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Abstract 

 

People and the way they use land are the leading drivers of global environmental change. 

Ultimately, all decisions are made by local actors, but their actions are constrained by broad 

scale factors such as national policies and institutions. However, the effect of the institutional 

changes on land use is not well understood. The collapse of the Soviet Bloc in Eastern Europe 

provides a great natural experiment to test different hypotheses about the effects of socio-

economic change on land use. The overreaching goal of the dissertation was to study 

determinants of agricultural land abandonment at broad-scale (across countries) and fine-scale 

(within a given country at the hierarchical level) in post-Soviet Eastern Europe. I selected one 

uniform agro-climatic area stretching across four former Soviet Union republics – Belarus, 

Latvia, Lithuania, Russia - and former socialist Poland. Satellite data (30 m Landsat TM/ETM+ 

images) were used to quantify agricultural land abandonment in each country. The effects of 
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image dates and classification algorithm on classification accuracy was examined in the cross-

border area of Belarus-Lithuania, for on Landsat footprint with ideal image dates. Results 

revealed strong relationship between classification accuracy and certain image dates and better 

suitability of non-parametric support vector machine classifier. The classifications of agricultural 

land abandonment showed widespread abandonment reaching very high rates at province level 

and district level (up to 46% and 62% in Smolensk province of Russia respectively). Agricultural 

land abandonment rates were highest in countries with weak institutions during the transition 

period (Latvia, Lithuania and Russia). District–level statistical socio-economic analysis of 

agricultural land abandonment in Russia showed that abandonment was associated with lower 

agricultural yields during socialism and with low rural population density. Additional spatially 

explicit analysis revealed that at pixel level abandonment was also associated with greater 

distances from markets. The study provides the clear evidence of the negative effects of weak 

institutions during the transition on agricultural land-use. 
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INTRODUCTION 
 

People and their land use are among leading drivers of global environmental change, and a 

major cause of biodiversity declines and the loss of ecosystems services (Foley et al. 2005). The  

extent of human dominated landscapes now is higher than ever before. The world population is 

projected to reach over 9 billion people by 2050 (UN Millennium Project 2005). Furthermore, 

the rapid increase of the world’s population may lead to even more intensive land use, with 

likely negative side effects on the environment. We are living  in the “anthropocene” epoch 

(Zalasiewicz et al. 2010), and croplands are one of the world dominant land-cover types 

(Ramankutty & Foley 1999). 

The human domination of most of the worlds ecosystems make it necessary to understand 

coupled human-environmental interactions (UN Millennium Project 2005). However, our 

understanding of global land-use change and its drivers is still incomplete. For instance, one of 

the current land use theories predicts unidirectional land use intensification over time (Foley et 

al. 2005). However, this theory does not account for large socio-economic disturbances which 

may either accelerate land-use change or completely change its direction. Another theory is 

forest transition theory (Rudel et al. 2005), which describes a general shift from forest loss to 

forest gains as nations become more developed. However, forest transition theory was developed 

in the context of post-industrial societies and does not predicts the pace of land use changes, nor 

the relationship of land use change to socio-economic changes (Eickhout et al. 2007, Erb et al. 

2009). 

One reason why our understanding of land use change is limited is that ultimately all land-

use decisions are made by local actors, but data on local actors is rarely available for large areas 

and cumbersome to collect. In many cases, the agent (e.g., the agricultural producer) makes 
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his/her decision based on exogenous factors, local environmental and socio-economic conditions, 

and serves as a mediator between institutions and land use (Irwin & Geoghegan 2001, Lambin & 

Geist 2006). The underlying drivers of LULCC (national policies, laws on land tenure, etc.) often 

underpin the proximate factors of LULCC (Lambin et al. 2001), but it can be difficult to measure 

policies effects. The result is that there is a limited understanding of these interactions, and it is 

challenging to measure exogenous factors affecting LULCC such as governmental policies and 

LULCC. The collapse of socialism in Eastern Europe provided a unique natural experiment 

that I used in my dissertation to examine how LULCC is affected by major socioeconomic 

shifts. 

After the collapse of socialism, Eastern European countries transformed politically, 

economically and socially. Regulated markets were substituted by the open markets (Bradshaw 

& Stenning 2004). However, different countries embraced different transition approach from 

state-command to market driven economy, ranging from “shock therapy”, where governmental 

deregulation of the economy was very rapid (e.g., in Poland and Russia) to a very slow pace of 

transitioning, with strong governmental control of the economy still remaining (e.g., in Belarus) 

(Bradshaw & Stenning 2004). 

One result of the economic changes was widespread agricultural abandonment. According 

to official estimates, for example, in Estonia almost 60% of the arable land in 1989 arable had 

been abandoned by 2000 (FAO 2005). Similarly, 10-20% of the arable land was abandoned in 

Czech Republic during the first decade of transition (Doucha 1998), and 19% of the arable land 

was abandoned in Latvia (Bushmanis 2001). In Russia, more than 20 million hectares of arable 

land were abandoned during the first decade of transition (Sivkova 2003). The rates of 

abandonment in Russia were as high as 35% of the arable land in 1989 even in the agriculturally 
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most productive regions of Russia (Sivkova 2003, GOSKOMSTAT 2000, Kharitonov 2002, 

Ioffe  2005). However, statistical data can be fraught with error, and comparisons among 

countries are difficult because of different definitions of abandonment and different assessment 

methods. 

The major goal of my dissertation was thus to understand patterns and process of 

agricultural abandonment in Eastern Europe. Specifically, I examined three research questions 

in the three main chapters of my dissertations that were closely connected. In the first chapter, I 

developed and tested remote sensing methods to monitor agricultural abandonment accurately. In 

the second chapter, I applied these methods to assess post-socialist abandonment for seven 

Landsat footprints within one agro-climatic zone ranging from the Baltics, to Belarus and 

ultimately European Russia. In the third chapter, I related the observed patterns of abandonment 

in Russia to socio-economic and environmental variables that might be associated with higher 

rates of abandonment. In the following, I will briefly present the key findings of each of these 

three chapters. 

Research Question I: “How can we accurately monitor agricultural land abandonment and 

what is effect of image-dates acquisition on agricultural land abandonment classification 

accuracy?” 

In Chapter I, I examined the effect of image dates acquisition on agricultural land 

abandonment classification accuracy within one Landsat footprint (World Reference System path 

186, row 22). My results showed that the highest classification accuracy was obtained with near- 

anniversary image dates for spring, summer and fall for both pre- and post abandonment. If a full 

set of images is not available, then my results showed that specific image dates had particularly 

strong influence on the accuracy of satellite classifications of land abandonment. However, the 
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importance of different image dates differed for the two types of agricultural land abandonment: 

“abandoned arable land” and “abandoned managed grassland”. Last but not least, my results 

showed that a non-parametric classifier (support vector machines) was better suited to accurately 

map agricultural land abandonment, than a parametric classifier (maximum likelihood). The 

results from this methodological chapter were very useful to identify the best method and the 

optimal Landsat TM/ ETM+ images dates to map agricultural land abandonment across study 

area (Chapter II). 

Research Question II: “How much agricultural land was abandoned in temperate Eastern 

Europe; what was the pattern of LULCC and if agricultural abandonment was the highest 

LULCC class?” 

In Chapter II, I mapped post-socialist agricultural land abandonment in Belarus, Latvia, 

Lithuania, Poland and Russia using multi-date Landsat TM/ ETM+. My results showed 

widespread agricultural land abandonment. During the first decade of the transition (1989-1999), 

agricultural land abandonment occurred on over 30% of the agricultural land in 1989 in the study 

area. The pattern of agricultural land abandonment differed among countries. Abandonment rates 

were generally higher in those countries that had weaker institutions during the transition (e.g., 

Latvia, Lithuania and Russia). Compared to other studies on post-socialist agricultural land 

abandonment (Kuemmerle et al. 2008, Kuemmerle et al. 2009), as well as post-socialist logging 

(Kuemmerle et al. 2009, Eikeland,et al. 2004, Urbel-Piirsalu & Backlund 2009, Achard et al. 

2006), and urban sprawl (Boentje & Blinnikov 2007), agricultural land abandonment rates in my 

study areas were higher than elsewhere in Eastern Europe, and agricultural land abandonment 

was the highest land-use change class. 
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Research Question III: “What are the determinants of agricultural abandonment at coarse 

and fine scales within a given country?” 

In Chapter III, I studied determinants of agricultural land abandonment in Russia using 

the satellite classifications of agricultural land abandonment maps from Chapter II and 

comparing them to various socio-economic and biophysical data. At the district level, 

agricultural land abandonment was negatively correlated with crop yields in the pre-

abandonment period. Complementary fine-scale modeling of agricultural land abandonment for 

one province (Rjazan) highlighted local correlates of agricultural land abandonment, such as 

markets proximities and biophysical constraints for agricultural production. 

In general, the following conclusions emerged from my research. Among countries, the 

rates of agricultural land abandonment were likely determined by institutional changes and 

abandonment was more common where institutions were weaker. In  Russia, higher agricultural 

land abandonment rates at broad-scale were associated with lower crop yields prior the 

abandonment, which were likely also the area where the withdrawal of agricultural subsidies had 

the greatest consequences. At the fine scale, agricultural land abandonment was driven by 

decision making based on local socio-economic and environmental constraints. From remote 

sensing perspective, to monitor agricultural abandonment is not trivial, especially when key 

image dates are missing, as this might lead to very low classification accuracies. 
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Abstract 

Many terrestrial biomes are experiencing intensifying human land use. However, declines in 

the intensity of agricultural land-use are also common and can result in agricultural land 

abandonment. Agricultural land abandonment has strong environmental and socio-economic 

consequences, but fine-scale spatially explicit data on agricultural land abandonment is sparse, 

particularly for countries that have experienced recent institutional changes, such as Eastern 

Europe. Remote sensing can potentially fill this gap, but satellite-based detection of fallow fields 

and shrub encroachment is difficult and requires multiple images during the growing season. 

However, multi-date cloud-free imagery is often lacking. Our question was how much ‘missing’ 

images at key times of the growing season affect classification accuracy when mapping 

agricultural land abandonment. We selected a study area in temperate Eastern Europe, where 
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post-socialist agricultural land abandonment was widespread. We analyzed six near-anniversary 

cloud-free Landsat images for Spring, Summer and Fall for pre-abandonment (1989) and post-

abandonment (1999/2000). In a factorial experiment, we tested how accuracy changed for all 

possible 49 image date combinations mapping “abandoned arable land” and “abandoned 

managed grassland” separately. We also tested whether Support Vector Machines (SVM) 

performed better than maximum likelihood classifier. Conditional Kappa was 90% for 

“abandoned arable land” and 72% for “abandoned managed grassland” when all six images we 

used for classification. Results with fewer images showed a substantial decrease in the 

conditional Kappa to just 62% for “abandoned arable land” and 52% for “abandoned managed 

grassland”. Accuracy of different abandonment classes was sensitive to different seasons. For 

“abandoned arable land” it was important to use a Spring image for pre-abandonment and as 

many images as possible for post-abandonment, with a Spring image again being most 

important. “Abandoned managed grassland” required more images for pre-abandonment 

(preferably Spring plus either Summer or Fall), and at least a Spring image for post-

abandonment. To obtain a conditional Kappa of at least 70% for both abandonment classes a 

Spring and a Fall image for both pre- and post-abandonment were necessary. SVM outperformed 

maximum likelihood classifier only for “abandoned arable land”. Our results highlight that 

limited image date availability in the Landsat record places substantial limits on the accuracy of 

classifications of agricultural abandonment. However, the abundance of agricultural 

abandonment in many parts of the world, and its strong ecological and socio-economic 

consequences, suggests that better monitoring of abandonment is necessary, and our results show 

which image dates are most important to do so. 
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Introduction 

Many terrestrial biomes are experiencing intensifying human land use (Vitousek, et al., 

1997), but the extensification of agriculture is also common and can result in agricultural land 

abandonment (Baldock et al., 1996). Agricultural land abandonment has occurred throughout 

history (Hart, 1968; Yeloff & van Geel, 2007) and in many parts of the world (de Beurs & 

Henebry, 2004; Meyfroidt & Lambin, 2008; Petz & Skole, 2003). In some regions, for instance 

in Eastern Europe, agricultural land abandonment may represent the highest land-use change 

class partly in response to rapid socio-economic changes after the breakdown of the Soviet 

Union (Kuemmerle et al., 2008).  

Agricultural land abandonment has strong environmental and socio-economic consequences. 

Reforestation on abandoned agricultural land can reconnect previously separated forests 

fragments, sequester carbon (Smith, et al., 2007), and improve hydrological regimes and water 

quality (Lofgren et al., 1999; Sileika et al., 2006). Early succession on abandoned farmfields can 

increase biodiversity, but biodiversity may decline in late successional stages (Baur et al. 2006 ; 

DLG 2004). Abandoned agricultural fields can also be a source for pests (Smelanksy 2003), and 

provide fuel for wildfires (Dubinin et al., 2010; Lloret et al., 2002). Averting agricultural land 

abandonment and its socio-economic implications is an impetus of many agricultural and land-

use policies (IEEP, 2006). Agricultural land abandonment threatens traditional land use practices 

(Angelstam et al. 2003) and in some parts of the world abandonment can be negatively perceived 

by native villagers (Benjamin et al. 2007). 

Despite the environmental and socio-economic importance of agricultural land abandonment, 

information on abandonment rates and the geographic distribution of abandonment is sparse, 

particularly in countries that have experienced institutional changes, such as Eastern Europe. 
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Agricultural statistical surveys in Eastern Europe measure mainly agricultural land-use dynamics 

(e.g., how much of agricultural land was used for sowing the crops), but they are often out of 

date and sampling techniques are questionable (Ioffe et al., 2004). Moreover, statistical reports 

are spatially coarse and usually aggregated by administrative districts (Ioffe et al., 2004). Remote 

sensing can be a reliable source of information on agricultural land abandonment (de Beurs & 

Henebry, 2004; Kuemmerle et al., 2008; Peterson & Aunap, 1998). However, abandoned 

agricultural land (which we defined here as both formerly plowed fields and managed grasslands 

that are now non-managed grasslands with early-successional shrubs and forest regrowth) are not 

easily distinguishable from managed grasslands and arable fields (Kuemmerle et al., 2006; Oetter 

et al., 2001; Peterson & Aunap, 1998).  

The best classification accuracies in any land cover classification are usually obtained with 

multidate imagery that captures different parts of the growing season (Civco, 1989; Oetter et al., 

2001; Wagner, 1993; Wolter et al., 1995). Multidate imagery is particularly important when 

classifying agricultural land use, because of different timing of crops sowing and harvesting 

(Guerschman et al., 2003; Kalensky, 1974; Pax-Lenney & Woodcock, 1997). Coarse-resolution 

(250 – 1000 m) AQUA/ TERRA MODIS multidate remote sensing products (e.g., reflectance 

bands, calculated indices –NDVI, EVI) can be used to monitor agricultural land-use dynamics, 

especially where the agricultural sector is dominated by large-scale farming. However, where 

agricultural land is highly fragmented coarse-resolution products may result in false estimates of 

the actual agricultural land use (Ozdogan & Woodcock, 2007). Moreover, the relatively short 

data record MODIS imagery precludes land-use change analysis starting, for instance, during the 

socialist period in Eastern Europe. In such instance, Landsat TM/ ETM+ data is the only reliable 

source of information to monitor land-use change at fine-scale.  
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Unfortunately, fine-scale images (e.g., Landsat TM/ ETM+ images) that capture different 

phenological and land-use stages (i.e., the beginning, middle, and end of the growing season) are 

not always available. For example, when we conducted a thorough check of all major Landsat 

data archives we found that out of 995 Landsat TM/ ETM+ footprints in Eastern Europe and 

neighboring countries, there was not a single footprint for which spring, mid-summer and fall 

cloud free images were available for both a single year prior to the breakdown of the Soviet 

Union (1988 to 1990) and a single year a decade after the transition to a market economy (1998 

to 2000) (Figure 1-1 A,B). This raises the question how image dates affect classification 

accuracies for maps of agricultural abandonment, and which images dates are best. 

