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The interaction between wildfire and human development is one example of a coupled 

human natural system where human activities affect patterns of fire occurrence and fire 

presents risks to society.  The questions addressed by this research were (1) how does 

human development interact with fire? and (2) where is housing at risk from fires?  I used 

active fire detections made by the Terra and Aqua Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite sensors collected between 2000 and 2006.  First, I 

quantified detection rates of the MODIS fire data with a set of reference fire perimeters.  

Second, I used the MODIS fires to quantify patterns of fire occurrence.  Third, I used the 

MODIS fires in logistic regression models to evaluate the influence of weather, 

vegetation, topography, and human variables on fire occurrence.  Finally, the predicted 

fire occurrence models were used to quantify risk to housing units across the U.S.  The 

MODIS active fire data captured most reference fires, especially large fires that are 

relevant for understanding fire occurrence and risk.  Between 2003 and 2006, 1.24% of 

the area of the U.S. and 1 million housing units experienced MODIS fires each year.  

Shrublands and evergreen forests, vegetation with the most intense fire behavior, 
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experienced 39% of all MODIS fires but contained only 57,000 housing units in 

MODIS fires per year.  Logistic regressions showed that human variables played an 

important role determining patterns of fire occurrence, but their influence was minor 

compared to weather, vegetation, and topographic variables.  When predicted fire 

occurrence was used to estimate risk, I found that nearly 3.2 million houses were located 

in areas with moderate to high fire risk, but they were dispersed over 19% of the U.S.  

Human development introduces novel disturbance processes to ecosystems and acts as an 

external driver of change.  However, fires have reciprocal effects on adjacent 

development and present a significant hazard to human values.  Human development and 

fire are inextricably linked, and development in fire-prone landscapes will likely 

continue.  Ecosystem and fire management will be continually challenged by housing 

development and solutions are needed that better integrate human communities with 

ecosystem dynamics. 

 

____________________ 

Prof. Volker C. Radeloff 



   iii

Table of contents: 

Table of contents:............................................................................................................... iii 

List of tables:..................................................................................................................... vii 

List of figures:.................................................................................................................... ix 

Introduction......................................................................................................................... 1 

Problem statement........................................................................................................... 1 

Key findings.................................................................................................................... 5 

Significance..................................................................................................................... 8 

References..................................................................................................................... 13 

Chapter 1: Detection rates of the MODIS active fire product in the United States.......... 16 

Abstract ......................................................................................................................... 16 

Introduction................................................................................................................... 17 

Methods......................................................................................................................... 23 

Reference fires .......................................................................................................... 23 

MODIS active fire data............................................................................................. 25 

Data analysis ............................................................................................................. 25 

Results........................................................................................................................... 27 

Discussion..................................................................................................................... 29 

Conclusions................................................................................................................... 35 

References..................................................................................................................... 36 



   iv

Chapter 2: Patterns of fire occurrence among land cover and property types of the 

United States ..................................................................................................................... 51 

Abstract ......................................................................................................................... 51 

Introduction................................................................................................................... 52 

Methods......................................................................................................................... 57 

MODIS Active Fire Detections ................................................................................ 58 

Property types ........................................................................................................... 59 

Housing units ............................................................................................................ 60 

Land cover ................................................................................................................ 60 

Ecoregions................................................................................................................. 61 

Questions 1 and 2: What is burning where and where are houses near fires? .......... 61 

Questions 3 and 4: Where are large fires and where are houses in large fires?........ 63 

Results........................................................................................................................... 63 

Distribution of MODIS fires..................................................................................... 64 

Distribution of housing units in MODIS fires .......................................................... 65 

Ecoregion patterns of MODIS fires and housing units in MODIS fires................... 67 

Distribution of large fires.......................................................................................... 69 

Housing units in large fires ....................................................................................... 69 

Discussion..................................................................................................................... 70 

Potential limitations .................................................................................................. 73 

Implications for fire policy and management ........................................................... 75 

References..................................................................................................................... 77 



   v

Chapter 3: Human influences on fire occurrence and fire potential in the conterminous 

United States ..................................................................................................................... 92 

Abstract ......................................................................................................................... 92 

Introduction................................................................................................................... 93 

Methods......................................................................................................................... 97 

Data sources .............................................................................................................. 97 

Modeling approach ................................................................................................. 102 

Drivers of fire occurrence ....................................................................................... 103 

Ecoregional variability in predicted fire occurrence............................................... 104 

Results......................................................................................................................... 105 

Drivers of fire occurrence ....................................................................................... 105 

Ecoregional variability in potential fire occurrence................................................ 107 

Discussion................................................................................................................... 108 

Limitations of methods and approach..................................................................... 109 

Implications for ecosystem conservation and fire management ............................. 112 

References................................................................................................................... 114 

Chapter 4: National and ecoregional patterns of fire risk to housing units in the 

conterminous United States ............................................................................................ 142 

Abstract ....................................................................................................................... 142 

Introduction................................................................................................................. 143 

Methods....................................................................................................................... 146 

Results......................................................................................................................... 150 



   vi

Risk at the national scale......................................................................................... 150 

