in the 

central eastern part of the reserve in areas that are formally designated as buffer zones. 

No areas were identified with a habitat suitability index greater than 0.87. Among the 

environmental predictor variables, ecoregions, land cover, and slope were the main 

explanatory variables, contributing 91% of the model’s explanatory power, while 

precipitation, temperature and elevation contributed only 9% (See appendix). The most 

important ecoregions for jaguar habitat were the Sierra Madre Oriental pine and oak 

forest and the Planicie Costera Tamaulipeca dry forest. The vegetation types with higher 

likelihood for jaguar occurrences were tropical deciduous forest and temperate forest, and 

areas with precipitation of 1000-2000 mm/year. There was minimal potential jaguar 

habitat in the desert and semi-desert regions within the study area. The habitat model also 

indicated that occurrence points were primarily located on slopes less than 40 degrees. 

3-4.1 THRESHOLD SELECTION 

 The 45 binary maps of potential habitat versus non-habitat generated with 

different combinations of habitat suitability index and minimum patch size thresholds 

resulted in vastly different total areas and spatial configurations of remaining habitat 

patches (Figure 4). As expected, when selecting smaller habitat suitability index values, 

we obtained relatively few, large and continuous suitable patches across our study area 

(Figure 5). In contrast, with higher habitat suitability index thresholds, only small patches 

remained, which were concentrated in the north eastern part of the reserve. We also 

observed our expected changes in the configuration of suitable habitat patches when 



113 
 

 

applying different minimum patch size thresholds. Small thresholds (<10 km
2
) resulted in 

numerous patches located across the reserve. In contrast, higher thresholds (>10 km
2
) led 

to a smaller number of patches located towards the central and eastern part of the reserve 

(Figure 4). The mean patch area decreased proportionally to minimum patch size, and the 

edge density increased as we restricted the habitat suitability threshold. Large thresholds 

on both of the variables reduced the total area of the potential habitat patches. 

3-4.2 HABITAT CONNECTIVITY 

 Different combinations of our two thresholds resulted in vastly different 

connectivity dIIC values, which changed according to the number and size of the habitat 

patches. The dIIC connectivity values ranged from one, for patches that contributed little 

for the connectivity of the patch system, to 100, for those patches that contributed the 

most. Among the different sets of patches obtained with different threshold combinations, 

the dIIC values ranged from 0-6 in landscapes comprised on numerous patches, and 0-95 

for a habitat landscape with fewer patches (Figure 4). As anticipated, the patches that 

were most important for maintaining connectivity were generally the larger ones, and the 

most important patches for connectivity were located towards the center and eastern part 

of study area. However, the potential habitat patch configuration resulting from lower 

threshold combinations indicated that patches located in the central area of the reserve 

had the highest dIIC values. 

3-4.3 THE OPTIMAL COMBINATION OF THRESHOLDS 
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When we used the potential habitat patches and their respective connectivity 

values as the only explanatory variable for Maxent, we obtained different model 

performances and AUCs ranging from 0.49 to 0.90 for the training data (Figure 6). Based 

on these results, we selected the best performing model, which was based on a habitat 

suitability index threshold of 0.3 and minimum patch size of 2 km
2
. This model had a 

performance an AUC of 0.90 for the training data and 0.78 for the testing one. From the 

two variables, changes in habitat suitability index resulted in a larger variation in the 

AUC compared to changes in the minimum patch size. 

3-5 Discussion 

 Potential habitat mapping is a tool that is widely used in conservation 

science and conservation planning (Elith and Leathwick, 2009; Guisan and Thuiller, 

2005), and forms the basis for most habitat connectivity analyses. Here we mapped the 

potential habitat for jaguars in the Sierra Gorda reserve and explored its connectivity. We 

found that connectivity was highly sensitive to the thresholds used to delimit potential 

habitat. Based on our novel approach to identify the optimal threshold values, we found 

that a threshold for the habitat suitability index of 0.3 and for minimum patch size of 2 

km
2
 produced the optimal potential habitat assessment, because it resulted in the 

connectivity assessment that best matched our jaguar observations. 