In addition to the effects of image dates, there is the question of which classification algorithm 

results in the highest accuracy when classifying agricultural land abandonment. Non-parametric 

machine learning classification algorithms (e.g., support vector machines, further SVM) often 

outperform parametric classifiers (e.g., maximum likelihood classifier) (Foody & Mathur, 2004; 

Huang et al., 2002). In the case of agricultural land abandonment, training data are often not 

normally distributed because different crops and grasslands have different reflectance values 

during the year, and these classes often exhibit multi-modal reflectance distributions. However, 

normal distribution is a requirement for statistical classifiers such as maximum likelihood. Thus, 

we expected that non-parametric classifiers would better classify agricultural land abandonment 

(e.g., SVM).  

Our overarching goal was to identify an approach to map post-socialist agricultural land 

abandonment in Eastern Europe accurately at a fine scale using Landsat TM/ ETM+ images. To 

accomplish this goal, our first objective was to assess the effects of image dates on the 

classification accuracy for abandoned agricultural land. Our second objective was to test if SVM 
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would result in higher classification accuracy than using maximum likelihood classifier, thus 

potentially overcoming image date dependences.  

 

Materials and methods 

Image selection 

In order to examine the effect of image dates we selected one Landsat footprint in temperate 

Eastern Europe with ideal image date availability and widespread farmland abandonment. Based 

on crop management cycles and vegetation phenologies, we assumed that three image dates 

would be crucial. The first image represented spring from an agricultural land use perspective 

(April 20th to May 20th), i.e., the period when mean daily temperatures rise above 5° C. At this 

point, soils for summer crops are still bare, but both winter crops and managed grassland are 

vegetatively active. The second image represented summer (June 20th to July 20th), the end of the 

first phase of hay harvesting, and the maturing of winter crops. The third image captured fall 

(August 20th to October 10th), when vegetation not yet dormant. Both winter crops and major 

summer crops are already harvested and tilling of soil begins, but some summer crops (e.g., corn, 

rape, beets, and potatoes) remain unharvested. We limited cloud contamination to less than 5%, 

and searched for near-anniversary images for 1989 and 1999 to capture land use at the end of 

socialism and the first decade after the transition to a market economy. Querying major Landsat 

archives (University of Maryland Global Land Cover Facility [www.landcover.org], USGS 

[glovis.usgs.gov], Eurimage Inc. [www.eurimage.com], and R&D Scanex [www.scanex.com]) 

not a single Landsat footprint met all requirements. We thus relaxed our requirement for single-

year imagery, used a spring image from 2000 instead of 1999, and selected Landsat footprint, 

World Reference System 2 (WRS 2) path 186 row 22. The selected Landsat footprint includes 
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two former Soviet Union republics (Belarus and Lithuania) plus former socialist Poland (33.5%, 

65.1% and 1.4% of the area of the Landsat footprint respectively) (Fig. 1-2 A, B,C). For this 

footprint we acquired nearly anniversary TM and ETM+ images for pre-abandonment (May 3rd 

1989, July 6th 1989, September 24th 1989) and post-abandonment (May 5th 2000, July 10th 1999, 

September 20th 1999). Agricultural statistics surveys showed declines in both in the number of 

livestock (e.g., for cattle in Belarus from 7,271 thousand heads in 1989 to just 4,685 thousand 

heads in 1999 and in Lithuania from 2,435 thousand heads to just 923 thousand heads) and crop 

production (e.g., for grain in Belarus from 7,384 thousand tons in 1989 to 3,645 thousand tons in 

1999 and in Lithuania and from 3,272 to just 2,112 thousand tons), suggesting that agricultural 

abandonment was widespread in that period (Belstat, 2002; Grodnostat, 2001; Lithstat, 2001). 

Study area 

The climate in the region is transitional from maritime to continental. Annual precipitation 

ranges between 585 and 664 mm. The mean daily temperature in July is +16.9°C, and -6.1°C in 

January. The growing period (temperatures above 5°C) ranges from 120 days in the north of the 

scene to 179 days in the south (IIASA, 2000; Stuikys & Ladyga, 1995). Topography is relatively 

flat (0 to 298 m).  

Soil types are predominantly acid soddy podzolic sandy loams as well as sands and drained 

soddy podzolic gleys. Different soils have resulted in different agricultural practices. The most 

productive soils are soddy calcerous soils, predominantly loams in Central Lithuania (western 

part of the study site), where both row crops and cattle breeding are important (Stuikys & 

Ladyga 1995). In Eastern Lithuania (central part of the study area), where acid podzolic soils are 

common, cattle breeding and dairy farming are playing an important role. In Western Belarus, 
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Grodno region (eastern part of the study area), where podzolic soils dominate, large-scale 

livestock industry and row crops are common. 

Both in 1989 and 2000, summer crops were sown on approximately 66% of the total crop land 

(Belstat 2002; Lithstat 2001). Summer crops mainly consisted of barley, rye, oats, sugar beets, 

fodder maize, potatoes, peas, summer rapeseed, and flax. Winter crops consisted of winter 

wheat, winter barley and winter rapeseed (Stuikys & Ladyga, 1995). Crop planting, harvesting 

and hay cutting follows a distinct schedule, which we used together with vegetation phenologies 

to identify the optimal image dates (Figure 1-3). 

After agricultural lands, forest is the second most important land cover type, and represented 

40% of the study area. The dominant tree species were northern spruce (Picea abies), scots pine 

(Pinus sylvestris), silver birch (Betula pendula), and pedunculate oak (Quercus robur) (Folch, 

2000; Kashtanov A.N., 1983). 

Image preprocessing 

Images were co-registered using automatic tie points (Leica Geosystems 2006). No atmospheric 

correction was performed as it does not improve classification accuracy significantly when 

multi-dates composites are classified simultaneously (Song et al., 2001). We used Landsat TM/ 

ETM+ bands 1-5 and 7. Clouds and cloud shadows were masked out using iterative automatic 

clustering (ISODATA) (Leica Geosystems 2006) and manual digitizing. Total cloud 

contamination was < 5% of the study area, primarily covering forests. 

Classifications training and reference data collection 

The classification scheme focused on agricultural transition classes (Table 1-1), but also included 

forest clearcuts and forest regeneration, because they can potentially be confused with 

agricultural land abandonment. 
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Training and validation data were selected via a three-step stratified random sampling approach 

modified from Edwards et al. (1998). First, we selected cloud-free 1.28-m resolution QuickBird 

and IKONOS images (Table 1-2) available via GoogleEarthTM mapping service which covered 

33% of the Landsat footprint, including all major soil and land use types (Fig. 1-2B). Since 

different soils correspond to different agricultural practices or land cover types (e.g., forests 

dominate arenosols), we cross-checked the percentage of major type of soils within and outside 

of high-resolution footprints used for stratification of reference data sampling (Table 1-3), and 

found no major differences. 

Second, we derived a forest versus non-forest mask for the QuickBird and IKONOS images. For 

Lithuania, we used an expert-based manual land cover classification of Landsat TM/ ETM+ and 

SPOT data at 100-m resolution for the year 2000 conducted by the Coordination of Information 

on the Environment-CORINE project (EEA, 2006). Forests were classified in the CORINE 

project with accuracies over 86%. For Belarus we used a 1:500,000 GIS product based on circa 

1989 digitized Soviet topographic maps. Stratification forest/ non-forest was used to concentrate 

field-based reference data collection for agricultural and agricultural land abandonment classes. 

Finally, we randomly placed reference points within the non-forested areas that were within 300 

m off roads, which we had digitized from the QuickBird and IKONOS images to facilitate field 

visits (Fig. 1-2C). To avoid spatial autocorrelation, we separated reference points by at least 500 

m, after we estimated the range of spatial autocorrelation with variograms using GS+ 

geostatistical package (Gammadesign, 2010). 

Out of a total of 1,178 randomly placed points, 250 points on agricultural land were visited in 

the field in 2007 and 2008. Points were geolocated using a non-differential GPS. To avoid 

potential error due to the time difference between our fieldwork (2007 and 2008), the high-
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resolution imagery (2000 to 2005), and the Landsat images used for the classification (2000 and 

earlier), we used a Landsat 5 image for May 20, 2007 to verify that no land use change took 

place between 2000 and 2007. 

Using semi-structured questionnaires, where it was possible, we reconstructed the land 

management in 1989 and in 1999/2000 by interviewing local farmers and agronomists. Where 

possible, we also measured the height and age (by counting the tree rings) of shrubs and trees on 

sites that appeared to be agricultural land to ensure that these were in use in 1989, and abandoned 

by 1999/2000. For non-agricultural classes, reference data were collected from the same sources 

used for the stratification and by visual interpretation of the Landsat images. 

Classification methods  

For the classification we used both a non-parametric Support Vector Machines (SVM) and a 

parametric maximum likelihood classifier as our classification algorithms. The training data for 

the maximum likelihood classifier consisted of polygons, which we obtained by selecting 

representative areas during field campaigns and using the 1.28-m resolution QuickBird and 

IKONOS images available via GoogleEarthTM mapping service (Table 1-2). We compared 

classifications where all the training polygons for one land cover class were merged into one 

training signature, with classifications where the training polygons were clustered (Ward 

Euclidian distance hierarchical clustering) into 124 different spectral types. Tests showed no 

substantial difference in classification accuracies among training approaches for the maximum 

likelihood classifier, and we used only one averaged signature for each land cover class in the 

classifications to save processing time. 

SVM is a non-parametric machine-learning classifier, that often outperforms other classifiers 

(Foody & Mathur, 2004; Huang, et al., 2002). SVM achieves optimal class separation by fitting a 
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hyperplane based on training data. SVM is well suited to separate multimodal classes, which 

parametric-based classifiers (e.g., maximum likelihood classifier) have difficultly to classify 

accurately. SVM captures agricultural land abandonment well especially when optimal dates are 

available (Kuemmerle et al., 2008), but have not been tested in regards to their ability to handle 

suboptimal image dates nor compared to parametric classifiers in their use for abandonment 

mapping. We used the SVM implemented in ImageSVM (Rabe et al., 2009) based on LIBSVM 

(Chang & Lin, 2001), which can be run as stand-alone application via IDL Virtual MachineTM or 

as an add-on to ENVITM. To select support vectors, ImageSVM automatically selects the 

optimum Gaussian radial basis function parameter ( ) and Regularization Parameter (C) within a 

range from 0.1 to 1000. We used a “one-against-one” approach for multi-class SVM 

classifications to avoid unbalanced classifications that have been reported for the “one-against-

all” approach (Melgani & Bruzzone, 2004). 

SVM is computationally demanding, and that precluded using exactly the same training data 

that we had selected for the maximum likelihood classification (Huang et al., 2002). Based on 

several sampling experiments and assessing accuracies, we randomly sampled 300 to 1000 

training pixels per class from the training polygons (Table 1-1). We tested several sets with 

different number of sampled training pixels and performed the classifications using SVM with 

full load of image dates into image dates composite to ensure that selected final training sample 

lead to the stability of classification in terms of the accuracy. To ensure that differences between 

SVM and maximum likelihood classifications were not caused by the different training data sets, 

we also trained selected SVM with the training set used for the maximum likelihood classifier, 

and we trained the maximum likelihood classification with the subset of the training data used 

for the SVM. 
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Accuracy assessment 

Classification accuracy was estimated with contingency matrices. We calculated the Kappa 

coefficient for the overall classification, conditional Kappa coefficients for each class, and user’s 

and producer’s accuracies. We used the non-parametric McNemar’s test with continuity 

correction to see if the SVM classifications were statistically more accurate than the 

corresponding maximum likelihood classifications (Foody, 2004). For this test, both “abandoned 

arable land” and “abandoned managed grassland” were recoded as “one” and all other classes as 

“zero”. Statistical tests we also adjusted for false discovery rate (FDR) in order to avoid 

incorrectly rejected null hypotheses (Benjamini, & Yekutieli, 2001). Classification results were 

grouped according to the number of Landsat images used in the pre- and post-abandonment 

period (i.e., “one and one”, “one and two” and “two and one”, “one and three” and “three and 

one”, “two and two”, “two and three” and “three and two”, and “three and three” image date 

combinations). In total, there were 49 possible combinations for each agricultural land 

abandonment class, and all of them were tested.  

  

Results 

The best classifications for agricultural land abandonment were acquired using the SVM 

classifier. Using SVM, among the 49 image date combinations, overall Kappa using a 12 class 

catalog varied between 73 and 88% and for 22 image date combinations overall Kappa was 

higher 80% (Figure 1-4). 

Generally, we observed higher user’s accuracies and lower producer’s accuracies mapping for 

both agricultural land abandonment classes (Figure 1-5, 1-6). 
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A check of the land cover distribution inside and outside the areas covered by the Quickbird 

imagery showed similar proportions for each class according to our best overall classification 

with “three and three” Landsat TM/ETM+ footprints for both pre- and post- abandonment (Table 

1-4), suggesting that the limited availability of Quickbird images did not bias our accuracy 

assessments. 

Classification accuracy was consistently lower for "abandoned managed grassland" compared 

to "abandoned arable land" (Figure 1-4). For “abandoned arable land” conditional Kappa ranged 

between 54 and 93% and for “abandoned managed grassland” between 50 and 75%. Seventeen 

image date combinations yielded conditional Kappa of at least 70% for “abandoned arable land” 

and sixteen image date combinations yielded a conditional Kappa of at least 80%. For 

"abandoned managed grassland", eleven image date combinations yielded conditional Kappa of 

at least 70 %. Only ten image date combinations yielded conditional Kappa of at least 70 % for 

both classes simultaneously. Overall Kappa was highest when classifying maximum number of 

images (three) for pre-abandonment and post-abandonment. However, for “abandoned arable 

land” a “two and three” image combination was the best (Spring and Summer 1989 versus 

Spring, Summer, and Fall 1999/2000), and for “abandoned managed grassland” a “three and 

two” combination (Spring, Summer, and Fall 1989 versus Spring, and Summer 1999/2000) 

resulted in the highest classification accuracy. 

All six “two and three” and “three and two” image date combinations yielded conditional 

Kappa of at least 80% for “abandoned arable land” and at least 70% for “abandoned managed 

grassland” respectively. For “abandoned arable land”, it was best to include either Spring and 

Summer, or Spring and Fall images for pre-abandonment and all three images for post-
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abandonment. To detect “abandoned managed grassland” it was best to include Spring and 

Summer images for post-abandonment and all three images for pre-abandonment. 

When only two images were analyzed for each year (“two and two” image date combinations 

with 9 possible image dates combinations) conditional Kappa ranged between 70 and 84 % for 

“abandoned arable land”. For “abandoned managed grassland” conditional Kappa ranged 

between 62 and 70 %. Only two “two and two” image date combinations yielded conditional 

Kappa values of at least 70% for both abandonment classes. For “abandoned arable land” it was 

best to have Spring and Summer or Spring and Fall images for both pre- and post-abandonment 

periods, or Summer and Fall images for pre-abandonment and any combination with a Spring 

image for post-abandonment. For “abandoned managed grassland” it was best to use Spring and 

Summer for pre-abandonment and Spring and Summer or Spring and Fall for post-abandonment. 

In the case of “one and three” and “three and one” image dates (6 possible combinations), 

conditional Kappa ranged between 54 and 90% for “abandoned arable land”. For “abandoned 

managed grassland” the range of conditional Kappa was between 50 and 75%. No single image 

date combination yielded conditional Kappa values of greater than 70% for both abandonment 

classes. In the case of “abandoned arable land” it was best to have three images for post-

abandonment and a single Spring or Fall image for pre-abandonment. In the case of “abandoned 

managed grassland” the accuracy was highest with three image dates for pre-abandonment 

period and any single image for post-abandonment. 