Influence of fire potential and housing units .......................................................... 150 

Risk among ecoregions ........................................................................................... 151 

Discussion................................................................................................................... 152 

References................................................................................................................... 156 

 



   vii

List of tables: 

Table 1.1.  Mean number of cloudy days for reference fires that were detected and 

undetected by the MODIS active fire products.  P-values indicate significance for 

two-sided t-test of difference in mean number of cloudy days assuming equal 

variance. .................................................................................................................... 44 

Table 1.2.  Logistic regression parameters, standard errors and z and p-values for 

proportion of references fires that were not detected by the MODIS active fire 

products from 2003 to 2005.  β0 = Intercept, β1 = Slope, sample size = 361 fires. ... 45 

Table 2.1.  Annual number of MODIS active fire pixels by property type for the 

conterminous United States.  Total number of pixels (fire and non-fire) for each 

property type is in parentheses.................................................................................. 82 

Table 2.2.  The annual number of MODIS active fire pixels and total number pixels, 

grouped according to ownership and land-cover categories (2003 - 2006).  Regional 

totals are shown in italics. ......................................................................................... 83 

Table 2.3.  The annual average number of houses in MODIS active fire pixels and total 

number of houses, grouped according to property type and land-cover categories 

(2003 - 2006).  Regional totals are shown in italics. ................................................ 84 

Table 3.1.  Input variables and units for logistic regression models............................... 126 

Table 3.2.  Original national land-cover database classes (Homer et al. 2004) and merged 

classes that were used in our analysis. .................................................................... 127 



   viii

Table 3.3.  Area-under-curve (AUC) and standard error for the four regression models 

for each ecoregion................................................................................................... 128 

Table 3.4.  Pooled regression coefficients and standard errors (in parentheses as within 

year; among years; and total) for full models. ........................................................ 129 

 



   ix

List of figures: 

Figure 1.1.  Histogram of the fire size distribution of the reference fires used for 

comparison with the MODIS active fire products.  X-axis increments follow a log 

scale........................................................................................................................... 46 

Figure 1.2.  Example of fire comparison methods used to determine MODIS active fire 

detection rates.  Data are shown for the Balcony House Fire in Wyoming, 2003.  

Reported start date was Julian date 196 (July 15).  Reported stop date was Julian 

date 221 (August 9); however, no MODIS fire pixels occurred within the perimeter 

after Julian day 197 (July 16).................................................................................... 47 

Figure 1.3.  MODIS active fire product detection status in relation to reference fire size 

for (a) Aqua or Terra combined, (b) Aqua only, and (c) Terra only.  X-axis 

increments follow a log scale.  Black lines show the fitted logistic regression curve 

for the proportion of fires not being detected by MODIS against log(fire size)....... 48 

Figure 1.4.  Geographic distribution of reference fires detected and not detected by the 

MODIS active fire product between 2003 and 2005.  Total number of reference fires 

was 361. .................................................................................................................... 49 

Figure 1.5.  Mean size of reference fires among regions of the U.S.  Error bars show ± 

95% confidence levels.  Fires were significantly smaller in the East compared to the 

U.S. (ANOVA difference of means p-value < 0.0001). ........................................... 50 

Figure 2.1. MODIS active fire detections from the EOS-1 Terra and EOS-2 Aqua 

satellites, 2003 - 2006. .............................................................................................. 85 



   x

Figure 2.2.  (a) Land type categories; (b) density of housing units in 2000 (housing units 

/ km2); (c) land cover categories; (d) Omernik level 2 ecoregions. ......................... 86 

Figure 2.3.  Omernik level 2 ecoregions ranked by (a) average number of pixels with 

active fires (ecoregion fire pixel count / total pixel count in US); (b) average number 

of houses in pixels with active fires (ecoregion count of housing units in active fire 

pixels / total housing unit count for US); (c) average number of pixels classified as 

shrubland and coniferous forest (ecoregion shrubland and coniferous forest pixel 

count / total pixel count in US) and (d) average number of houses in shrubland and 

coniferous forest pixels (ecoregion count of housing units in shrubland and 

coniferous forest pixels / total housing unit count for US);  (e) proportion of pixels 

classified as shrubland and coniferous forest with active fires (ecoregion in 

shrubland and coniferous forest pixels with fires count / total pixel count in US); (f) 

proportion of houses in shrubland and coniferous forest pixels with active fires 

(ecoregion count of housing units in shrubland and coniferous forest pixels with 

fires / total housing unit count for US) for years 2003 – 2006. ................................ 87 

Figure 2.4.  Cumulative proportion of (a) pixels and (b) houses by land type as a function 

of the size of contiguous clusters of active fire pixels. ............................................. 89 

Figure 2.5.  Cumulative proportion of active fire pixels as a function of the size of fire 

clusters by land type for Omernik Level 2 Ecoregions............................................. 90 

Figure 2.6.  Cumulative proportion of houses in active fire pixels as a function of the size 

of fire clusters by land type for Omernik Level 2 Ecoregions.................................. 91 



   xi

Figure 3.1.  MODIS active fires from both the Terra and Aqua sensors from 2000 to 