 The potential habitat map for jaguars that resulted from our analysis 

captured jaguar occurrences in the Sierra Gorda well, as evidenced by the high AUC of 

0.91. The predicted areas of high habitat suitability also coincided with the vegetation 

types reported as habitat for jaguars in other studies such as temperate, deciduous and 
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tropical forest (Navarro-Serment et al., 2005; Zarco-González et al., 2009), and oak-pine 

forest (Figel et al., 2009; Monroy-Vilchis et al., 2008). Drier vegetation types in the 

western parts of the study area were not detected as potential habitat for jaguars, although 

xeric vegetation is occupied by jaguars in other parts of Mexico (Sanderson et al., 2002; 

Valera-Aguilar, 2010). Not including xeric vegetation as habitat in our map may be a 

consequence of not having presence points on such dry land. However, our map is 

consistent with a nationwide analysis of jaguar habitat in the area, which found low 

habitat suitability in the dry land of the reserve (Rodríguez-Soto et al., 2011). Also, our 

model showed more limited potential habitat areas for our study area compared with the 

previous national model, possibly because we had a local dataset and incorporated a 

sensitivity analysis on both thresholds. In the future, given the opportunistic nature of our 

presence data, there are opportunities to incorporate a more systematic data sample via 

GPS or camera traps, which could improve model outputs by capturing a larger 

variability of conditions in which the species occurs (Tobler et al., 2008). This highlights 

the need for local and regional analyses of habitat suitability even for wide-ranging 

species, such as jaguars, because their habitat-use can differ within larger areas. 

 Selecting thresholds correctly is crucial when using the output from a 

potential habitat model for further analyses such as connectivity assessments (Liu et al., 

2005). Several threshold selection criteria have been proposed to delimit suitable habitat 

(Freeman and Moisen, 2008; Jiménez-Valverde and Lobo, 2007; Liu et al., 2013; Norris, 

2014), but none of these took into account how the thresholds may affect connectivity. In 

our analysis, we produced numerous connectivity assessments, and these assessments 
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varied greatly in their ability to explain jaguar presence data. While changing the habitat 

suitability thresholds, we observed a tradeoff of either being very restrictive in our 

analysis (with higher habitat suitability index thresholds) or too permissive (using lower 

habitat suitability index scores). When using large thresholds, only few areas remained as 

potential habitat and many of our presence points were outside of those areas.  

 From our analysis of 45 combinations of thresholds, we found that the best 

connectivity assessment was the one resulting from a habitat suitability index threshold of 

0.3. This number is consistent with the habitat suitability threshold values obtained using 

two of Maxent’s calculated logistic thresholds: the 10
th

 percentile training presence (0.36) 

and the maximum training sensitivity plus specificity thresholds (0.32). Maxent’s 

thresholds are calculated by evaluating model performance based on omission rate 

(number of training/test presences that fall into unsuitable pixels) and the proportional 

predicted area (the proportion of all pixels that are predicted suitable for a species), 

(Phillips et al., 2006). The 10
th

 percentile threshold corresponds to the predicted habitat 

suitability value with a 10% omission rate on occurrence points, which has been 

suggested as an ideal threshold in similar studies (Escalante et al., 2013; McFarland et al., 

2013). The maximum training sensitivity plus specificity threshold balances the chance of 

correctly identifying suitable areas (sensitivity) with the change of correctly assigning 

unsuitable areas (specificity). By maximizing specificity plus sensitivity we delimit the 

best areas within our landscape that can host jaguars, and eliminate areas with lower 

habitat potential (being more specific). A higher threshold value can be used to target the 

best areas able to host jaguars by reducing the risk of choosing low quality sites but with 
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the risk of eliminating some locations with actual jaguar observations (being less 

sensitive), (Pearce and Ferrier, 2000; Pearson, 2007). 