In the case of “one and two” and “two and one” image dates (18 possible combinations) 

conditional Kappa ranged between 54 and 86% for "abandoned arable land". For "abandoned 

managed grassland" conditional Kappa ranged between 50 and 75%. Three image date 

combinations yielded conditional Kappa values between 70 and 75% for both abandonment 
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classes simultaneously. Similarly to “one and three” image date combinations, “abandoned 

arable land” was best classified when two post-abandonment images were included, and when 

the single image was from either Spring or Summer for pre-abandonment. If only one image was 

available for post-abandonment then Spring was best. For “abandoned managed grassland” it 

was best to use Spring and Fall for pre-abandonment and either Spring or Fall image dates for 

post-abandonment. If only one image date was available for pre-abandonment, Spring was best. 

When only one image was available for both pre-abandonment and post- abandonment (“one 

and one” image date combinations with 9 possible image date combinations), conditional Kappa 

for "abandoned arable land" varied between 62 and 73% and for "abandoned managed grassland" 

between 52 and 70%. No image date combination yielded conditional Kappa values greater than 

70% for both abandonment classes. Generally, for "abandoned arable land" conditional Kappa 

was at least 70% when any pre-abandonment image was combined with Spring for post-

abandonment. For “abandoned managed grassland” Spring was best for pre-abandonment and 

either Spring or Fall for post-abandonment. 

Out of the 49 possible image date combinations, only 13 were statistically significantly 

different when comparing maximum likelihood and SVM in their ability to map “abandoned 

arable land” and none were different when mapping “abandoned managed grassland” (Figure 1-

4). Due to a higher share of arable land in the study region (84% of total agricultural land in 

2000) it was more important to detect accurately “abandoned arable land” and thus we suggest 

that SVM should be considered a better classifier than maximum likelihood to map agricultural 

land abandonment. 

Altogether, our results indicated widespread agricultural land abandonment in the study area. 

The best classification (SVM based classification for 6 image dates composites) revealed that by 
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2000 22% of the agricultural land in 1989 was abandoned (273,500 ha within the area of our 

Landsat footprint) (27% abandoned in Lithuania (222,000 ha), and 13% in Belarus (51,500 Ha)). 

In Lithuania 18% of the 1989 arable land (153,000 ha) and 8% of the 1989 managed grassland 

(69,000 ha) was abandoned by 2000; in Belarus the rates were 8% (33,500 ha) and 5% (18,000 

ha) respectively.  

 

Discussion 

Our methodological analysis showed that abandoned agriculture could be mapped from 

Landsat satellite imagery with accuracies exceeding 80%. However, such high classification 

accuracies required multi-date imagery, ideally three images (Spring, Summer, and Fall) each for 

a single year in both the pre- and the post-abandonment period. When fewer images were 

analyzed, thus reflecting the conditions for most of Landsat footprints for which optimally timed 

images do not exist (Figure 1-1, Figure 1-6), then classification accuracy dropped markedly, and 

was as low as 54% of conditional Kappa for “abandoned arable land” and 50% for “abandoned 

managed grassland”. However, some suboptimal image date combinations can map abandoned 

agricultural lands accurately (Figure 1-4). 

In addition to the number of images, we found that the specific image dates mattered greatly, 

but the best dates differed for the two abandonment classes. Generally, “abandoned arable land” 

was more accurately mapped than “abandoned managed grassland”. For “abandoned arable land” 

it was crucial to have at least one image date from any season for pre-abandonment and at least a 

Spring image for post-abandonment, allowing to reach conditional Kappa of 70%.  In general, 

there was no difference among the dates of the pre-abandonment image; all pre-abandonment 

images captured agriculture pretty well. The Spring image enabled distinguishing new vegetative 
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growth of winter crops and managed grasses, senescent vegetation on fallow fields, and exposed 

soil after tilling for summer crops, which represented 66% of the total crop area in 2000. The 

Summer image allowed to separate agricultural land associated with rigorous crops, matured 

crops, exposed tilled soil, grasslands after the first campaign of hay cutting, actively used 

managed grasslands for livestock grazing and non-managed grassland encroached by shrubs. The 

Fall image captured exposed soil after harvesting summer crops, or tilled soil before sowing 

winter crops from actively managed grasslands and from abandoned agricultural lands with 

abundant senescent herbaceous vegetation and shrubs. However, if more images were available, 

then allocation of more post-abandonment images was most beneficial in order to reach higher 

accuracies of “abandoned arable land” with inclusion Spring or/ and Summer images as post-

abandonment image dates.  

The accurate classification of “abandoned managed grassland” required allocation of as many 

images as possible for pre-abandonment, with a preferable inclusion of a Spring image for pre-

abandonment. The inclusion of as many pre-abandonment images as possible was particularly 

important for accurate mapping of “abandoned managed grassland. We were surprised that the 

Summer image was of relatively minor importance, especially for the detection of “abandoned 

managed grassland”. This might be due to similar reflectance of managed and non managed 

grasslands in the summer, especially if hay cutting did not occur before image acquisition. Fall 

and Spring images captured unmanaged grasses with accumulated non-photosynthetic vegetation 

at the end of the growing season in Fall, or the delay of green-up for the same reasons in Spring. 

Thus, it was better to allocate either a Spring and Fall combination or Spring or Fall image in 

combination with a Summer image for pre-abandonment. 
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To have roughly equal accuracies for both abandonment classes (e.g., conditional Kappa for 

both abandonment classes equaling to at least 70%), it was better to have Spring and Fall images 

for pre-abandonment and Spring or Fall images for post-abandonment. When only one image 

was available for pre-abandonment, it was best to have a Fall for pre-abandonment and both 

Spring and Fall images for post-abandonment. 

“Abandoned managed grassland” was more difficult to map accurately than “abandoned 

arable land” for several reasons. Managed grasslands typically occur in this region where the 

soils are marginal (e.g., highly acidic soils, dried peatlands, and fens and mires converted for 

managed grasslands). Succession is slower on these marginal sites, and that means that there will 

be less shrub encroachment than on previously fertilized and meliorated arable land that became 

abandoned. Succession may also be slower on former grasslands compared to arable land, 

because a dense sod and senescent vegetative material may inhibit the establishment of woody 

vegetation.  

From a remote sensing perspective, the change in the reflectance that occurs when arable land 

is abandoned is very marked, and that makes it easier to classify than the more gradual change 

from managed to abandoned grasslands. Our accuracy assessment showed that the classes 

“managed grassland”, “abandoned managed grassland” and “shrubs” were commonly 

misclassified even with optimal image dates (Table 1-5A), and errors increased when key dates 

were missed (Table 1-5B, C). Since hay cutting occurs in our study area only once or twice a 

year, it was crucial to capture areas right after they were cut. If no satellite image was available 

for that time, then it became very difficult to assess if grassland management actually took place 

in a given year. 
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Comparing the performance of SVM and maximum likelihood classifiers, the SVM performed 

particularly well when the change in the reflectance was drastic (“abandoned arable land”). SVM 

also was better at classifying image dates combinations containing summer images, and SVM 

performed better than maximum likelihood at classifying “abandoned arable land” in few cases 

when image dates did not match (e.g., Spring image for pre-abandonment and Summer image for 

post-abandonment or Spring and Fall instead of Spring and Spring). Moreover, SVM performed 

better than maximum likelihood at classifying image-date combinations when more image dates 

were available (e.g., “two and two”, “two and three”, “three and three” and “three and three” 

image dates combinations). However, SVM did not perform as well as maximum likelihood 

classifier to detect “abandoned managed grassland”. Parametric approaches may be more suited 

to map “abandoned managed grassland” especially when the number of distinctive support 

vectors is limited and complex support vectors collection is required for the successful training 

of the SVM (Foody & Mathur, 2006). When we examined the support vectors for the 49 

combinations in detail, we found that the number of support vectors increased by a factor of two 

to three when we mapped less separable classes such as “abandoned managed grassland” or 

when image dates were suboptimal. Thus, while we considered SVM a preferable classification 

method for agricultural land abandonment, the overall classification performance of SVM, 

specific classes mapping (e.g., mapping “abandoned managed grassland”), and longer 

computation time (classification time ranged up to several days for all six images), still leaves 

room for parametric based classifiers and other non-parametric classifiers (e.g., decision trees). 

In our study, maximum likelihood classifier was a reasonably accurate, and comparatively fast 

classifier. 
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In our study we tested the effects of image dates acquisition on classification accuracy for one 

available footprint in temperate Eastern Europe. While ideally it might be interesting to compare 

the stability of the acquired results elsewhere , we were limited to conduct such rigorous analysis 

for another Landsat TM/ETM+ footprint in Eastern Europe. However, as this study was designed 

to facilitate mapping agricultural land abandonment for wider area, acquired results significantly 

helped us to allocate important image dates and classify accurately agricultural land 

abandonment for 8 Landsat TM/ETM+ footprints in temperate Eastern Europe (Prishchepov et 

al., in preparation). 

Finally, our results indicated that classification algorithms could not overcome limitations 

imposed by limited image availability. This is unfortunate, because there is not a single footprint 

among the 995 Landsat footprints in Eastern Europe for which there are three cloud-free images 

in a single year available for both pre-abandonment (1988-1990) and post-abandonment (1998-

2000) (Figure 1-7A). Furthermore, only two footprints have “two and three” and “three and two” 

images, five tiles “two and two” images, three tiles “one and three” and “three and one” images 

available. Our results highlight the importance of multi-seasonal imagery for accurate 

classifications of agricultural land abandonment, but the necessary multi-seasonal imagery is 

rarely available.  

Image availability improved when we included images with up to 5% cloud contamination and 

relaxed image date constraints to allow image dates from different years (e.g., Spring from 1988, 

Summer from 1989 and Fall from 2000) (Figure 1-7B). In this case, 35 Landsat tiles had all three 

image dates for both pre- and post-abandonment, and 75 tiles provided “two and three” and 

“three and two” image dates combinations. However, imagery from multiple years will result in 

reduced classification accuracy since land cover change may occur among years. 
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In other words, even after relaxing the temporal and cloud constraints, results showed that few 

Landsat footprints have all three images for pre- and post- abandonment available in the Landsat 

archives. Even with the freeing of the USGS Landsat archives, the actual available image dates 

suited for change detection are limited. Thus a better understanding of the effects of sub-optimal 

image dates on change detection accuracies, as provided in our study, is important to provide 

realistic expectations of the quality of land abandonment maps that can be obtained from satellite 

imagery for large areas. 
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Tables 

Table 1-1: Class catalog, training data for the SVM and maximum likelihood classifiers, and 

validation pixels. 

Class Name Acronym 

Number of 

validation 

pixels 

Number of 

training pixels 

used for 

maximum 

likelihood 

classifier 

Number of 

training pixels 

used for SVM 

Forest F 380 7311 731 

Clearcut Cl 92 1527 229 

Regrowth Rg 42 660 198 

Arable land in pre- and post-abandonment Ar 154 10494 840 

Transition from arable land to managed 

grassland 

ArMGr 70 1637 327 

Abandoned arable land ArAb 102 1241 434 

Managed grassland in pre- and post-

abandonment 

MGr 133 893 402 

Abandoned managed grassland MGrAb 42 1051 399 

Transition from managed grassland to 

arable land 

MGrAr 44 1656 331 

Non-managed grassland and shrubs in pre- NGrShr 32 1145 401 
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and post-abandonment 

Wetland Wt 33 3969 397 

Impervious surface, bare soil, open peat 

quarries, water 

Other 54 15289 438 
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Table 1-2: High resolution satellite images used to support ground based training and reference 

data collection. 

ID Year Month Day 

Digital Globe Image 

ID 

Cloud Cover 

(%) 

1 2002 9 25 101001000147BF01 0 

2 2002 7 28 1010010000E18301 1 

3 2002 7 10 1010010000C2DE02 3 

4 2002 7 10 1010010000C2DE03 9 

5 2003 5 25 1010010001ED8B01 4 

6 2003 6 4 1010010001F4A302 0 

7 2003 9 23 10100100024FCB01 0 

8 2004 8 4 1010010003251301 4 

9 2004 7 30 1010010003232C02 4 

10 2004 7 30 1010010003232C03 1 

11 2004 7 30 1010010003232C03 1 

12 2004 7 30 1010010003232C20 0 

13 2004 9 7 10100100033BA501 8 

14 2005 7 10 10100100045C8B01 2 

15 2005 7 10 10100100045C8B02 7 

16 2005 7 15 10100100045F6701 7 

17 2006 6 30 10100100050E3D0E 0 

18 2007 4 27 1010010005986700 8 
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19 2007 10 14 101010010007434E 0 

20 2007 4 17 1010010005942903 1 

21 2007 4 17 1010010005942904 0 

22 2007 4 17 1010010005942905 0 

 



 

42 
 

 

Table 1-3: Soil types distribution inside and outside Quickbird and IKONOS footprints. 

 

Class Inside high resolution 

footprints (%) 

Outside high-resolution 

footprints (%) 

Histosols 6 10 

Podzoluvisols 10 7 

Luvisols 28 44 

Arenosols 56 38 
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Table 1-4: LULCC classes within and outside Quickbird and IKONOS images according to the 

best land cover classification (6 images, SVM classifier) 

 

Histosols Podzoluvisols Luvisols Arenosols 

Class 

Inside 

high 

resolution 

images 

(%) 

Outside 

high-

resolution 

images  

(%) 

Inside 

high 

resolution 

images  

(%) 

Outside 

high-

resolution 

images  

(%) 

Inside 

high 

resolution 

images  

(%) 

Outside 

high-

resolution 

images  

(%) 

Inside 

high 

resolution 

images  

(%) 

Outside 

high-

resolution 

images  

(%) 

F 28  24  31  37  26  24  49  47  

Cl 3  3  3  3  4  5  5  6  

Rg 5  8  5  5  5  3  6  5  

Ar 20  23  16  16  15  15  8  8  

ArMGr 6  5  7  6  10  12  4  4  

ArAb 6  6  7  5  9  7  6  6  

MGr 6  4  6  4  9  10  4  3  

MGrAb 3  1  3  2  4  3  2  2  

MGrAr 4  5  4  4  6  7  2  2  

NGrShr 12  13  12  13  7  6  6  5  

Wt 3  3  3  4  5  7  4  7  

Other 4  3  2  2  1  1  5  4  
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Table 1-5: Confusion matrixes of A) the best overall classification, B) the worst case for “Abandoned arable land”, and C) the worst 

case for “Abandoned managed grassland” using SVM 

1-5A: Best overall classification using SVM and Spring, Summer and Fall images for both pre- and post-abandonment. 

   Reference                         

Classification F Cl Rg Ar ArMGr ArAb MGr MGrAb MGrAr NGrShr Other Wt Total 

User’s 

Accuracy 

(%) 

F 371 10 2         1     1 1 386 96.1 

Cl   78                 1   79 98.7 

Rg 5 3 39             2 2 2 53 73.6 

Ar 2     136 1 3     3       145 93.8 

ArMGr   1   3 63 2 1     1     71 88.7 

ArAb       6 2 93             101 92.1 

MGr         1   110 2 2       115 95.7 

MGrAb   0       2 10 31 1 4     48 64.6 

MGrAr       7     2   37       46 80.4 
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NGrShr 1     1 3 2 10 8   25     50 50.0 

Other       1         1   50   52 96.2 

Wt 1   1                 30 32 93.8 

Total 380 92 42 154 70 102 133 42 44 32 54 33 1178  

Producer’s 

Accuracy 

 (%) 97.6 84.8 92.9 88.3 90.0 91.2 82.7 73.8 84.1 78.1 92.6 90.9   90.2 
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1-5B: Worst case for “Abandoned arable land” using SVM, pre-abandonment Spring and Fall images and one Summer  post-

abandonment image. 