2006......................................................................................................................... 136 

Figure 3.2.  Omernik level II ecoregions. ....................................................................... 137 

Figure 3.3.  Fitted potential for fire occurrence against housing unit density gradient for 

Mediterranean California, 2001.  Black dots show individual fitted values.  Red dots 

show fitted values at the mean value of all other variables in the model. .............. 138 

Figure 3.4.  Fitted potential for fire occurrence against distance from road gradient for (a) 

Mixed Wood Shield 2001, (b) West-Central Semi-Arid Prairies 2006, and (c) Upper 

Gila Mountains 2003.  Black dots show individual fitted values.  Red dots show 

fitted values at the mean value of all other variables in the model......................... 139 

Figure 3.5.  Mean potential for fire occurrence (a), standard deviation in potential for fire 

occurrence (b), and maximum potential for fire occurrence (c) for years 2000 – 

2006......................................................................................................................... 140 

Figure 3.6.  Histograms of the count of MODIS pixels (on y-axis) by ecoregion according 

to potential for mean fire occurrence from 2000 to 2006. ...................................... 141 

Figure 4.1.  Omernik level 2 ecoregions (Omernik 1987). ............................................. 159 

Figure 4.2  Average potential for fire occurrence (2000 – 2006), grouped by housing 

density categories (# housing units / km2) for all wildland vegetation pixels. ....... 160 

Figure 4.3.  Number of housing units according to average potential for fire occurrence 

(2000 – 2006), grouped according to housing density categories (# housing units / 

km2) for all wildland vegetation pixels................................................................... 161 



   xii

Figure 4.4.  Risk according to average potential for fire occurrence (2000 – 2006), 

grouped according to housing density categories (# housing units / km2) for all 

wildland vegetation pixels. ..................................................................................... 162 

Figure 4.5.  Average potential for fire occurrence (2000 – 2006), grouped by housing 

density categories (# housing units / km2) for shrubland and evergreen forest 

vegetation pixels. .................................................................................................... 163 

Figure 4.6.  Number of housing units according to average potential for fire occurrence 

(2000 – 2006), grouped according to housing density categories (# housing units / 

km2) for all shrubland and evergreen forest vegetation pixels. .............................. 164 

Figure 4.7.  Risk according to average potential for fire occurrence (2000 – 2006), 

grouped according to housing density categories (# housing units / km2) for all 

shrubland and evergreen forest vegetation pixels. .................................................. 165 

Figure 4.8.  (a) Housing units and (b) average risk by ecoregion for all vegetation types.  

Vertical bars show range between maximum and minimum yearly risk observed 

between 2000 and 2006. ......................................................................................... 166 

Figure 4.9.  (a) Housing units and (b) average risk by ecoregion for shrubland and 

evergreen vegetation types.  Vertical bars show range between maximum and 

minimum yearly risk observed between 2000 and 2006. ....................................... 167 

 



   1

Introduction 

Problem statement 

The overarching goals of my dissertation research were to first, increase our 

understanding of the interactive relationships between human development and fire, and 

second to use that understanding to identify locations in the U.S. where human 

development is placed at risk by fires. 

Most ecosystems in the U.S. are embedded in human dominated landscapes.  How 

human activities affect ecosystems and the reciprocal effects of ecosystem processes on 

society are not fully understood.  The interaction between wildfire and human 

development in the wildland-urban interface is one example of a coupled human-natural 

system.  The wildland-urban interface (WUI) is the zone where housing development and 

wildland vegetation co-occur or abut one another (Radeloff et al. 2005).  Development in 

the WUI creates a context where patterns of fire occurrence are affected by human 

actions and fire management decisions are dominated by human values.  However, the 

outcomes of those actions and decisions shape adjacent ecosystems and the processes 

occurring within them.  In turn, ecosystem processes have reciprocal effects on society, 

especially disturbances such as fire which often times place human values at risk. 

Many fire management decisions aim to limit risk, especially to human lives and 

homes.  However, the location and relative magnitude of fire risk in the U.S. has not been 

well quantified (U.S. Department of Agriculture and U.S. Department of Interior 2001, 

U.S. General Accounting Office 2003).  The main objective of my dissertation, and its 
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primary outcome, was thus to quantify wildfire risk to houses across the conterminous 

U.S.  We know where development is (Radeloff et al. 2005), and we have a pretty good 

idea about how fires behave (Rothermel 1972), but we have less information about where 

fires are most likely occur.  Consequently, our understanding of fire risk in the WUI is 

limited.  To quantify risk, we need to also describe the relationships between people and 

the environment.  Therefore, examining fire risk in a coupled natural human systems 

framework has the practical value of helping identifying risk, but also contributes to our 

scientific understanding of the interactions between people and ecosystems. 