 Minimum patch size had previously been identified as important for 

landscape connectivity (Pascual-Hortal and Saura, 2007), and for the delineation of 

potential habitat (Olson et al., 2014), and our results highlighted the extent to which 

connectivity depended on minimum patch size. However, the effects of minimum patch 

size on connectivity were smaller than those of the habitat suitability index threshold. The 

AUC changed much more when varying the cutoff value of habitat suitability index and 

less when varying the minimum patch size cutoff value. We detected that the best 

performance in predicting our jaguar occurrence points was with a minimum potential 

habitat patch size of 2 km
2
. Jaguars have a large range and they have been reported to 

prefer large habitat patches of 20 km
2 

or more (Núñez et al., 2002; Valera-Aguilar, 2010). 

However, jaguars may also explore areas as small as 2 km
2
 when dispersing to other 

territories or for hunting (Cavalcanti and Gese, 2009). In our study, larger patch size 

thresholds (>15 km
2
) reduced the number of potential habitat patches to a level where 

they no longer captured the presence points. This may indicate that jaguars, although 

prefer large habitat patches, are forced to use relatively small patches of fragmented 

potential habitat in Sierra Gorda, such as farm areas, where prey might also be available 

including livestock. 

 The most important potential habitat patches for overall connectivity were 

generally the largest patches. This is partly a function of the dICC metric which weighs 

the area of each of the potential habitat patches, giving priority to larger patches. 
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Ecologically though, these large patches are also very important for jaguars because their 

home range is large (typically more than 20 km
2
) and the remaining large potential 

habitat patches should be a priority for conservation. The dIIC has been used previously 

to identify the most important patches for maintaining and prioritize forest protection 

(García-Feced et al., 2010; Pascual-Hortal and Saura, 2007; Shanthala Devi et al., 2013), 

as well as providing habitat for other large mammals such as tapir (García and Leonardo, 

2016). Therefore, we suggest that based on our analysis, the best connected areas located 

in the central eastern part of the reserve deserve particular conservation attention (Figure 

7), because they have vegetation types that are highly suitable for jaguars and these areas 

are part of the proposed jaguar corridor for central Mexico (Rabinowitz and Zeller, 

2010). 

 The current designation of core and buffer areas in the Sierra Gorda 

reserve neither captures the highest quality habitat for jaguars nor the most important 

patches for connectivity very well. In our potential habitat map, a small percentage of the 

core area of the reserve was suitable for jaguars. When created in 1997, the Sierra Gorda 

reserve included eleven core zones to preserve forests located at the edges of the reserve, 

with the purpose of having multiple ecosystems represented and to have more conserved 

lands with restricted access (INE, 1999). However, most of these areas have little 

potential for hosting jaguars according to our results, whereas the central buffer zone has 

higher likelihood for jaguar presence. We also detected areas outside of the reserve that 

are suitable for jaguars. Our finding parallels that of another study, which found that the 

current core areas of the reserve have also lower potential for providing bird habitat in the 
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region, compared to central regions of the reserve (Almazán-Núñez, et al. 2013) and we 

suggest that additional core areas in the center of the Sierra Gorda reserve could be 

highly valuable for conservation. 

 In summary, we were successful in mapping potential jaguar habitat and 

its connectivity in the Sierra Gorda reserve. In our analyses, we focused in particular on 

the effects of thresholds for habitat suitability and minimum patch size, showed that these 

two thresholds have large effects on subsequent connectivity assessments, and developed 

a new method to identify the optimal combination of these thresholds. This approach for 

assessing landscape connectivity can easily be transferred to other ecosystems and 

different species. In terms of conservation we identified the areas more suitable to 

provide habitat for jaguars in the Sierra Gorda reserve, and those that contribute most to 

their connectivity. Unfortunately, many of these areas are not currently designated as core 

zones of the reserve. These areas could host jaguars and other species that may well be 

using the landscape regardless of current protection status. Therefore local-scale studies 

such as our one might highlight the opportunities for reaching larger and integrated 

conservation goals. Managers and stakeholders may want to use our findings in 

combination to other local studies to improve their conservation efforts.  
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3-7 Tables 