  Reference                         

Classification F Cl Rg Ar ArMGr ArAb MGr MGrAb MGrAr NGrShr Other Wt Total 

A User’s 

Accuracy 

(%) 

F 338 7 2         1       1 349 96.8 

Cl 29 83 1                 1 114 72.8 

Rg 7 1 37 1           1   3 50 74.0 

Ar 2     125 14 30 1 1 1   2 1 177 70.6 

ArMGr   1   12 40 12 6     2 1   74 54.1 

ArAb       6 8 58   2         74 78.4 

MGr       1 2   75 4 3       85 88.2 

MGrAb         1   30 26 3 4     64 40.6 

MGrAr       8     13 4 31       56 55.4 

NGrShr 1   1   3 2 8 4 3 25     47 53.2 
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Other 1     1 2       3   50   57 87.7 

Wt 2   1               1 27 31 87.1 

Total 380 92 42 154 70 102 133 42 44 32 54 33 1178  

Producer’s 

Accuracy 

 (%) 88.9 90.2 88.1 81.2 57.1 56.9 56.4 61.9 70.5 78.1 92.6 81.8   77.7 
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1-5C: Worst case for “Abandoned managed grassland” using SVM, Spring and Summer pre-abandonment images and Summer post-

abandonment image. 

  Reference                         

Classification F Cl Rg Ar ArMGr ArAb MGr MGrAb MGrAr NGrShr Other Wt Total 

User’s 

Accuracy 

(%) 

F 357 6 1         1       1 366 97.5 

Cl 12 85 2                 2 101 84.2 

Rg 4 1 33               2 1 41 80.5 

Ar 2     131 14 18 14 2 5 2 2 1 191 68.6 

ArMGr       5 39 9 3 3   4 1   64 60.9 

ArAb       11 10 72 1           94 76.6 

MGr         2   76 6 1       85 89.4 

MGrAb         1 1 20 22 5 3     52 42.3 

MGrAr       2   1 8   30 1     42 71.4 

NGrShr 2   6 1 2 1 10 8   22   1 53 41.5 
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Other 1     4 2   1   3   48   59 81.4 

Wt 2                   1 27 30 90.0 

Total 380 92 42 154 70 102 133 42 44 32 54 33 1178  

Producer’s 

Accuracy 

(%) 93.9 92.4 78.6 85.1 55.7 70.6 57.1 52.4 68.2 68.8 88.9 81.8   80.0 
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Figure Captions 

Figure 1-1. Cloud free image dates availability for spring, summer and fall across Eastern Europe. 

A: Landsat footprints for which three images are available in one of three pre-abandonment years 

(1988-1990). B: Landsat footprints for which three images are available in one of three post-

abandonment years (1998-2000). 

Figure 1-2: A: Location of the study area in Eastern Europe. B: Footprints of high-resolution 

satellite images available in Google Earth. C: Reference points sample using the three step-

stratification approach. 

Figure 1-3: Crop planting and harvesting schedule in the study area and corresponding Landsat 

image date selection. Adopted from Bujauskas & Paršeli nas (2006). 

Figure 1-4: Accuracy of “Abandoned arable land” and “Abandoned managed grassland” detection 

for all 49 possible image combinations using SVM as the classification algorithm. 

Figure 1-5: User’s accuracy of “Abandoned arable land” and “Abandoned managed grassland” 

detection for all 49 possible image combinations using SVM as the classification algorithm. 

Figure 1-6: Producer’s accuracy of “Abandoned arable land” and “Abandoned managed grassland” 

detection for all 49 possible image combinations using SVM as the classification algorithm. 

Figure 1-7: A: Image date combinations available with a 0% cloud constraints when selecting a 

spring, summer and fall image during three pre-abandonment years (1988-1990) and during three 

post-abandonment years (1998-2000). B: Image date combinations available with a 5% cloud 

constraints when selecting a spring, summer and fall image during three pre-abandonment years 

(1988-1990) and during three post-abandonment years (1998-2000). 
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Figure 1-4. 
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Figure 1-5. 
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Figure 1-6. 
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Abstract 

Rapid socio-economic and institutional changes may accelerate rates of land use and land cover 

change (LULCC). The collapse of socialism and the transition from state-command to market-

driven economies in Eastern Europe represented such a rapid socio-economic change, but the 

transition’s impact on LULCC is not well understood. Previous studies suggest that agricultural land 

abandonment has been widespread in Eastern Europe, but abandonment rates can not be compared 

among countries because of different assessment methods, and varying environmental conditions. 

Our goal was compare agricultural land abandonment rates among former Soviet republics in 

Eastern Europe that had common starting point, but chose different transition approaches towards a 
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market economy. We studied one agro-climatic zone stretching across four former USSR republics 

(Belarus, Latvia, Lithuania, and European Russia) and formerly socialist Poland. Using eight 

Landsat TM/ETM+ tiles with multi-date scenes centered on 1989 (the end of socialism) and 1999 

(the first decade after the collapse of socialism) we classified land cover change using a support 

vector machine. Classifications showed marked differences in the rates of post-socialist agricultural 

land abandonment among countries and rates coincided with different “transition” approaches from 

state command to open market economies. Within classified Landsat TM/ETM+ footprints the 

highest statistically error adjusted abandonment rates were observed for Latvia (39% +/- 2.6% of all 

agriculture in 1989) followed by Russia (31%+/- 1.4%), Lithuania (28% +/- 1.4%), Poland (14% +/- 

2%) and Belarus (12% +/- 1.2%). Cross-border areas exhibited striking differences among countries, 

likely connected to different transition approaches, such as in the Belarus-Russia cross-border area 

(10% +/- 1.2% and 47% +/- 2.2% abandonment respectively). Belarus, which largely retained 

governmental control of the agricultural sector, had the least agricultural abandonment, while some 

of the highest agricultural land abandonment rates were observed in neighboring Russia, which 

adapted a more liberal transition approach to a market economy. In addition to variation in 

agricultural land abandonment rates among countries, we observed large variation in abandonment 

rates within countries. For example in Russia, abandonment reached up to 46% +/- 2.2% at the 

provincial level (Smolensk province) and 60% at the district level (Ugranskij district, Smolensk 

province). In general, our results highlight that rapid socioeconomic changes had strong effects on 

LULCC, but abandonment rates and patterns were mediated by institutional settings and policies. 

Keywords: farmland abandonment, institutional change, land use and land cover change, socio-

economic transition, post-socialist, USSR. 
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Introduction 

People, and the way they use land, are the most important drivers of global land cover change, 

affecting biodiversity, ecosystem services, and ultimately human well-being (Foley, et al., 2005, 

Millennium Ecosystem Assessment, 2005). Ultimately, all land use decisions are made by local 

actors (e.g., land owners), but their actions are constrained by broad-scale factors such as national 

policies and global markets (Geist, et al., 2006). Increasingly, evidence suggests that these broad-

scale factors are at the heart of land-use and land-cover change trends (further, LULCC), and 

globalization is rapidly changing the way countries interact and impact one another (Eickhout, et al., 

2007, Erb, et al., 2009). For example, drastic declines in the Russian domestic meat production since 

1990 has resulted in a steep increase in meat imports from Brazil (Novozhenina, et al., 2009), 

contributing to the factors driving deforestation in Amazonia (Kaimowitz, et al., 2004). However, 

the effects of broad-scale factors on local decision-making, and thereby LULCC, are not well-

understood, partly because high-level causes of land use change such as socio-economic and 

institutional transformation often occur gradually which makes it difficult to assess their relative 

importance. 

When societies and institutions change rapidly, opportunities arise for better understanding drivers 

and processes of land use change. Possibly the most drastic socio-economic and political changes in 

the late 20th century was the dissolution of the Soviet Bloc and the region’s shift from state-

command to marked-driven economies (further, transition). Dismantling of the state-command 

system, introduction of free-market principles, and the withdrawal of governmental regulation and 

support caused fundamental changes in all sectors of economy, including agriculture (Lerman, et al., 

2004). Official statistics and case study evidence suggest that the most common land use changes 

resulting from the transition were urban sprawl (Boentje & Blinnikov, 2007), increased logging 

(Achard, et al., 2006, Brukas, et al., 2009, Kuemmerle, et al., 2009, Urbel-Piirsalu & Backlund, 
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2009) and decreased logging (Pallot & Moran, 2000, Eikeland, et al., 2004, Bergen, et al., 2008), 

and agricultural land abandonment (Ioffe & Nefedova, 2004, Bergen, et al., 2008, Kuemmerle, et al., 

2008, Kuemmerle, et al., 2009, Baumann, et al. 2010, Prishchepov, et al. 2010). Among these, the 

agricultural land abandonment was probably the most drastic and widespread land use changes, 

globally possibly one of the most extensive land-use changes between 1990 and 2000 (Ioffe, et al., 

2004, Henebry, 2009). The exact rates and patterns of post-Soviet land abandonment, however, 

remain uncertain. The problem is that the official statistics are of varying quality and difficult to 

compare over time and among countries in Eastern Europe (Ioffe & Nefedova, 2004). Moreover, 

existing studies using remote sensing focused on fairly small regions with varying environmental 

conditions, and relied on different approaches and abandonment definitions. 

While direct comparisons among different case studies are thus difficult, existing studies 

emphasize the diversity of rates and patterns o f abandonment, and suggest that different transition 

approaches to land-use change may explain these differences. For example, agricultural land 

abandonment rates differed between Poland, Slovakia and Ukraine (14%, 13% and 21% of 

abandoned agricultural land, respectively, Kuemmerle, et al., 2008) in the cross-border region of 

Eastern Carpathians, where each of these countries adopted different types of agricultural sector 

restructuring and land reforms. Further to the north, post-socialist agricultural abandonment rates 

differed in the cross-border region of Belarus and Lithuania (13% +- 1.2% and 27% +-1.4% of 

abandoned agricultural land, respectively, Prishchepov, et al., in review). Similarly, between 1990 

and 2005, abandonment rates differed between Albania (28% of total agricultural land, Mueller & 

Munroe, 2008) and Romania (21% of total agricultural land, Muller, et al., 2008, Kuemmerle, et al., 

2009), also two countries that selected different strategies of post-socialist land reform. 

Unfortunately, no comprehensive and consistent database of land-use change data exists for the 

post-socialist period, that would allow assessing the relative importance of different transition 

strategies and land reforms on agricultural land abandonment. 
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The lack of consistent land-use change data is unfortunate because Eastern Europe represents an 

ideal “natural experiment” (Diamond, 2001) to examine the effects of rapid socio-economic changes 

on LULCC, and to examine how different transition approaches from state-command to market 

driven economies may have modulated those effects. Eastern European countries chose very 

different transition approaches (Lerman, et al., 2004), yet environmental conditions are fairly similar 

across large areas. Ideally, an open-market system would be characterized by secured land 

ownership, accessibility of credits, existence and competitiveness of different forms of 

landownership (e.g., privatization, restitution, and access to land for both national and international 

land owners), and functioning land market as a mediator between successful and unsuccessful 

farmers (Deininger, 2003, Lerman, et al., 2004). These criteria would enable true competitiveness 

for agricultural land use (Capozza & Helsley, 1989, Irwin & Geoghegan, 2001), thus minimizing 

agricultural land abandonment due to redistribution of agricultural lands from less competitive to 

more competitive farmers. However, no country in Eastern Europe satisfied all these conditions 

(Lerman, et al., 2004). Thus, we expected minimal agricultural land abandonment where at least 

secured land markets or secured land titling was established prior or during the transition (e.g., in 

Poland, where the majority of the agricultural land was in private properties during the socialism) 

(Turnock, 1998), and where land owners retained a stronger connection to their former properties 

during socialism (e.g., in Czech Republic, Latvia, Lithuania, Romania, and Slovakia where 

collectivization of agricultural land was shorter than in other Soviet Bloc countries) (Macey, et al., 

2004, Lerman, et al., 2004, Sakovich, 2008, Stuikys & Ladyga, 1995, Turnock, 1998,). Conversely, 

we expected higher rates of agricultural land abandonment, where land markets were lacking, where 

land tenure was unsecure (e.g., Albania, Belarus, Russia and Ukraine) (Lerman, et al., 2004, Macey, 

et al., 2004, Turnock, 1998, Sakovich, 2008) and where people were more disconnected from their 

former properties (e.g., Belarus, Russia, and Ukraine) (Macey, et al., 2004, Lerman, et al., 2004, 

Sakovich, 2008). 



 63 

Utilizing the natural experiment that the collapse of socialism in Eastern Europe presents, our 

major goal was to assess differences in rates and patterns of land-use change among and within 

Eastern European countries with similar environmental conditions (e.g., precipitation, days with 

temperatures >10°C, soil types). Focusing on agricultural land abandonment we aimed at elucidating 

the modulating effects of different transition approaches on land use change patterns. Our specific 

objectives were to: 

1)  identify a uniform agro-climatic region stretching across several countries in Eastern 

Europe, which had a common starting point (e.g., similar agro-climatic and socio-economic 

conditions before the collapse of socialism), but chose different transition approaches; 

2) map agricultural land abandonment from 1989 to 1999 via classifying multi-temporal 

Landsat TM/ ETM+ satellite images; 

3) summarize the rates and spatial patterns of agricultural land abandonment among and within 

the countries; 

4) relate agricultural land abandonment rates to different transition approaches. 

 

Methods  

Study area 

To stratify Eastern European countries by agro-environmental conditions, we used climate data 

including average annual mean temperature for January and July, days with temperatures >10°C, 

and annual precipitation (Afonin, 2010). We also constrained our study region based on climatic 

limits to wheat growth (IIASA, 2000), agro-natural zoning, and geobotanical maps for USSR 

(Alexandrova & Yurkovskaja, 1989, Kashtanov, 1983). Based on these stratifications, we selected 

the largest region with homogeneous environmental conditions that allowed for broad-scale, cross-

country comparisons (Figure 2-1). An additional benefit of this region was that all countries except 
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Poland were part of the Soviet Union before 1990, and thus had a similar starting point (e.g., similar 

land-tenure policies, similar socio-economic and agricultural production conditions), but chose 

different transition approaches (Table 2-1). 

Climate in the study region is temperate-continental, with mean temperatures in the warmest 

month (July) ranging from 17°C to 21°C. Mean temperatures in the coldest month (January) ranges 

from -14.0°C to -6.1°C (Afonin, 2010). Accumulated temperatures above 10°C range from 1,980°C 

to 2,660°C. Annual precipitation ranges from 506 mm to 807 mm. 

Topography is essentially flat, and ranges from 0 to 300 m (Folch, 2000, Kashtanov, 1983). The 

region is a part of the temperate mixed forest zone and the Sarmatic mixed forests formed after the 

last glaciations (Olson, et al., 2001). The northernmost part of the study area represents the southern 

taiga-mixed forest boundary and the south of the study region borders the mixed forest-steppe zone 

(Tula and Rjazan provinces - oblasti - of Russia). On average, 30% of the region is forest-covered, 

with higher proportions of forest in Russia. Dominant tree species include Northern spruce (Picea 

abies), Scots pine (Pinus sylvestris), Silver birch (Betula pendula) and English oak (Quercus robur)  

(Folch, 2000, Kashtanov, 1983). Soils in the study region mainly consist of podzols, luvisols and 

gleysols and fluvisols along rivers (together covering 78% of the study area) (Batijes, 2001). In the 

south-eastern corner of the region phaozems and chernozems are dominant (14% of the study area, 

Figure 2-1). 

The study region is well-suited for agriculture, especially after melioration, liming and fertilization 

of podzolic soils (Folch, 2000). During the last decades of the socialist era, the region became one of 

the primary agricultural areas of the USSR, especially after the failure of the Soviet government to 

expand wheat cultivation in Kazakhstan (Ioffe, 2004, Ioffe & Nefedova, 2006). Primary summer 

crops are barley, rye, oats, sugar beets, fodder maize, potatoes, peas, summer rapeseed, and flax, and 

main winter crops are winter wheat, winter barley and winter rapeseed (Gataulina, 1992). Cattle 

breeding, dairy farming, and poultry production are also common. 
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The agricultural sector was highly subsidized and markets were guaranteed during the Soviet Era. 