Risk modeling considers the joint probability that an event will occur with the 

probability that an event will inflict damage on something of value (Bachman and 

Allgöwer 1999, Finney 2005).  Using this framework, fire risk in the WUI can be 

quantified using probabilities of fire occurrence, potential fire behavior, and housing 

locations.  To examine risk, I developed consistent models across the U.S. that quantified 

the potential for fire occurrence and its spatial variability.  Predictive fire models require 

a thorough understanding of the underlying the human and biophysical drivers 

influencing fire occurrence.  The different influences of biophysical variables have been 

well documented, but our knowledge of the human impacts on fire remains limited to 

regional studies.  The results of these studies suggest that human development has an 

antagonistic relationship with fire, increasing ignition rates through arson and accidents, 

but also limiting the area burned by fragmenting fuels and suppressing fires (Cardille et 

al. 2001, Syphard et al. 2007b).  However, the magnitude, direction, and variability of 

human influences on fire are poorly understood at the national scale.  A greater 
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understanding of variability in human influences on fire is needed because human 

influences on fire occurrence have both ecological and social implications. 

Testing the relative importance of the drivers of fire occurrence necessitates a 

good sense of what has burned.  However, basic information about the patterns of fire 

occurrence in the U.S. is lacking.  Fire and ecosystem management efforts are mostly 

directed to public lands, but risk to housing mostly occurs primarily on private lands in 

the WUI.  This is why I quantified the extent to which fire occurs across different land 

ownership and property types.  Questions such as “how often do fires occur in the WUI?” 

and “how many houses are actually exposed to fire?” had not been previously answered.  

These are important questions because they address where human-fire interactions exist 

and the current extent of risk in the U.S. 

One of the reasons for our limited understanding of fire occurrence at the national 

scale is due to the lack of good fire data.  The federal fire occurrence database is virtually 

the only national information source.  It is based on records from the ground; however, 

the spatial accuracy of the records are often questionable and therefore they are of limited 

use for examining fine-scale fire occurrence patterns (Brown et al. 2002).  Additionally, 

federal fire data may under-represent fires on private lands, and this is especially 

important in a risk context, because almost all houses are on private lands.  Satellite 

observations of fires offer a viable alternative to federal and state fire databases for 

modeling fire occurrence and risk.  I used the MODIS active fire data (Justice et al. 

2002a, Giglio et al. 2003a) to assess patterns of fire occurrence in the U.S.  In comparison 
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to federal and state fire databases, satellite fire detections span all ownerships and 

property types, can monitor the extent of fire activity (not just ignition locations), and 

have more consistent spatial detail.  The ability of satellite fire detections to track spatial 

and temporal patterns of fire has been well documented at regional and continental scales 

(Li et al. 1997, Giglio et al. 2003b, Pu et al. 2007), as well as the entire globe (Dwyer et 

al. 2000, Csiszar et al. 2005, Giglio et al. 2006a).  However, whether or not satellite 

detections capture fires and patterns of fire occurrence at a scale relevant to fire 

management has not been fully explored.  This is why I assessed the accuracy of the 

MODIS active fire data. 

In summary, there were two primary research questions that my research aimed to 

address; (1) what are the interactions between human development and fire, and (2) 

where do fires present a risk to houses?  My dissertation research filled several 

substantial knowledge gaps in order to answer these two questions.  First, uncertainty 

remains about the quality of satellite fire observations.  Satellite fire detections offer a 

promising data source, but the types of fires they do and do not detect are not well 

documented.  Second, the geography of fire is poorly described and we need to both 

determine if satellite fire observations capture relevant patterns of fire occurrence, and to 

understand the current extent of human-fire interactions.  Third, the driving variables 

behind fire occurrence and how their influence varies across the country are not fully 

understood.  Finally, where human development is at risk from fires is not known.  

Each of these four knowledge gaps was addressed individually in the chapters of my 

dissertation. 
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Key findings 

Chapter 1 of my dissertation quantified uncertainty in the detection capabilities of 

MODIS satellite fire observations.  Satellite fire detections could provide an extremely 

useful dataset for examining patterns of fire occurrence, but uncertainty in their detection 

rates could be problematic for interpreting results.  I evaluated the active fire data 

collected by the MODIS (moderate resolution imaging spectroradiometer) sensors part of 

NASA Earth Observation System Terra and Aqua satellites (Justice et al. 2002a).  Using 

a set of reference fire perimeters mapped from Landsat imagery, I examined how cloud 

cover and reference fire size affected MODIS detection rates.  I also examined how 

detection rates varied across the U.S. 

Overall, the MODIS active fire data captured fires well and successfully detected 

82% of the reference fires.  Detection rates were generally lower on cloudy days and fire 

size also mattered.  Fires that were 105 ha in size only had a 50% chance of being found 

by MODIS.  Detection rates varied across the U.S. and were greatest in the West and 

lowest in the East.  Based on these findings, the MODIS active fire data may under-

represent small fires and eastern fires.  However, the MODIS active fires data do capture 

large fires that account for most of the area burned in the U.S. and are most relevant from 

a risk perspective. 

Chapter 2 examined the geography of fire in the U.S.  Using MODIS active fire 

data collected between 2003 and 2006, I compared the number of MODIS fires and 

number of houses in MODIS fires (i.e., a 1x1 km pixel with an active fire) among 4 
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property types (the wildland-urban interface, federal lands, Wilderness Areas, and 

everything else) and among eight landcover categories representing different vegetation 

types (developed, agriculture, wetlands, grasslands, shrublands, and evergreen, mixed, 

and deciduous forests).  I also quantified the how the number of fire pixels and number of 

houses in MODIS fires varied according to the total size of contiguous clusters of 

MODIS fire pixels. 