Table 3-1: Predictor variables used to find potential habitat for jaguar in Sierra Gorda 

Variable Source Resolution  

Temperature  Servicio Meteorologico Nacional, based on 

meteorological stations 

1 km  

Precipitation  

 

Elevation 

Slope 

Ecoregions 

 

Landcover  

Servicio Meteorologico Nacional, based on 

meteorological stations 

Shuttle Radar Topography Mission (SRTM) 

Shuttle Radar Topography Mission (SRTM) 

Instituto Nacional de Estadistica, Geografia e 

Informatica  

Instituto Nacional de Estadistica, Geografia e 

Informatica. Serie IV. Derived of the 

classification of Landsat imagery  

 

1 km 

 

90 m 

90 m 

30 m 

 

30 m 
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3-8 Figures 

 

Figure 3-1 Sierra Gorda Biosphere Reserve in Central Mexico. The core zones are located at the 

margins of the reserve.  



134 
 

134 
 
 

 

Figure 3-2: Flow diagram of the approach that we developed to identify the best thresholds for 

habitat suitability index, HSI, and minimum patch size, MPS. We evaluated the performance of 

each combination of thresholds to describe connectivity based on the area under the curve, AUC. 

The processes are mentioned on the right while the tools used at each step are mentioned on the 

left. Only a few examples from the total of 45 combinations that we evaluated are shown here.  
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Figure 3-3: Habitat suitability in the study area as determined by our model. The most suitable 

areas are in the central-eastern part of the reserve and in the south.  
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Figure 3-4: Figure 4: Performance of the integral index of connectivity, dIIC, obtained with 

different habitat suitability thresholds and minimum patch size for the jaguar presence points. 

Patches with dark colors provide better connectivity for the patch network. For display purposes 

we do not include all the different combinations tested at different habitat suitability indexes and 

minimum patch size. No patches remained at a HSI larger than 0.8.  
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Figure 3-5: Landscape configuration metrics for different habitat suitability index, HSI, and 

minimum patch size, MPS. Both the color and size of the circles are proportionate to their 

respective metric score. 
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Figure 3-6: Performance of the integral index of connectivity obtained with different habitat 

suitability thresholds, and minimum patch size for the jaguar presence points. A better model has 

a higher area under the curve (AUC), and therefore a lighter color. No patches were left with a 

HSI larger than 0.8.  
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Figure 3-7: Connectivity of the potential habitat for jaguars in the reserve using the combination 

of thresholds for habitat suitability index 0.3 and a minimum patch size of 2km
2
. The habitat 

areas that are most important for the connectivity of the area are located in the eastern portion of 

the reserve 
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Appendix 

 

Figure A.1 Habitat suitability index for the study area obtained with 26 spatially filtered subset of 

training points (left) and with all the 91 training points (right). 
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 Figure A. 2 The contribution of the main variables to the habitat suitability model. Slopes 

are in degrees. The ecoregions are 1: Northern Meseta Central desert; 2, Veracruz coastal plain 

tropical moist forests; 3, Southern Meseta Central desert; 4, Northern Sierra Madre Oriental pine-

oak forests; 5 Tamaulipas coastal plain tropical dry forests; 6, Sierra Madre Oriental pine-oak 

forests; 7, Veracruz montane tropical cloud forests. 
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Table A.1: Pearson’s correlation coefficients for the used predictor variables  

 

 

Ecoregions Elevation Precipitation Slope Temperature Landcover 

Landcover -0.02 -0.27 0.35 0.04 0.2 1 

Temperature -0.11 -0.57 0.44 -0.03 1 

 Slope 0.23 0.2 0.04 1 

 

 Precipitation -0.1 -0.58 1 

   Elevation 0.26 1 

  

 

 Ecoregions 1 

 

    