While similar land-tenure and types of agricultural management were similar in the selected 

countries, except of Poland, differences existed in agricultural sector and rural development 

(Lerman, et al., 2004, Nefedova & Treivish, 1994). For instance, paved road density in the study 

region was four times higher in Lithuania than in the central European Russian provinces, 

representing west-east gradient (Table 2-2). Belarusian, Latvian and Lithuanian agricultural 

enterprises were also better equipped than those in Russia and more tractors were available for 

Polish farmers. After the collapse of the Soviet Bloc, national official statistics highlighted 

substantial decline in sown crops across the study area (up to 39% in Russia and 38% in Latvia, 

Figure 2-2). Similarly, livestock numbers declined by up to 62% in Lithuania and 34% in Russia 

(Goskomstat, 2002, CSB, 2010, Lithstat, 2010). 

After the collapse of the USSR, each country in the study region followed a unique transition 

approach regarding land reforms and the restructuring of the agricultural sector (Lerman, et al., 

2004, Macey, et al., 2004) (Table 2-1). In Russia, agricultural lands and former state and collective 

farms’ assets were privatized and shares in the form of certificates were distributed among former 

farm employees. Farms often continued operating in the form of corporate farms (e.g., joint-stock 

enterprises and cooperatives) (Lerman, et al., 2004). However, a moratorium on private agricultural 

land purchases and sales was enacted, lasting until 2003 (Lerman & Shagaida, 2007) and the 

restructuring of the agricultural sector did not facilitate the emergence of substantial private 

commercial farming. By 1998, Russia’s agricultural sector was dominated by corporate farms with 

an average size of 6,000 hectares, 88% of which were essentially bankrupt (Goskomstat, 2002, Ioffe 

& Nefedova, 2004, Lerman, et al., 2004). By 2000, more than 60% of agricultural land was still 

owned by the government (Shagaida, 2002). 

In the case of the Baltic countries, Lithuania and Latvia restituted previously nationalized 

agricultural lands to previous owners and their heirs (nationalization has been accomplished by 
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forcibly abolishing of the private ownership with lands transfer for the government and creation of 

state and collective farms to manage nationalize agricultural lands) (Stuikys & Ladyga, 1995, 

Knappe, 2002). For instance, by 2003, in Lithuania 89% of all agricultural land was utilized by 

farmers’ and family farms, 78% of which was in private farms of less than 5 hectares (Stuikys & 

Ladyga, 1995, Lithstat, 2010). The Belarusian government adapted privatization and private 

ownership of agricultural lands early in the transition period, but after 1994, the government 

reversed the course and agricultural land ownership moved back to the state (Drager, 2002, Ioffe, 

2004, Sakovich, 2008). By 2000, the state controlled 98% of Belarus’ agricultural lands, and state 

and collective farms managed these lands, similar to the Soviet period (Drager, 2002, Sakovich, 

2008). Poland was the only country in our study region that allowed private land ownership during 

socialism, albeit with strong governmental regulations (Turnock, 1998). However, some agricultural 

lands were nationalized after forced migrations (especially in the north, and south-eastern corners of 

Poland) (Turnock, 1998, Kuemmerle, et al., 2008) and the state owned 24% of all Polish agricultural 

land, which was managed by state farms (GUS, 1992, Csaki & Lerman, 2002). After the system 

change, the state and collective farms were dismantled, but state-owned agricultural lands had only 

declined from 24% to 20% by 1997 (Csaki & Lerman, 2002). 

Based on our assumptions that unconstrained, open-market conditions with different stakeholders 

facilitate the competition for agricultural land, we expected that abandonment rates would be lowest 

in Poland, following up the Baltic states (Latvia, Lithuania), and finally, by Belarus, and Russia. 

Satellite image processing 

To detect abandoned agricultural lands and highlight differences among the countries in our study 

region, we selected eight Landsat TM/ETM+ footprints that covered cross-border regions and were 

within the same agro-climatic zone (Figure 2-1). We placed more footprints in Russia to investigate 

differences at the provincial level. We omitted Moscow province, due to the disproportional 

allocation of welfare, foreign direct investment and the speculative value of lands in the vicinity of 
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Moscow (Bater, 1994, Ioffe & Nefedova, 2004, Rosstat, 2002) (Figure 2-1). Overall, we selected 

footprints covered 19% of Latvia, 61% of Lithuania, and 41% of the Warminsko-Mazurskie region 

of Poland (former Olsztyn and Suwa ki provinces - wojewodztwa). In Belarus, our footprints 

covered 39% of Grodno province, 32% of Mogilev province, and 22% of Vitebsk province. In the 

Russia, our footprints covered 80% of Kaliningrad province, 77% of Kaluga province, 72% of 

Vladimir province, 72% of Rjazan province, 55% of Smolensk province and 51% of Tula province. 

Altogether, we classified 46 Landsat TM/ ETM+ images for the eight Landsat footprints to map 

agricultural abandonment between 1989 and 1999. Images were selected to capture key image dates 

for accurate agricultural land abandonment detection (Prishchepov, et al., in review) (Table 2-3). 

Images were coregistered using automatic tie point search (Leica Geosystems, 2006) and ortho- 

corrected images from the USGS archive as base maps. Positional accuracy for co-registered images 

was higher than 15 m. Clouds and cloud shadows were eliminated using image segmentation 

(Definiens Imaging, 2004). To classify agricultural land abandonment, we used a Support Vector 

Machines classifier (further SVM). SVM are well suited to monitor agricultural land abandonment 

(Kuemmerle, et al., 2008, Prishchepov, et al., in review). We used the IDL tool ImageSVM (Chang 

& Lin, 2001, Rabe, et al., 2009), that automatically selects an optimal SVM parameterization. More 

information on SVM can be found in Burges (1998), Mather & Tso (2001), and Pal & Mather 

(2005).  

Our classification resulted in four classes: “Forest and wetland”, “Riparian vegetation and 

permanent shrubs”, “Stable agriculture”, “Abandoned agricultural land”, and “Other”. “Stable 

agriculture” consisted of tilled agricultural land and grasslands intensively used for grazing and hay-

cutting. Whether agricultural land is truly abandoned or simply fallow on a year-to-year basis is 

often difficult to judge in the field. We therefore defined abandoned agricultural land from a remote-

sensing perspective as agricultural land used before 1990 for crops, hay cutting, and livestock 

grazing, but no longer used 1998-2000, and thus covered by non-managed grasslands often with 
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early successional shrubs. Shrub encroachment in the study area usually takes place for about five 

years after abandonment with faster shrubs advancement on well-drained and formerly plowed 

fields (Gul'be & Ermolova, 2005, Karlsson, et al., 1998,). Fields encroached by shrubs tend to 

remain abandoned leading to subsequent forest succession, due to the loss of its economic value for 

agricultural production and high costs of converting such fields back to agriculture (Larsson & 

Nilsson, 2005). Training data was collected during field visits and from high-resolution satellite 

images (IKONOS and Quickbird scenes available via GoogleEarthTM mapping service) 

(Prishchepov et al. in review). 

For the accuracy assessment, we used a three-step, stratified-random sampling approach modified 

from Edwards, et al. (1998): a) to have a representative sample for the agricultural and transition 

classes; b) to optimize field data collection. Our reference data were collected independent of 

training samples. First, we selected cloud-free, 1.28 meter resolution QuickBird and IKONOS 

images available from GoogleEarthTM. For Landsat scenes with limited coverage by high-resolution 

images (WRS 2 path/row 182/22 and 180/22), we randomly generated 20 x 20 km blocks, similar in 

size to a QuickBird image. Second, to concentrate field data collection on agricultural lands we 

derived a forest / non-forest mask for the QuickBird and IKONOS images and for the generated 

blocks. For Latvia, Lithuania, and Poland, we used the 100-m-resolution land cover product of the 

Coordination of Information on the Environment program (CORINE) for the year 2000 (EEA, 

2006). For the forest / non-forest mask in Belarus and Russia, we used 1:500,000 digital Soviet 

topographic maps from circa 1989. Third, we randomly placed reference points within the non-

forested areas that were within 300 m of roads, which we had digitized from the QuickBird, 

IKONOS snapshots and topographic maps, to facilitate field visits. To avoid spatial autocorrelation, 

we separated reference points by at least 500 m (Prishchepov et al, in review). 

During field work in 2007 and 2008, we visited five out of eight Landsat footprints (Table 2-3). 

Reference points were geolocated using a non-differential GPS. Using semi-structured 
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questionnaires, we reconstructed land management in 1989 and in 1999 wherever possible 

interviewing local farmers and agronomists. Additionally, where it was possible, we measured the 

height and age (by counting tree rings) of shrubs and trees on sites that had been in agricultural use 

in 1989, and abandoned by 1999-2002. Within the forest mask we assessed forest accuracy using 

only high-resolution scenes and expert interpretation of the reflectances of multemporal Landsat 

TM/ ETM+ scenes. The classification accuracy was estimated using contingency matrices. We 

calculated area-weighted overall accuracy, the Kappa coefficient (KHAT), and producer’s and 

user’s accuracies and conditional kappa coefficients for each class (Congalton & Green, 2008). We 

also adjusted the calculated the areas and the rates of abandoned agricultural land based on our 

accuracy assessments using an inverse calibration estimator with a Monte Carlo simulation 

technique (Czaplewski & Catts, 1992). Based on Monte Carlo simulation results with 10,000 

iterations for our area weighted contingency matrices results for each classified Landsat footprint, 

we constructed a normal curve of the error distribution with its mean and confidence intervals and 

alpha< 0.05. 

 

Results 

In general, we achieved very accurate classifications using multi-date imagery and our SVM 

change detection approach. Conditional Kappa coefficients for “Abandoned agriculture” were above 

76% (Table 2-4). The accuracies of agricultural land abandonment varied for the selected scenes 

with user’s accuracies between 80.6% (Figure 2-1, footprint 6) path and 92.7% (Figure 2-1, 

footprint 2) and conditional Kappa values between 76% and 91.7% for the same Landsat TM/ETM+ 

footprints respectively. The highest classification overall accuracies for agricultural land 

abandonment were achieved for WRS2 path 186, row 21 (Figure 2-1, footprint 3), path 176, row 21 
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(Figure 2-1, footprint 2), path 186, row 22 (Figure 2-1, footprint 8) (overall accuracies were equal to 

95.2%, 92.8% and 92.6% and respectively) (Table 2-4).  

Our results indicated widespread agricultural land abandonment across our study region. Within 

the eight classified Landsat TM/ETM footprints, statistically adjusted estimates of agricultural land 

abandonment showed that 9 million hectares (+/- 99,600 hectares) were in agricultural use in 1989, 

of which 27%+/- 1% (2.5 million hectares +/- 82,300 hectares) were abandoned by 1999-2002. 

Contrary to our expectations, the highest agricultural land abandonment rates at the national level 

were observed for the studied part of Latvia, comprising 42% +/- 2.6%, (176,700 hectares, +/ 4,700 

hectares) of the agricultural land managed in 1989 (Figure 2-3A). Six of our eight Landsat TM/ 

ETM+ footprints covered Russian regions, where we also observed high agricultural land 

abandonment comprising 31.3% +/- 1.4% (1.7 million hectares +/- 23,300 hectares), of agricultural 

land managed in 1989. Abandonment rates in Lithuania were lower than in Latvia’s and in Russia’s 

parts of the study area, comprising 28.4% +/- 1.4% (543,900 hectares +/- 7,600 hectares) of the 

agricultural land managed in 1989. The case of Belarus really surprised us. Contrary to our 

expectations, abandonment rates were low, comprising 13.5% +/- 1.2% (133,000 hectares +/- 1,600 

hectares) of agricultural land managed in 1989, the lowest abandonment rates among the countries 

we studied. As expected agricultural abandonment rates in the studied part of Poland during the ten-

year transition period were also small (but higher than in Belarus), comprising 14% (101,000 

hectares) of all agricultural land managed in 1989. 

Our results showed marked differences among countries in such cross-border regions. For 

example, in the cross-border area of Belarus–Russia (Figure 2-4C), abandonment rates were 10% +/-

1.2% and 47% +/- respectively, and this was the strongest cross-border difference in land use change 

in our study area. In the cross-border region of Russia, Lithuania and Poland (WRS2 path 188, row 

22, Figure 2-4A) the rates of agricultural land abandonment were 43%+/- 2.0%, 19% +/-2.0%, and 
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14% +/- 2.0% , respectively. For the cross-border region of Lithuania and Belarus (WRS2 path 188, 

row 22) abandonment rates were 29% +/- 1.0% and 15% +/- 1.2% (Figure 2-4B). 

While we observed the highest rates of agricultural land abandonment for Latvia, we also found 

consistently high rates of abandonment at the regional level in Russia, especially in Kaliningrad and 

Smolensk provinces (Figure 2-3B). The largest rates of abandonment were observed for the studied 

part of Smolensk province (46% +/- 1.4% of agricultural land abandoned). The rates of abandoned 

agricultural land in Kaliningrad province, a Russian exclave in the Baltic region, were comparable 

to the rates of abandoned agricultural land in other Russian provinces (Figure 2-3B). In the case of 

Belarus, abandonment rates were similar among Belarusian provinces and consistently lower 

compared to other countries in our study area (Figure 2-3B). 

Finally, abandonment rates varied greatly at the district level (“rayons” in Belarus, Latvia and 

Russia; “apskritys” in Lithuania, and “gminy” in Poland) (Figure 2-5). Again, the highest rates of 

abandoned agricultural land were found in Russia (Figure 2-5). During the first decade of the 

transition period, abandonment rates at the district level were as high as 60% of all agricultural lands 

used in 1989 in some Russian districts (e.g., Ugranskij and Temkinskij districts of Smolensk 

province;61% and 60% respectively; Putjiatinskij district of Rjazan province; 60%). These districts 

had a smaller share of agricultural lands, were distant from provincial capitals (Smolensk and 

Kaluga), and were socio-economically marginal (e.g., strong rural population decline between 1989 

and 1999, low road density, and isolated villages) (Figure 2-4D). Conversely, districts with lowest 

abandonment rates were often found near provincial capitals (Figure 2-5), similar to what has been 

suggested for post-Soviet Western Ukraine (Baumann, et al., in review).  

 

Discussion 
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Our analyses showed that the fundamental political, institutional and socio-economic changes in 

Eastern Europe after the collapse of the Soviet Union resulted in widespread agricultural land 

abandonment. Because we minimized agro-climatic differences among countries, the differences of 

agricultural land abandonment rates reflected most likely the effects of different institutional 

changes ranging from 12% +-1.2% (Belarus) to 42% +- 2.6% (Latvia). 

One of our results was that agricultural land abandonment rates in the studied part of Latvia and 

Lithuania were much higher than expected (Figure 2-3), despite their fast transition to market 

economies that should have fostered more efficient agricultural land use patterns. In Latvia we 

observed the highest abandonment rates among all countries (Figure 2-3). Reasons for this may 

include the restitution of agricultural land to the previous owners who and their heirs, to city and 

town dwellers, retired people, all who were not interested in agriculture as a profession, and 

unskilled former state and collective farm workers (e.g., milkers, herdsmen) (Bušmanis, et al., 2001, 

Knappe, 2002, Nefedova & Treivish, 1994). The disappearance of guaranteed markets for 

agricultural production within the USSR and of subsidized fuel, machinery and fertilizers, as well as 

a lack of competitiveness with imported agricultural products also contributed to the decline in 

agricultural production both in Latvia and Lithuania (Knappe, 2002, Nefedova & Treivish, 1994, 

Stuikys & Ladyga, 1995). Lower abandonment rates in the studied part of Lithuania compared to 

Latvia might be explained by the higher share in GDP of agriculture remaining (7.8% in Lithuania 

and 4.6% in Latvia in 2000), higher employment rates in the agricultural sector, and better 

socioeconomic and rural infrastructure (e.g., higher road density) in Lithuania (Knappe, 2002) 

(Table 2-2). Statistics also showed a decrease of the number of tractors by 6 % in Latvia, but an 

increase by 40% in Lithuania (Goskomstat 1991). 