Between 2003 and 2006, approximately 1.24% of the U.S. and more than 1 

million housing units were in MODIS fires each year.  Most MODIS fires occurred 

outside of federal lands and the WUI (71% of all MODIS fires), and only 33% of MODIS 

fires were in developed and agriculture land covers.  Approximately 39% of all fires 

occurred in shrubland and evergreen forest vegetation types but only 57,000 housing 

units were found in MODIS shrubland and evergreen forest fires.  Across the country, 

fires were common in the Southeast and localized in parts of the West.  More houses 

were exposed to fires in the East than in the West.  However, fire sizes were considerably 

larger and more variable in the West than in the East.  The results of this chapter 

demonstrated that the MODIS fire data do capture patterns of fire that vary spatially 

across the country and among land cover and property types.  These patterns are relevant 

to understanding the interactions between humans and fire as well as for addressing fire 

management and fire risk. 

Chapter 3 focused on explaining the strength of human influences on fire 

occurrence throughout the U.S.  National-scale models of fire occurrence are needed to 
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both understand the driving factors behind fires and to identify areas where there is high 

potential for fires.  I used the MODIS active fire data as observations in a series of 

logistic regression models that tested the relative importance of weather, vegetation, 

topography, and human variables for predicting fire occurrence.  I then used my models 

of fire occurrence to identify areas that had high fire potential but did not necessarily 

burn during the time period of the analysis (2000 – 2006). 

In general, the human variables I used (distance from roads and housing density) 

were influential in our models but the strength of their importance was relatively small 

compared to the combined effects of weather, vegetation, and topography.  Most of the 

time, fire occurrence increased over low housing unit densities and short distance to 

roads, but the trend switched and fire also had a negative relationship at higher housing 

unit densities and greater distances from roads.  However, the shape and strength of the 

relationships varied among years and regions of the U.S.  Predictions largely followed 

observed patterns and fires occurrence was most likely in the Southeast, western 

mountain regions, and Mediterranean California.  However, there was much more 

variability in predictions in the West among years than in the East. 

Chapter 4 investigated patterns of fire risk to houses.  National-scale assessments 

are needed to prioritize federal fire management efforts to reduce risk in the WUI as well 

as determine where fires can be allowed to burn for their ecological benefits.  I defined 

risk as the combined probability of fire occurrence and housing across the U.S.  I 

combined existing housing data with the models of fire occurrence developed in chapter 
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3 to map and quantify risk.  Fire intensity may vary among vegetation types and present 

different types of risk, so I also stratified the analysis between two vegetation groups: 

shrubland and evergreen forests and all other vegetation types.  Finally, I quantified risk 

at the national scale and made comparisons of risk among different ecoregions. 

The results of my risk analysis showed that fire risk to houses in shrublands and 

evergreen forests was twice as high as in other vegetation types.  Across the country, 

2.8% of all housing units were located in shrublands and evergreen forests with ≥2% 

chance of fire per year.  Those housing units were dispersed over 19% of the U.S.  

Regionally, risk was high in the Southeast, following patterns of both fire occurrence and 

housing.  However, in the West, risk locations were isolated and matched the clustered 

patterns of development. 

Significance 

The results of my research are significant from technological, social, economic, and 

scientific perspectives and have important implications for fire management in the United 

States.  Technologically, my research demonstrated that satellite fire observations 

provide useful information that overcomes some of the limitations of existing state and 

federal fire databases.  We found that the MODIS active fire data did not locate all fires, 

but they did identify most large fires and those fires are of primary concern for risk 

management and landscape change analysis.  We also found that the MODIS fire 

detection rates varied across the country and this could be important when satellite fire 

data are used to summarize patterns of fire occurrence because the satellite data might 
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underestimate true fire occurrence in some regions, especially the eastern U.S.  

However, the influence of missing fires should not be problematic in statistical modeling 

if the detected fires are a representative sample of all fires, or at least the fires of greatest 

interest for risk analysis and fire management. 

From a societal and policy perspective, my research quantified past fire 

occurrence and the extent to which fires directly impacted housing development across 

the U.S.  As far as I know this has not been done before.  A small proportion of housing 

units occurred in locations where MODIS detected fires, only 1.24% of the 115 million 

housing units in the U.S.  What I found surprising was that only 57,000 housing units 

were found in MODIS fires in shrublands and evergreen forests, the vegetation types 

most prone to extreme fire behavior.  However, when predictive models of fire 

occurrence were combined with housing locations, the total number of houses with at 

least a 2% chance per year of experiencing a fire totaled 3.2 million.  Those houses were 

distributed across 19% of the U.S.  Because protection of property is a primary goal of 

fire management, there is a lot of ground to cover. 

Landscape-level fuel treatments to reduce fire intensity are one strategy that is 

being pursued to reduce fire risk.  Treatments are placed in or near the WUI or other 

values at risk from fire.  The cost of treatments can be high and the duration of their 

effects can be short (Berry and Hesseln 2004, U.S. Department of Agriculture 2006).  

Other approaches to reducing risk are worth pursuing, such as placing more responsibility 

on individual land owners to reduce fire risk on their property (Fried et al. 1999, Cohen 
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2000) and implementing fire-safe building codes so that housing can serve as a shelter 

in place1. 

Housing growth in the WUI is greater than the national average (Hammer et al. 

2007).  Whether or not future housing development will also be at risk from fire remains 

to be seen, but things don’t look promising given the current patterns of development.  

Greater thought needs to be paid about where future development will occur, how to limit 

the impacts of development to ecosystems, and how to avoid the negative impacts of 

ecosystem processes to humans. 

Scientifically, my dissertation research provides a national view of one aspect of 

coupled human-natural systems: how development and fires interact.  My research 

compared the relative effects of weather, vegetation, topography and human development 

on fire occurrence across the U.S.  Not surprisingly, I found that variables representing 

weather, vegetation, and topography had the most predictive power for explaining fire 

occurrence, and that human variables such as distance from road and housing density did 

matter too, but with less predictive strength.  We may be in less control of fire than we 

would like to believe! 

Previous, studies in the Upper Great Lakes and California found positive 

relationships between development and fire at short distances from roads and low 

housing densities, but a negative relationship at long distances from roads and high 

                                                 

1 http://www.firewise.org/  
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housing densities (Cardille et al. 2001, Syphard et al. 2007b).  My results confirmed 

that those same general patterns exist in vary degrees among ecoregions of the U.S.  My 

results also demonstrated that the relationships between humans and fire often vary from 

year to year.  The only other variables in my analysis that varied temporally were weather 

variables and this suggests that inter-annual variability in weather might have moderated 

the interactions between humans and fire.  The temporal variability in human-fire 

interactions has rarely been studied.  This is an avenue of research that could warrant 

further investigation especially because ecological and societal implications of climate 

change will depend to some extent on the coupling of humans and natural systems. 

Human development affects fire regimes through increasing ignitions (Cardille et 

al. 2001, Syphard et al. 2007b) and decreasing area burned through active suppression 

and by fragmenting fuels (Turner et al. 1989, Finney 2001).  Thus human development 

can impose novel patterns of fire occurrence that do not necessarily match natural, 

lightning-caused patterns.  Human-induced changes in fire occurrence can push 

ecosystem disturbance regimes outside their historic range of variability, which is often 

considered a benchmark for conservation success (Hunter 1993, Landres et al. 1999).  

Today, few ecosystems have fire regimes within historic range of variability (Rollins et 

al. 2001, Cleland et al. 2004) and as a consequence their composition, structure, and 

function are changing (Baker 1992, Covington and Moore 1994, Foster et al. 1998, 

Abrams 2003). 
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My research identified places across the country where fires pose a risk to 

housing development.  The ecological benefit of knowing where fire risk is greatest is 

that it also highlights where development will be less likely to limit the use of fire to 

maintain historic range of variability.  Federal fire management in the U.S. is embracing 

policies that allow fires to burn for their ecological benefit, but the extent to which it is 

possible to implement those policies across the country has been largely unknown, until 

now. 
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Chapter 1: Detection rates of the MODIS active fire product 

in the United States 

 

Abstract 

MODIS active fire data offer new information about global fire patterns.  However, 

uncertainties in detection rates can render satellite-derived fire statistics difficult to 

interpret.  We evaluated the MODIS 1 km daily active fire product to quantify detection 

rates for both Terra and Aqua MODIS sensors, examined how cloud cover and fire size 

affected detection rates, and estimated how detection rates varied across the United 

States.  MODIS active fire detections were compared to 361 reference fires (≥18 ha) that 

had been delineated using pre- and post-fire Landsat imagery.  Reference fires were 

considered detected if at least one MODIS active fire pixel occurred within 1 km of the 

edge of the fire.  When active fire data from both Aqua and Terra were combined, 82% of 

all reference fires were found, but detection rates were less for Aqua and Terra 

individually (73% and 66% respectively).  Fires not detected generally had more cloudy 

days, but not when the Aqua data were considered exclusively.  MODIS detection rates 

decreased with fire size, and the size at which 50% of all fires were detected was 105 ha 

when combining Aqua and Terra (195 ha for Aqua and 334 ha for Terra alone).  Across 

the United States, detection rates were greatest in the West, lower in the Great Plains, and 

lowest in the East.  The MODIS active fire product captures large fires in the U.S. well, 
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but may under-represent fires in areas with frequent cloud cover or rapidly burning, 

small, and low-intensity fires.  We recommend that users of the MODIS active fire data 

perform individual validations to ensure that all relevant fires are included. 

Introduction 

Satellite sensors can monitor global fire patterns (Dwyer et al. 1998, Dwyer et al. 2000, 

Csiszar et al. 2005) and have increased our understanding of fire emissions (Seiler and 

Crutzen 1980, Kaufman et al. 1992), land-use/land-cover change (Eva and Lambin 2000), 

and fire risk (Chuvieco and Congalton 1989).  Satellite fire data offer clear advantages 

over other fire data sources.  In the U.S., many public agencies keep fire occurrence 

records, but may not include fires occurring on private lands (Brown et al. 2002).  