In the Russian part of the study area, rates of agricultural land abandonment were the second 

highest after Latvia (Figure 2-3). Abandonment rates were consistently high in all regions, including 

Kaliningrad province, the westernmost Russian exclave. This may indicate that the underlying 
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driving forces of abandonment (e.g., institutional changes and policies) operating at the national 

scale largely masked regional determinants of abandonment. The withdrawal of the government 

support for agriculture, the slow establishment of a functioning land market, and limited availability 

of credits potentially caused the decline in agricultural production in Russia (Lerman & Shagaida, 

2007) and may explain the high rates of agricultural land abandonment we found. 

We observed relatively uniform and high abandonment rates at the provincial level, but the 

variation of abandonment rates at the district level was substantial. In Russia we observed very high 

rates of agricultural land abandonment (up to 75%) in some districts, especially those that afar from 

provincial capitals (Figure 2-4 D, H).We observed less abandonment near provincial capitals, 

indicating likely centripetal Thuenen-ring like gradients, which also characterize patterns of 

agriculture productivity and population density in central European Russia (Ioffe & Nefedova, 2004, 

Ioffe, et al., 2004). Similarly, we witnessed that fields around many Russian villages only remained 

managed in close vicinity to the village, and were most likely used for subsistence farming 

(Dannenberg & Kuemmerle, 2010, Elbakidze & Angelstam, 2007).  

In the studied part of Poland, rates of agricultural land abandonment were higher than expected 

(Figure 2-3). This may be due to the higher share of previously nationalized farmland in the studied 

province compared to other parts of Poland (GUS, 1992, GUS, 1999, Kuemmerle, et al., 2008, 

Turnock, 1998). The region in Poland we studied was part of Germany before WWII After the war, 

the German population was forcefully relocated, agricultural lands were nationalized, and state 

farms were established (Turnock, 1998). Nevertheless, agricultural land abandonment rates in 

Poland were substantially lower than in the other countries in our study area. This suggests that the 

largely unchanged and secure private agriculture during the transition period (Lerman, et al., 2004) 

allowed the Polish agricultural sector to adjust relatively easily to the new economic conditions. 

Poland also represents an interesting case, since the country served as a prime example of a 

successful implementation of the “shock therapy”, the most liberal transition approach suggested by 
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the World Bank (Bradshaw & Stenning, 2004). It was also likely that prior the accession to the EU, 

which took place in 2004, Polish economy including agricultural sector were attractive for initial 

development funds by the EU and foreign direct investment. 

In the studied part of Belarus, the rates of agricultural land abandonment were lowest, and 

comparable to the rates in the Polish part of our study region. This was interesting since these two 

countries chose opposite transition approaches of towards an open-market economy. In Belarus, the 

government abolished privatization of agricultural land and capital assets of state and collective 

farms in 1994, thus limiting key principles of open-market economies as suggested by the Word 

Bank (Bradshaw & Stenning, 2004). Similarly to the Soviet period, subsidies and a complex system 

of offsets among Belarusian state enterprises ensured that state and collective farms continued to 

receive cheap fertilizers, fuel, and equipment, and that farms could sell agricultural products at fixed 

prices (Ioffe, 2004, Sakovich, 2008). State and collective farms also retained their key social role in 

the countryside, providing workplaces, housing, and social infrastructure (e.g., kindergartens, 

cultural clubs) (Drager, 2002, Sakovich, 2008). 

The differences in government support between Belarus and Russia may also explain substantial 

differences in abandonment rates in the border region between these countries. For example, in 2000 

in the Mogilev province of Belarus the share of unprofitable agricultural enterprises was very 

similar to in the neighboring Smolensk province of Russia (65% versus 75%, Belstat, 2002, Rosstat, 

2002) (Figure 2-6). However, the rates of agricultural land abandonment detected in the cross-border 

area of Belarus and Russia were much lower in the studied part of Mogilev province of Belarus 

(10%) than in the studied part of Smolensk province of Russia (46%), likely as a result of higher 

state-support for agriculture in Belarus. 

During our field campaigns in 2007 and 2008, we also observed that succession on abandoned 

farmfields had progressed further in the Russia compared to Belarus, the Baltic States, and Poland. 

This may indicate that abandonment in the Russian part of the study area took place early in the 
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transition period. This may result from the illiquidity state and collective farms due to 

nonfunctioning land market in first years of transition (e.g., the moratorium on land sales was 

officially withdrawn in 2003) and the immediate collapse of the subsidized system. Interviews with 

farmers and stakeholders in Russia suggest that this resulted in a considerable depreciation of how 

former state and collective farm workers and their heirs valued land rights, thereby diminishing the 

willingness and ability to maintain agricultural land. 

Comparable to other studies that monitored agricultural land abandonment with Landsat satellite 

imagery in Eastern Europe (Baumann et al., in review, Bergen et al. 2008, Kuemmerle et al. 2008, 

Kuemmerle et al. 2009, Vaclavik & Rogan, 2009), we found, by far, the highest rates of agricultural 

land abandonment after the first decade of transition. Abandonment rates were particularly high in 

light of our conservative definition for agricultural land abandonment. We did not include fallow 

land (unused agricultural land that had not clear signs of abandonment, such as shrub encroachment) 

in our assessment, although it is likely that at least a portion of these areas are abandoned. 

Agro-climatic differences, dissimilar mapping approaches, abandonment definitions, and different 

study periods do not allow direct comparison of abandonment rates of our study with those of other 

studies in Eastern Europe. However, it is still possible to observe some common patterns, especially 

among the studies conducted by the same research groups. For example, similar to our study, 

abandonment rates between 1990 and 2005 were higher in Albania than in Romania (Mueller & 

Munroe, 2008), which chose a transition approach similar to Russia, than in Romania, which had a 

unique land reform approach, and employed both restitution and redistribution of agricultural assets 

to former collective and state farm workers. Likewise, among three countries studied in the cross-

border triangle in the Eastern Carpathians, higher rates of agricultural land abandonment were 

observed for Slovakia, compared to Poland and Ukraine (Kuemmerle, et al., 2008). Slovakia had a 

similar transition approach as Latvia and Lithuania, where we observed highest abandonment rates. 
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And in both, the Eastern Carpathians (Kuemmerle, et al., 2008) and in our study, the rates of 

agricultural land abandonment in Poland were low compared to the neighboring countries. 

Abandonment rates in the Ukrainian Carpathians were relatively low compared to our study 

(Kuemmerle, et al., 2008). This was surprising at first, because Russia and Ukraine adopted similar 

transition approaches. However, the portion of Ukraine that was studied was small, and differed 

substantially from the rest of Ukraine in terms of their socio-economic, and biophysical settings 

(Kuemmerle, et al., 2008). Subsistence farming in the Ukrainian Carpathians became very important 

during the first decade of transition (Elbakidze & Angelstam, 2007) and in the early transition years 

the Ukrainian government continued subsidizing agriculture substantially (Nefedova & Treivish, 

1994). This may explain the lower abandonment rates reported by Kuemmerle et al. (2008). In a 

recent study, we have extended our analysis of agricultural land abandonment to a larger region in 

Western Ukraine (Baumann et al., in review) and found much high abandonment rates (up to 56% at 

the district level by the year 2007). Subsidies diminished quickly in Ukraine during the second 

decade of transition, Ukraine experienced an economic crisis, and a functioning land market is still 

missing, thereby explaining why delayed abandonment in Western Ukraine compared to Russia 

(Baumann et al., in review). Overall, these findings suggest that Russia and Ukraine had indeed 

similar abandonment rates, supporting our main conclusion of the importance of transition strategies 

and national-level policies on abandonment patterns in the post-Soviet period. 

In summary, our results showed that post-Soviet socio-economic changes in Eastern Europe 

significantly affected land use and triggered widespread agricultural abandonment. In the transition 

period from 1990 to 2000, 32% of agricultural land in our study region (3 million hectares) was 

abandoned. Our study area was designed by minimizing environmental variation, yet we found 

strong differences in abandonment rates among countries, and also strong variation in abandonment 

rates at the district level. This suggests that differences among countries, stemming from different 

transition approaches, affected land use. Generally we observed higher agricultural abandonment 
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rates for those countries that privatized land and agricultural enterprises, where governments 

withdrew support for the agricultural sector (e.g., Russia), and where secure land ownership or well-

functioning land markets were lacking. 

Ultimately, institutional settings and their changes are playing the key role in the modification of 

land cover and land-use, and countries that changed their institutions related to land use had the 

highest abandonment rates. Knowing the effect of reforms on land-use is important, because land 

reforms and institutional changes are not rare and being able to predict the potential impact of the 

possible transition approach is essential for an effective land use policy. 
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Table 2-1: Summary of the transition approaches. Adopted from Lerman, et al., 2004. 

Country Potential  

private 

ownership 

after 1990 

Privatization 

strategy 

Allocation 

strategy 

Legal attitude to 

transferability after 

1990 

Relevant legislation 

Belarus Household 

plots only 

None None Use rights non-

transferable; buy-and-

sell of private plots 

dubious 

Law and Land 

ownership, June 

1993 

Latvia All land Restitution Plots Buy-and-sell, leasing Land Reform in 

Rural Areas Act, 

November 1990 

Lithuania All land Restitution Plots Buy-and-sell, leasing Law on Land 

Reform , June 1991 

Poland - Sell state 

land 

Plots Buy-and-sell, leasing - 

Russia All land Distribution Shares Leasing, buy-and-sell 

dubious 

Law on Land 

Reform , November 

1990; Constitution , 

December 1993; 

Land Code, January 

2002 

 



 

 

 

89 

Table 2-2: Socio-economic and environmental conditions of selected regions in 1989, i.e., the pre-transition time from state-state command 

to market driven economies. 

Provinces Landsat 

TM/ET

M+ 

footprint 

(path/ro

w) 

Country  

after 

1990 

Rural 

populatio

n density 

(people/k

m2)1 

Road 

density 

(km/ 

km2)1 

Milk 

productio

n 

(kg/cow)1 

Grain 

yield 

(centners/ 

hectare)1 

Tractors 

(Tractors/ 

hectare of 

arable 

lands)1 

Average 

annual 

precipit

ation2 

Temperatu

re growing 

periods > 5 

°C2 

Percenta

ge of 

podzolic 

soils3 

Percentage of 

agricultural 

land before 

19904 

Kaliningrad 188/022 Russia 14 35 3152  12 720 2803 74 55 

- 

188/022, 

186/021, 

186/022 Lithuania 51 3733 28.5 47 629 2744 60 48 

- 186/021 Latvia  28 2880 23.5 44 630 2598 34 36 

Mogilev 182/022 Belarus 15 22 3219 25.8 55 594 2705 83 57 

Vitebsk 182/022 Belarus 12 20 3031 21.8 50 640 2658 98 43 

Grodno 186/022 Belarus 20 25 3486 30.8 48 631 2780 87 37 

Smolensk 182/022 Russia 7.4 11 2478 11.3 82 649 2649 89 31 
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Kaluga 180/022 Russia 11.0 14 2527 13.8 54 680 2663 86 35 

Tula 178/022 Russia 13.5 18 2645 19.2 * 638 2735 39 55 

Rjazan 176/022 Russia 11.8 12 2881 16.8 70 566 2791 36 49 

Vladimir 176/021 Russia 11.8 15 2880 16.2 74 605 2684 79 23 

Olstyn 188/022 Poland 24.0 41 2914 34.8 23 713 2818 100 67 

Suwa ki 188/022 Poland 20.0 34 2958 28.5 20 642 2808 69 51 

 

1-Statistical data from (Belstat 2002, Goskomstat 1991, Goskomstat LitSSR 1989; GUS 1987, GUS 1992); 2–climatic data from (IIASA 

2000); 3-soil data are taken from (Batijes, 2001);4 -percentage of agricultural land are calculated from classified multi-date Landsat TM/ 

ETM+ images; *- not available. 
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Table 2-3: Images used and cloud contamination for each Landsat TM/ETM+ footprint. 

WRS2 

Path/Row 176/021* 176/022* 178/022 180/022* 182/022* 186/022* 186/021 188/022 

Image dates 1987/06|01 1988/07/21 1985/06/01 1986/05/01 1988/05/28 1989/05/03 1985/06/25 1985/05/22 

(yyyy/mm/dd) 1988/07/21 1988/08/22 1986/06/20 1986/07/04 1999/09/08 1989/07/06 1989/09/08 1988/05/14 

 1988/08/22 1999/09/06 1989/09/05 1986/10/05 2000/04/27 1989/09/24 1999/07/10 1986/10/16 

 1999/09/06 2000/05/11 2000/09/22 1999/07/08 1999/09/08 2000/05/05 2000/04/23 2002/05/21 

 2002/05/09 2000/07/14 2001/07/31 1999/09/10 2000/06/06 1999/07/10 2000/06/10 2002/06/06 

 2002/07/28  2002/05/23   1999/09/20 2000/09/30 2002/07/16 

        2002/11/05 

Clouds (%) 7 9 3 10   4 6 8 

Path/Row*- Landsat footprints visited during 2007-2008 field campaign 
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Table 2-4: Accuracy of the land cover classifications in each Landsat footprint (UA = User’s accuracy (%), PA = Producer’s accuracy (%), 

CK = Conditional Kappa (%)) 

Forest and 

Wetland 

Stable 

Agriculture 

Abandoned 

Agricultural 

Land 

Riparian 

Vegetation and 

Permanent 

Shrubs 

Other  WRS 2 

path/row 

UA PA CK UA PA CK UA PA CK UA PA CK UA PA CK 

OA KHAT 

176/021 96.4 97.5 94.8 96.3 89.6 93.4 92.7 76.2 91.7 63.9 86.5 59.2 100.0 81.2 100.0 92.8 87.5 

176/022 100.0 99.2 100.0 86.8 94.3 83.6 85.8 83.7 81.8 82.6 81.8 76.4 100.0 35.2 100.0 90.7 87.1 

178/022 95.3 92.9 94.4 89.6 91.5 79.6 80.6 51.7 76.0 46.9 80.3 41.3 88.9 79.5 88.2 83.7 77.3 

180/022 97.4 83.0 95.5 89.0 88.2 86.4 89.1 92.7 85.5 60.0 88.2 54.4 100.0 100.0 100.0 86.7 81.0 

182/022 95.1 76.8 92.9 95.1 91.2 91.9 92.3 85.7 91.2 63.7 94.2 57.0 100.0 70.6 100.0 86.1 81.0 

186/021 98.2 98.0 97.2 96.4 93.8 94.7 90.7 98.6 88.7 83.8 87.6 82.4 96.3 82.5 96.0 95.2 93.2 

186/022 99.3 98.7 98.6 97.4 89.0 96.0 84.0 76.8 81.7 50.0 89.9 48.6 97.9 98.0 97.8 92.6 89.0 

188/022 97.5 92.8 94.4 90.1 88.2 89.3 82.5 79.2 80.0 62.2 77.8 56.3 96.4 97.0 96.2 84.1 81.5 
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Figure Captions 

Figure 2-1. Study area and Landsat footprints 

Figure 2-2. Agricultural change in the study region (livestock and crops decline) 

Figure 2-3. Abandonment rates (A: By countries; B: Separately for Belarus and Russia by 

provinces) 

Figure 2-4. A: Abandonment pattern in the cross-border the cross-border Poland and Kaliningrad 

province of Russia . B: Abandonment pattern in the cross-border Grodno province of Belarus and 

Lithuania. C: Abandonment pattern in the cross-border Mogilev province of Belarus and Smolensk 

province of Russia. D: Abandonment pattern in Iznokovskij district, Kaluga province of Russia. E: 

Abandonment pattern between Moscow and Tula province of Russia. F,G: Abandoned pattern in 

Rjazan province of Russia. H: Abandonment pattern in Vladimir province of Russia.  