Collecting fire data in the field is time consuming, expensive and difficult, especially in 

remote areas.  Satellite fire observations thus offer a reliable source of fire occurrence 

data that may overcome some of the limitations of traditional fire monitoring (Flannigan 

and Vonder Haar 1986, Eva and Lambin 1998a, Csiszar et al. 2005, Korontzi et al. 2006).  

However, although satellite fire data offer valuable information, uncertainty in their 

detection rates can make interpretation difficult (Congalton and Green 1999). 

A variety of sensors have been used to detect and map fires.  Global to continental 

coverage has been derived from the Advanced Very High Resolution Radiometer 

(Flannigan and Vonder Haar 1986, Li et al. 1997), and MODIS onboard the EOS Terra 

and Aqua satellites (Justice et al. 2002a).  Other moderate to coarse resolution sensors 

used for fire monitoring include Geostationary Operational Environmental Satellite (Prins 
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and Menzel 1992), Along Track Scanning Radiometer (Eva and Lambin 1998a), 

Defense Meteorological Satellite Program-Operational Linescan System (Elvidge et al. 

1996, Fuller and Fulk 2000), Visible and Infrared Scanner (Giglio et al. 2000), and SPOT 

VEGETATION (Fraser et al. 2000).  For regional fire mapping, finer-resolution sensors, 

such as Landsat (Minnich 1983, Chuvieco and Congalton 1989, Pereira and Setzer 1993), 

Advanced Wide Field Sensor (Chand et al. 2006) and Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (Morisette et al. 2005a, Morisette et al. 2005b, 

Csiszar et al. 2006) have been used. 

Regardless of the sensor, two general approaches to fire mapping have been 

taken; burn scar mapping and active fire detection.  Burn scar mapping involves 

identifying the area affected by fire after the event has occurred (Chuvieco and Congalton 

1988, Kasischke et al. 1993, Pereira and Setzer 1993).  In contrast to burn scar 

delineation, active fire detection maps the flaming front of fires at the time of satellite 

overpass (Matson and Dozier 1981, Flannigan and Vonder Haar 1986, Flasse and 

Ceccato 1996).  In this paper, we focused on MODIS active fire detections because they 

represent the state-of-the-art in global fire mapping and can be used as a basis for other 

fire products, for instance to distinguish burned areas from other disturbances (Giglio et 

al. 2006b, Loboda et al. 2007). 

Active fire detection is possible because radiant energy increases with 

temperature, producing a high contrast fire pixel relative to cool surrounding non-fire 

pixels.  Small increases in an object’s temperature result in large increases in radiance in 
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the mid-IR range (3-5 µm) and slight increases in the thermal-IR range (5-12 µm) and 

because of this, even sub-pixel size fires can be detected (Dozier 1981, Matson and 

Dozier 1981).  In practice, active fire detection algorithms either evaluate individual pixel 

values relative to a threshold (Matson and Dozier 1981, Flannigan and Vonder Haar 

1986); compare a pixel’s temperature contextually to its neighboring pixels (Flasse and 

Ceccato 1996, Giglio et al. 2003a); or track temporal changes in temperature (Cuomo et 

al. 2001, Lasaponara et al. 2003). 

Errors of commission in active fire mapping can be caused by non-fire surfaces 

that are highly reflective such as urban areas, senescent vegetation, bare soil, water, or 

clouds (Flannigan and Vonder Haar 1986, Setzer and Verstraete 1994, Giglio et al. 

2003a).  Contextual algorithms sometimes exhibit commission errors where there is sharp 

radiometric contrast, for example, between desert and vegetation (Giglio et al. 2003a).  

Errors of omission may occur, if there is a difference between the time of fire occurrence 

and satellite overpass, and these errors are particularly common when satellite overpass 

does not coincide with peak daily fire activity (Prins et al. 1998, Cardoso et al. 2005, 

Giglio 2007).  Clouds and thick smoke can also obscure fire activity (Flannigan and 

Vonder Haar 1986).  Theoretically, small fires should be identifiable by even moderate 

resolution sensors such as AVHRR or MODIS (Dozier 1981, Matson and Dozier 1981, 

Giglio et al. 1999), but in practice, they may lack the intensity needed to trigger detection 

thresholds and will remain undetected especially at large scan angles where the amount 

of energy reaching the satellite is limited (Giglio et al. 1999, Giglio et al. 2003a, 

Schroeder et al. 2005).  Contextual algorithms are more likely to miss fires in 
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heterogeneous land cover, which complicates the selection of an appropriate 

background temperature (Lasaponara et al. 2003, Schroeder et al. 2005, Wang et al. 

2007). 

The MODIS active fire products are produced using a contextual algorithm for the 

MODIS sensors on NASA’s two Earth Observing System (EOS) satellites: Terra and 

Aqua.  Interested readers should refer to Giglio et al. (2003) for details about the 

algorithm.  The two satellites are in sun-synchronous orbits with different local overpass 

times; 1:30 and 13:30 for Aqua, and 10:30 and 22:30 for Terra (Lillesand and Kiefer 

1999).  Aqua generally detects more fires than Terra because its afternoon overpass time 

is closer to daily peak fire activity in many regions (Justice et al. 2002a). 