Figure 2-5. Abandonment rates by districts 

Figure 2-6. Share of unprofitable agricultural enterprises and abandoned agricultural land in cross-

border region between Belarus and Russia in the year 2000. 
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Abstract 
Socio-economic and institutional changes may affect the rates of land-use and land-cover change 

(LULCC). Our goal was to explore the determinants of agricultural land abandonment in post-Soviet 

Russia during the first decade of the transition from state-command to market-driven economy 

(1989-2000). We analyzed determinants of agricultural land abandonment at two scales (coarse and 

fine) in one agro-climatic and economic region of European Russia using satellite maps of 

agricultural land abandonment (5 Landsat TM/ETM+ footprints with 30-m resolution) and 

socioeconomic statistics. At the coarser scale (districts, or ‘rayons’), we regressed land abandonment 

rates against socio-economic and environmental statistics (75 districts in Kaluga, Rjazan, Smolensk, 

Tula and Vladimir provinces) using ordinary least square (OLS) regression. At the finer scale (pixel 

level), we analyzed spatially explicit determinants of agricultural land abandonment for one 
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representative province (Rjazan). At the district-scale, agricultural land abandonment was 

statistically significantly associated with lower agricultural average crop and milk yields in the late 

1980s. As agricultural productivity (crop and milk yields) was a function of environmental 

conditions (soil, climate), social factors (rural population density), and economic conditions 

(distances to administrative centers). We also observed that agricultural land abandonment was 

highly correlated with nighttime light intensity change between 1992 and 2000, a variable which 

may serve as an indicator of GDP change. Our fine-scale (pixel-level) model for one representative 

province (Rjazan) showed that distance to  markets and environmental constraints were the major 

factors associated with  abandonment. At coarse- scale, we suggest that 90% declines of 

governmental subsidies for agriculture after 1990 caused the abandonment of previously subsidized 

low-productivity agricultural lands. At the fine scale, we suggest that transportation costs were 

important since classic micro-economic theories, such as von Thünen’s and Ricardo’s land-rent 

theories matched our observed agricultural land abandonment patterns but played at finer level that 

districts. 

Keywords: Land-use change, land-use transitions, institutional changes, cropland abandonment, 

Russia, remote sensing, Support Vector Machines, land use models, logistic regression, spatially 

explicit-econometric models, change detection. 

 

1. Introduction 

Land use is a major cause of biodiversity declines, and diminishing ecosystem functioning and 

services (Vitousek, et al., 1997). Rapid socio-economic and institutional changes may accelerate 

land-use and land cover change (LULCC). A major recent rapid socio-economic change was the 

collapse of socialism and the transition from state-command to market-driven economies in Eastern 

Europe in the early 1990s. However, the impacts of this transition on LULCC are not well 

understood. The dismantling of state-governed economies, withdrawal of governmental support, and 
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implementation of open markets changed the economy, human welfare, and health drastically 

(Kontorovich, 2001, Shkolnikov, et al., 2001). For instance, during the first of decade of the 

transition from state command to market driven economies (further “transition”), Russian life 

expectancy declined from 69 to 65 years and GDP declined by 67% (Rosstat, 2002, World Bank, 

2008). Profound changes were particularly common in rural regions of Russia where state-support 

of agriculture ceased, and rural development stopped (Rosstat, 2002). Between 1990 and 1999 

investments in the Russian agricultural sector declined from $39 Billion to $2 Billion (Goskomstat, 

2000). Male life expectancy in rural area declined from 61 to 53 years in central European Russia 

(Rosstat, 2002). 

These drastic socio-economic changes affected land use, but patterns of LULCC varied. During 

the transition period, logging increased in Western Ukraine and the Baltics (Brukas, et al., 2009, 

Kuemmerle, et al., 2007, Urbel-Piirsalu & Backlund, 2009), some of which was illegal (Kuemmerle, 

et al., 2007). But logging also decreased in remote provinces of European Russia (Pallot & Moran, 

2000), urban areas sprawled (Boentje & Blinnikov, 2007), and agricultural land abandonment was 

widespread in Eastern Europe (Baumann et al., in review, Henebry, 2009, Kuemmerle, et al., 2007, 

Prishchepov, et al., in review). Agricultural land abandonment rates were especially high in 

countries which experienced institutional changes and which had weak institutions during the 

transition (Prishchepov, et al., in review). However, little is known about the drivers of LULCC in 

Eastern Europe in general, and those of agricultural abandonment in particular. 

Previous studies of agricultural abandonment in Western Europe identified factors such as 

unfavorable environmental conditions (e.g., higher elevation, steeper slopes, poor soils, and poorly 

meliorated farmfields), remoteness, high part-time agricultural employment, and rural population 

migration as the key determinants of agricultural land abandonment. However, there were also 

exceptions to this common set of drivers. In Southern France (Van Eetvelde & Antrop, 2004) and 

Switzerland (Gellrich, et al., 2007), there was more agricultural land abandonment close to 
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administrative centers and in areas with rapid population growth. Agricultural land abandonment 

can also be strongly associated with landowner characteristics (Kristensen, et al., 2004, Van Doorn 

& Bakker, 2007). “Mixed” activity landowners (i.e., agricultural producers who also engage in 

alternative businesses) were more likely to reforest agricultural land than any other types of 

landowners (Van Doorn & Bakker, 2007). Similarly, older landowners in Portugal, Denmark, and 

Finland were more likely to reforest agricultural land (Kristensen, et al., 2004, Selby, 1997, Van 

Doorn & Bakker, 2007). Grasslands were more likely abandoned where the dairy industry has been 

replaced by the less labor-intensive practice of breeding calves, and also in areas with low income 

and high rents for grassland (Baldock D, et al., 1996). Last but not least, smaller farms throughout 

Europe were more likely to abandon farmland than larger enterprises (Baldock D, et al., 1996, 

Kristensen, et al., 2004). 

However, it is not clear if the same set of factors is associated with agricultural land 

abandonment in the transition economies of former Soviet Bloc countries. So far, only few 

quantitative studies have examined the spatial determinants of post-socialist agricultural 

abandonment (Baumann et al., in review, Ioffe, et al., 2004, Lowicki, 2008, Muller & Sikor, 2006, 

Muller, et al., 2008). Results from these studies have varied. For instance, in Albania and Romania, 

agricultural land abandonment is more common at larger distances from roads and administrative 

centers (Muller & Sikor, 2006, Muller, et al., 2008), but distance does not matter in Western 

Ukraine, where high agricultural land abandonment rates occur near populated centers and on 

favorable soils (Baumann, et al., in review). Surprisingly, abandonment is also higher in districts 

with higher investments in agriculture (i.e., in municipalities with higher number of livestock units 

in Romania (Muller et al., 2008), and in districts with higher number of tractors in Ukraine 

(Baumann et al., in review)). Additionally, agricultural land abandonment is more common where 

agricultural landownership is more fragmented (Muller, et al., 2008). 
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All prior studies on post-socialist determinants of agricultural land abandonment have focused 

on environmentally marginal regions, just as prior studies in EU countries had. However, 

agricultural land abandonment was widespread throughout Eastern Europe and affected also 

productive areas. Our knowledge of the drivers of post-socialist land use change is thus still 

incomplete, especially since no studies to date took place in the country with the most agricultural 

area, i.e., Russia. This is also unfortunate, because the large size of the Russian territory offers 

“natural experiments” (Diamond, 2001). When controlling for environmental variation (i.e., by 

studying a single, large agro-climatic region), studying Russia allows to emphasize socio-economic 

factors associated with agricultural land abandonment (Prishchepov, et al., in review). Our prior 

mapping of agricultural land abandonment in Russia indicated that agricultural land abandonment in 

the first decade of transition (1989-1999) reached very high rates (up to 44% in Smolensk province) 

even in areas that were environmentally favorable for agriculture (Prishchepov, et al., in review).  

Thus, our goal here was to explore socio-economic and environmental factors associated with 

agricultural land abandonment in one agro-climatic region of post-Soviet Russia. Our first objective 

was to use ordinary least squares linear regression to explore determinants of agricultural land 

abandonment at the district level (‘rayons’) within one uniform agro-climatic region in European 

Russia. Our second objective was to explore local socio-economic and environmental determinants 

of agricultural land abandonment at a finer scale (pixel-level in one representative province for the 

outlined Russian region (Rjazan province). 

At the district level, our major hypotheses were that agricultural land abandonment was more 

common in areas that were marginal for agriculture, as indicated by lower (and declining) crop 

yields , lower (and declining) rural population densities, and farther distances to provincial centers. 

At the pixel scale, we hypothesized that agricultural lands futher away from local markets, and in 

areas with lower road densities would be more likely to be abandoned. 
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2 Methods 

2.1 Study area 

We used climate maps for a coarse stratification of agricultural suitability, specifically average 

annual mean temperature for January and July, days with temperatures >10 °C, and annual 

precipitation (Afonin, et al., 2010). We also constrained our study region based on climatic limits to 

wheat growth, agro-natural zoning, and geobotanical maps (Alexandrova & Yurkovskaja, 1989, 

Kashtanov, 1983,). Based on these coarse stratifications, we selected the largest region with 

homogeneous environmental conditions that allowed for broad-scale-analysis by covering a 

statistically meaningful number of districts (Figure 3-1). 

Climate in the study region is temperate-continental, with average maximum temperatures in the 

warmest month (July) ranging from 30°C to 34°C. Average minimum temperatures in the coldest 

month (January) range from -37 °C to -28°C (Afonin, et al., 2010). Days with temperatures >10 °C 

are in the range from 125 to 142 days. Annual precipitation ranges from 428 mm to 713 mm 

(Afonin, et al., 2010). Topography is flat, and ranges from 0 to 300 m. Geobotanically, the region is 

a part of the temperate mixed forest zone and the Sarmatic mixed forests (Olson, et al., 2001). The 

northernmost part of the study area represents the southern taiga-mixed forest boundary and the 

south of the study region borders the forest-steppe zone (Tula and Rjazan provinces of Russia) 

(Alexandrova & Yurkovskaja, 1989). On average, 30% of the region is forested, with higher 

proportions of forest in northern part of the study area. Dominant tree species include northern 

spruce (Picea abies), scots pine (Pinus sylvestris), silver birch (Betula pendula), and pedunculate 

oak (Quercus robur) (Folch, 2000). Soils mainly consist of podzols, luvisols and gleysols and 

fluvisols along rivers (Batijes, 2001). In the south-eastern corner of the region phaeozem and 

chernozem soils occur (Figure 3-1). In total though, the outlined study region is a part of the non-

chernozem economic zone of Russia. 
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The study region is well-suited for agriculture, especially after melioration, liming and 

fertilization of podzolic soils. During the last decades of the Soviet era, the region became one of 

primary agricultural areas, especially after failed attempts to expand wheat growing in Kazakhstan 

(Ioffe & Nefedova, 2004). Main summer crops are barley, rye, oats, sugar beets, fodder maize, 

potatoes, peas, summer rapeseed, and flax, and main winter crops are winter wheat, winter barley, 

and winter rapeseed. Crop yields per hectare are lower than in neighboring countries (e.g., Belarus, 

Lithuania, Poland, Ioffe & Nefedova, 2006). Cattle breeding, dairy farming, and poultry production 

is also common. 

After the dissolution of the Soviet Union in 1990, Russia transitioned from a state-controlled to a 

market-driven economy (Lerman, et al., 2004). Governmental regulation of agriculture and subsidies 

were largely withdrawn. The land and assets of collective and state farms were redistributed among 

former farms workers in forms of paper shares. However, a moratorium on agricultural land 

transactions was imposed to prevent potential land speculation and kept in place until 2002 (Lerman 

& Shagaida, 2007). As a result, after the collapse of the Soviet Union, national official statistics 

show substantial declines in sown crops (by up to 44% in Smolensk province) (Rosstat, 2002) and 

livestock numbers (by up to 68% again in Smolensk province) (Figure 3-2). 

2.2 Land-cover maps 

Land-cover maps were available from our previous work (Prishchepov, et al., 2010) and 

provided detailed agricultural land abandonment data for five 184x184 km Landsat TM/ETM+ 

footprints. These footprints covered 77% of Kaluga province, 72% of Vladimir province, 72% of 

Rjazan province, 55% of Smolensk province, and 51% of Tula province (Figure 3-1). We used 

multi-date images and support vector machines classifier to derive land cover maps. Initial 

classification catalog consisted of “Forest”, “Stable agriculture”, “Abandoned agricultural land”, 

“Riparian Vegetation and Permanent Shrubs” and “Other” classes. Average Kappa for all five 

classifications was 0.84, ranging from 0.77 to 0.93. Conditional Kappa for “Stable agriculture” 
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equaled to 0.89 (0.79 to 0.93). Conditional Kappa for “Abandoned agricultural land” equaled to 0.84 

(0.76 to 0.91). Lowest overall and conditional Kappa estimates were observed for the footprint 

covering Tula province. For our modeling purposes we recoded the previous classifications to 

“Stable agriculture”, “Abandoned agricultural land”, and “Other” classes. 

Our classifications indicated that from 1989 to 1999 31% of the agricultural land in 1989 was 

abandoned (1.7 million hectares, 44% of agricultural land was abandoned in Smolensk province 

(446,500 hectares), 29.8% in Kaluga province (382,100 hectares), 25.7% in Tula province (223,000 

hectares), 27.8% in Rjazan province (377,300 hectares) and 27.4% in Vladimir province (189,530 

hectares)) (Prishchepov, et al., in review). Abandonment rates were even higher in some districts, 

reaching 62% in parts of Smolensk province (Figure 3-3). 

2.3 Explanatory variables for district-based OLS models and their hypothesized 

influences 

For the study period from 1989 to 2000, the most detailed agricultural and population statistics 

for Russia were available at the district (’rayon’) level, which is roughly equivalent to counties in 

the United States. The average size of rural districts is 1,525 km2 and our remote sensing 

classifications covered 76 districts (14 in Smolensk province, 18 in Kaluga province, 14 in Tula 

province, 18 in Riazan province and 11 in Vladimir province, Figure 3-3). 

Economic theory generally assumes that actors choose the land use that maximizes the net 

stream of income (Gellrich, et al., 2007, Maddala & Lahiri, 2009). We assumed that agricultural 

land abandonment was mainly driven by economic decisions evolving from human behavior (Irwin 

& Geoghegan, 2001). An actor stops farming when rent expenditure and production costs were no 

longer balanced by the profit from agricultural output or when land becomes marginalized due to 

other socio-economic aspects such as rural population decline or rural population aging. Based on 

these assumptions we selected following groups of variables for the district level OLS model: 

population, infrastructure, proximate, economic activity, agricultural productivity, and biophysical 
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variables (Table 3-1). Unfortunately, no statistical data was available to explore structural 

characteristics of agriculture (e.g., types of farms) or characteristics of agricultural producers (e.g., 

education). Hence, our models were limited to an exploration of broad-scale determinants of 

agricultural land abandonment rather than the modeling of causal factors at the level of individual 

decision making. Population and agricultural statistics at the district level had previously been 

compiled from official sources (Ioffe, et al., 2004). To calculate road densities and distances we 

used a GIS dataset for Russia derived from 1:500,000 declassified Soviet topographic maps from the 

late 1980s. Environmental variables were derived from 10-km pixel resolution GIS Agroatlas for 

Russia (Afonin, et al., 2010) and from 60-m resolution forest-cover maps for 2000 (Potapov, et al., 

2010). 

Our hypotheses were that agricultural abandonment would be higher where rural population 

density was lower in 1991, where population was lower in district centers in 2000, where a higher 

rural population decline was observed from 1991 to 2001, and where the share of retirees in 2000 

was higher. We also assumed a positive correlation between abandonment and distances to 

provincial capitals from the district centroids due to higher travel costs, and higher abandonment 

rates where road density was lower. We also hypothesized that abandonment rates would be higher 

where agricultural productivity (crop yields and milk production) was low during the Soviet period. 

We also assumed that agricultural land abandonment would be higher where gross regional product 

declined more. Unfortunately, we did not have gross regional products available to us. Instead, we 

used satellite detected night-time lights intensity change from 1992 to 2000, which are strongly 

correlated with GDP change (Doll, et al., 2000, Henderson, et al., 2009). Lastly, we hypothesized 

that abandonment would be higher where forest percentage was higher, indicating marginality of 

agricultural land use. For our OLS regression model at the district level, we calculated the rate of 

abandoned agricultural land relative to the total pre-abandonment agricultural land as the response 

variable. 
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For the statistical analysis we used R statistical package (R Team, 2009). We checked for 

collinearity. When R >0.6 for two explanatory variable, we retained only the variable that was more 

strongly related to abandonment in our regression models. However, we did explore the predictive 

power of correlated explanatory variables using descriptive statistics and univariate models. For 

instance, average crop yield in the late 1980s and night-time lights intensity change from 1992 to 

2000 were negatively correlated (R=0.66). We retained only crop yields in late 1980s for the 

multivariate regression modeling. High levels of collinearity were observed, especially for soil, 

climate variables and percentage of forest in 2000 for each district. Crop yields from different years 

and rural population variables were also highly correlated among themselves. Altogether, out of 64 

variables we retained 11 variables for the initial assessment.  

The models were evaluated based on the significance values (p-value) of the response variables 

and R2 as a measure of model fit. Multivariate model residuals were checked for spatial 

autocorrelation. 

2.4 Explanatory variables for hierarchical pixel-based logistic regression model and their 

hypothesized influences 

For the detailed case study, we selected one province, Rjazan, which experienced 27.8% 

agricultural land abandonment .Based on the assumptions that the cumulative distribution function 

for the residual error of the explanatory variables follows the logistic distribution it is possible to 

construct spatially explicit logistic regression model. For the logistic regressions we changed our 

satellite classifications so that “1”- represented abandoned agricultural land and “0”-represented 

stable agricultural land. In addition to the district-level socio-economic variables we selected 

complementary socio-economic and environmental variables which varied within districts at either 

the municipality level or the pixel level. 
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Based on 1:100,000 Soviet topomaps from the end of the 1980s we digitized settlement 

centroids and assigned population for each settlement as stated in these maps. We identified 

municipality administrative centers prior to the 2006 administrative reform in Russia.  

For the logistic regressions at the pixel level, we selected several continuous variables, including 

distance to provincial capital, and distance to municipality centers (Table 3-2). We also calculated 

continuous interpolated population density using second-order inverse distance weights (Muller, et 

al., 2008), which were digitized from the settlements on 1;100,000 Soviet topographic maps. 

We sampled 3,716 pixels randomly from the available 16 million pixels, and ensured at least 

500-m distance between samples to minimize spatial autocorrelation. Since in the studied part of 

Rjazan province abandonment was relatively high, and 30% of the sampled points (1,085) 

represented “presence” of abandonment we did not adjust our sampling design for an unbalanced 

sampling (Muller, et al., 2008).To remove collinear variables for the logistic regression we selected 

only one variable from each pair of variables with >0.60 Pearson correlation. For the final 

hierarchical pixel-based logistic regression model we retained 21 variables (Table 3-2). 

Multiple samples within the same administrative unit are not truly independent (Overmars & 

Verburg, 2006, Gellrich, et al., 2007, Muller, et al., 2008). To control for this, we introduced a group 

structure and conducted a cluster adjustment in our logistic model (Gellrich, et al., 2007, Muller, et 

al., 2008). Controlling thereby for the correlations of observations within administrative units also 

controls for spatial autocorrelation (Muller, et al., 2008). We assumed that cluster adjustment was 

necessary for variables belonging to the same district (rayon), since districts are the administrative 

unit where main land use decisions and governance are taking place. 

To fit our logistic models we used the “lrm” function and for cluster adjustment we used 

“robcov” function based on Huber-White method (Huber, 1967, White, 1982) in the R Design 

package (R Team, 2009). We calculated log-likelihood for the logistic model, Akaike Information 
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Criterion (AIC), deviance for the residuals of the null and fitted models and goodness-of-fit measure 

area under the curve (AUC) (R Team, 2009). 

3. Results 

3.1 Multivariate OLS linear regression modeling for all provinces combined 

Correlations among dependent and independent variables reprenseted different degree of the 

relationship (Figure 3-4). We observed high correlation of agricultural land abandonment rates with 

rural population density in 1991 (R=0.46), distance to provincial center (R=0.34), milk production 

per cow in 1990 (R=0.41), average crop yield in the late 1980s (R=0.76), average crop yiled change 

from the late 1980s to the late 1990s (R=0.36) and forest percentage in 2000 (R=0.37). 

We included all of these variables into our multivariate OLS linear regression model. Results of 

multivariate model showed that variable average crop yield in the late 1980s was the only 

statistically significant variable at p<0.05. The  multivariate OLS linear regression model expained 

56% of variability. However, we also noticed moderate correlation of average crop yields in the late 

1980s with rural population density in 1991 (R=0. 61), distance to provincial capital (R=0.51), milk 

production per cow in 1990 (R=0.54), average crop yield change from the late 1980s to the late 

1990s (R=0.60). This suggested that agricultural productivity (e.g. crop yields) may have been a 

function of socio-economic and environmental factors.  

3.2 Hierarchical pixel-based logistic regression modeling for Rjazan province 

The model goodness-of-fit (area under the curve, AUC) for our logistic regression model was 

0.76 (Table 3-3). The exploratory power of the model was low (adjusted R2 = 0.19), but within the 

range of what has been reported for other logistic regression models of land use change (Gellrich, et 

al., 2007, Muller, et al., 2008).  

All selected groups, namely, population, infrastructure, proximate, agricultural productivity and 

biophysical were represented in the model and had statistically significant relationship with 

agricultural land abandonment (Table 3-3). All variables, except the number of days with 
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temperatures >10 °C appeared in the model with their expected signs of the relationship to the 

abandoned agricultural land. 

Agricultural land abandonment was statistically significantly higher where villages densities in 

the late 1980s was lower, and where fields were further away from larger settlements (over 500 

people) (Figure 3-5). Abandonment was also higher at higher elevations, on steeper slopes and on 

soils with lover pH (Figure 3-5) and in more forested districts. However, contrary to our 

expectations, abandonment was more common where number of accumulated days >10 °C was 

larger. 

 
4. Discussion 

4.1 Multivariate OLS linear regression modeling for all provinces combined 

Average crop yields in the late 1980s had the highest explanatory power for agricultural land 

abandonment at the district level. Agricultural lands with low average crop yields in the late 1980s 

were generally found in more remote regions with lower rural population densities (Ioffe & 

Nefedova, 2004). It appears that abandoned agricultural lands were those that were already socially 

and environmentally marginal for agricultural production in 1989, but were subsidized during 

socialist time (Ioffe & Nefedova, 2004). The moderate negative correlation between agricultural 

land abandonment rates and rural population density in the late 1980s supported this idea. 

We also observed a positive statistically significant relationship between night-time lights 

intensity decline from 1992 to 2000 and agricultural land abandonment. It is likely that processes of 

agricultural land abandonment were interconnected with Gross Regional Product decline (we used 

night-time lights change rates as a proxy for Gross Regional Product change) (Doll et al. 2006, 

Henderson et al. 2009). However, it was unclear if Gross Regional Product change affected 

agricultural land abandonment or, vice versa (Kaimovitz et al.2004), or if both simply occurred 

concomitantly. 
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The predictive power of the selected variables for our district based OLS linear regression 

models for all five provinces together was medium suggesting that we missed other drivers of 

agricultural abandonment, which is why we complemented the district-level model with a pixel-

level model. Moreover, it is likely, that some socio-economic factors (e.g., rural population densities 

and proximities) have different effect on agricultural land abandonment between the provinces as 

well, reflecting different policies and socio-economic development of the selected provinces.  

4.2 Hierarchical pixel-based logistic regression modeling for Rjazan province 

Complementary to OLS linear regression model at district level. our pixel-based logistic 

regression analysis for Rjazan province contributed to the understanding of the determinants of 

agricultural land abandonment. It was especially useful approach since some district statistics (e.g., 

rural population density and distance to the regional centers) didn’t appear statistically significant in 

the OLS model, likely due to the aggregated level. Another factor can be that, in the case of Rjazan 

proximities factors were important at the municipality level and finer level, rather than at the district 

scale (Table 3-3). In the logistic model for Rjazan province, proximities to settlements (i.e., district 

with population exceeding 500 people) and biophysical variables were additional statistically 

significant variables. Using pixel based modeling approach allowed us to disaggregate and use more 

socio-economic variables which were simply not available in the official district level statistics (e.g., 

population characteristics and proximities). The modeling output was consistent with the theory of 

rational economic decision making (e.g., abandonment was higher afar from settlements, in lower 

populated places, and on economically unfavorable agricultural lands). Generally, we identified 

variables that were significant in other studies as well and the relationship with abandonment mostly 

supported our hypotheses. However, we were surprised to see that abandonment was higher in 

places with more days with temperatures >10 °C.  
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This might indicate that social-economic changes in some cases overruled environmental 

gradients. While agricultural land abandonment was common where rural population density change 

(Selby, 1997, Baumann, et al, 2010), and share of retirees was higher (Selby, 1997, Kristensen, et 

al., 2004) we did not observe such statistically significant relationship in our case. Rural population 

density was fairly low prior the transition in the studied region, thus, it is likely, population decline 

didn’t affect abandonment as much as other factors associated with structural economy changes and 

economic decision making (e.g., travel costs).  

Conclusion 

In general, we identified several factors that were associated with agricultural land abandonment in 

temperate European Russia. These factors were similar to those previously found in other studies on 

determinants of agricultural land abandonment and showed that rational decision making was 

behind of agricultural land abandonment process (i.e., areas that were abandoned were generally less 

productive and more distant to markets). Our sampling design largely controlled for agro-climatic 

differences, thus it was interesting to observe statistically significant relationship between 

agricultural land abandonment rates and socio-economic characteristics. It is likely that agricultural 

land abandonment was ultimately driven by macro-scale socio-economic drivers such as the 

withdrawal of agricultural subsidies supporting the agricultural production on marginal lands (Ioffe 

& Nefedova, 2004). At the fine scale we observed distance effects on agricultural land abandonment 

patterns, supporting micro-economic decision-making underlying the agricultural land abandonment 

process. 
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Table 3-1. Selected district-level variables for the ordinary least square regression models, and their 

hypothesized relationship with agricultural land abandonment. 

Type Source Aggregated by 

districts 

A-Priori 

Relationship to 

abandonment 

Agro-Climatic and biophysical 

variables / 

   

Soil  

(soil texture, soil organic carbon 

content, soil drainage, soil types) 

SOVEUR/ 

SOTER 

1:2’0000’000 

digital maps  

Mean None 

Relief     

(Elevation, Slope, Aspect) SRTM Mean None 

Climatic     

(minimum temperature, 

maximum temperature, annual 

precipitation, excess of 

precipitation over potential 

evapotranspiration, number of 

days with temperature >10 °C, 

day of the first frost, day of the 

last frost)  

AgroAtlas, 

2010 

Mean None 

Socio-economic determinants / 

Population 

   

Population of the district center 

in 2000 

Rosstat, 2000 Value - 

Rural population density in 1991 Rosstat, 2000 Value - 

Rural population density in 1999 Rosstat, 2000 Value - 
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Rural population density change 

1989-1999 

Rosstat, 2000 Value - 

Percentage of retirees in 2000 Rosstat, 2000 Value + 

Proximities    

Distance to the provincial capital 

from the district centroid  

1:500,000 

digital dataset 

Value + 

Infrastructure 

Roads (Road density)  

 

1:500,000 

digital dataset 

 

Number 

- 

Agricultural productivity 

Average crop yield in the late 

1980s 

 

Rosstat, 2000 

 

Value 

- 

Average crop yield in the late 

1990s 

Rosstat, 2000 Value - 

Change of the average crop yield 

from the late 1980s to the late 

1990s 

Rosstat, 2000 Value - 

Milk production per cow in the 

late 1980s 

Rosstat, 2000 Value - 

Milk production per cow in the 

late 1990s 

Rosstat, 2000 Value - 

Change in the milk production 

per cow 1989-1999 

Rosstat, 2000 Value + 
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Table 3-2. Variables used in addition to those listed in Table 1 for the hierarchal spatially explicit 

logistic regression model. 

Variable Level A-priori 

Relationship to 

abandonment 

Dairy farm density in the late 1980s district - 

Village density in the late 1980s district - 

Dairy farms density in the late 1980s municipality - 

Road density in 2000 municipality - 

Village density in the late 1980s municipality - 

 in 2000 municipality + 

Night-time lights intensity change 1992-2000 Pixel - 

Distance to the municipality center Pixel + 

Distance to the nearest road Pixel + 

Distance from the nearest municipality boundary Pixel - 

Distance from the nearest district boundary Pixel - 

Distance from the nearest forest Pixel - 

Distance to the nearest settlement with over 500 people Pixel + 

Interpolated population density from settlements within 

district boundaries Pixel + 

Interpolated population density from settlements within 

municipality boundaries Pixel + 

Accumulated daily mean temperatures  >10 °C Pixel - 

Elevation Pixel + 

Slope Pixel + 
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Day of the first frost Pixel - 

Aspect Pixel + 

Excess of the precipitation over potential evapotranspiration Pixel + 

soil pH Pixel + 
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Table 3-3. Hierarchical spatially explicit logistic regression results. 

Variable Level Coefficient OR Standard Error Wald z-

Statistics 

P 

Constant  -8.692 0.0001 7.092 -1.23 0.2203 

Road density District -0.0036 0.9964 0.00292 -1.22 0.2222 

Villages density in the late 1980s District -0.3139 0.7306 0.09214 -3.41 0.0007*** 

Forest percentage in 2000 District 0.02379 1.0241 0.00254 9.384 0.000*** 

District to provincial capital  Pixel 0.000002  0.000003 0.07 0.9456 

Distance to district centers Pixel -0.000006  0.0000096 -0.67 0.5041 

Distance to municipality centers Pixel 0.000066 1.0445 0.000036 1.84 0.0652’ 

Distance to settlements over 500 

people Pixel 0.00008 0.9928 0.00001 7.4 0.000*** 

Distance to roads Pixel -0.00009  0.0001 -0.76 0.4460 

Interpolated population density 

from settlements within district 

boundaries Pixel -0.0001 1.0153 0.00014 -1.97 0.3338 

Number of days with temperatures Pixel 0.09 1.0000 0.038 2.38 0.0172* 
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>10 °C 

Elevation Pixel 0.0108 0.9997 0.00397 2.72 0.0065** 

Slope Pixel 0.068 1.0003 0.03412 2.00 0.0458* 

Aspect Pixel 0.00012 0.9924 0.00019 0.63 0.5303 

Excess of precipitation over 

potential evapotraspiration Pixel -0.0025 0.9998 0.0053 -0.42 0.6737 

Soil pH Pixel -0.0037 0.9985 0.0009 -4.14 0.0000*** 

Number of observations 3716 Adj. R2  0.191   

AIC 3939.6 AUC 0.73   

Model log likelihood ratio 527.6 Residual deviance 3907.6   

Null Deviance 4435.2      

Significance is indicated with ***, **, * and ‘ for p<0.001, p<0.01, p<0.05 and p<0.01, respectively. Coefficients in boldface type 

indicate significance at p<0.05 or higher. Odds ratios are calculated as exp() where is the estimated coefficient. 
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Figure Captions 

Figure 3-1. Study area and Landsat footprints 

Figure 3-2. Crop and livestock production change between 1989 and 1999 at the provincial level. 

Figure 3-3. Agricultural land abandonment at the district level between 1989 and 1999. 

Figure 3-4. Scatterplots between agricultural land abandonment rates and selected explanatory 

variables for OLS linear regression. 

Forest 3-5. Distribution of abandoned and non-abandoned pixels and statistically significant 

explanatory variables in the hierarchical spatially explicit logistic regression.
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Figure 3-4. 
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Figure 3-5. 
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