Several approaches have been taken to quantify errors in fire data, including 

simulation models, comparison with independent but simultaneously collected satellite 

data, and comparison with field data.  Simulation models predict that commission errors 

of MODIS and other satellites’ fire detections are very low (Giglio et al. 1999, Giglio et 

al. 2003a).  However, errors of omission are likely and simulations show that MODIS has 

a 50% probability of detecting a 100 m2 flaming fire (~ 1,000 K) or a 1,000-2,000 m2 

smoldering fire (~ 600 K; Kaufman et al. 1998, Giglio et al. 2003a).  Detection limits are 

generally similar among biomes, but somewhat lower for dry tropical savannas (Giglio et 

al. 1999, Giglio et al. 2003a).  These simulation results suggest that small fires can be 

detected under ideal conditions, but validations with real fire data are needed to fully 

understand the detection capabilities of MODIS. 
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Quantifying fire activity on the ground at satellite overpass times is logistically 

difficult (Roy et al. 2005).  One approach is to use data collected by the ASTER sensor, 

also onboard the Terra satellite with MODIS.  ASTER senses energy in the 0.5 to 10 µm 

wavelengths, has finer spatial resolution (15-90 m) than MODIS, and its simultaneous but 

independent observations of fire events can validate MODIS active fire products (Justice 

et al. 2002b, Morisette et al. 2005a, Morisette et al. 2005b, Csiszar et al. 2006).  

Comparisons with ASTER suggest commission errors in the MODIS active fire data are 

rare (0.01% in Brazil (Morisette et al. 2005b) and 0.002% in northern Eurasia (Csiszar et 

al. 2006).  Errors of omission are more common, especially for small fires.  For instance, 

MODIS has a 50% detection rate when fire activity spanned clusters of 47 or more 

ASTER pixels (30-m resolution each) in Brazil (Morisette et al. 2005b), 25-34 ASTER 

pixels in southern Africa (Morisette et al. 2005a) and ~60 ASTER pixels in northern 

Eurasia (Csiszar et al. 2006).  When aggregated to MODIS resolutions, the actual fires 

mapped by ASTER can be composed of many individual fire components and each fire 

component potentially has a different temperature.  In contrast, the theoretical 

simulations of MODIS fire detection capabilities ignore the heterogeneity of individual 

fire components and are based on one temperature describing the entire active fire area.  

It is impossible to know what portion of each ASTER pixel was actively burning at the 

time of image capture, but results from ASTER validation studies suggest the actual 

MODIS 50% detection threshold could be considerable larger than theoretical predictions 

(Giglio et al. 2003a). 
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 The true fire size detection threshold of MODIS may be even lower because the 

ASTER imagery is restricted to a portion of the MODIS viewing area.  The MODIS 

sensors collect data over a 2,330 km wide swath.  In comparison, ASTER collects SWIR 

and TIR data in 60 x 60 km segments within ±116 km of the center of MODIS Terra’s 

path (Yamaguchi et al. 1998).  Results from validation studies based on ASTER data are 

limited to that range and may overestimate MODIS detection rates because detection 

capabilities are reduced at the periphery of MODIS’ swath (Schroeder et al., 2005).  

Furthermore, ASTER provides no information about fire activity occurring at times 

different from MODIS Terra overpass (10:30 / 22:30; Morisette et al. 2005a, Morisette et 

al. 2005b, Csiszar et al. 2006). 

Validation efforts based on independently collected fire data are thus important.  

Ground-based validations can include small fires and fires that are not actively burning 

during satellite overpass.  Unfortunately, only few ground-based studies have validated 

the MODIS active fire product.  In one study examining MODIS fire detection rates in 

Brazil (Cardoso et al. 2005), errors of commission were high with only 33% of MODIS 

active fires confirmed on the ground.  Errors of omission were even greater; only 0.7% of 

all the fires observed on the ground were identified by MODIS.  The Cardoso et al. 

(2005) covered only a small study area, and was limited to one biome, but it raises the 

question what proportion of fires is captured by the MODIS active fire product.  

Simulation studies and ASTER validations alone can not answer this question, and 

additional ground-based accuracy assessments are needed to interpret the MODIS fire 

data. 
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Our objective was to determine how well the MODIS active fire products 

capture broad-scale patterns of fire activity.  We took an approach different from prior 

MODIS active fire validation efforts and used a set of fire perimeters spanning a wide 

range of environmental conditions across the United States as reference data.  The 

specific questions we sought to answer were: 

1. What proportion of fires is detected by the MODIS active fire product? 

2. Do detection rates change if lower confidence MODIS active fires are excluded? 

3. Are there differences in cloud cover between detected and undetected fires? 

4. Are there differences in size between detected and undetected fires? 

5. Are there regional differences in fire detection rates? 

Our goal was to provide information that will enhance the interpretation of 

MODIS fire data in national-level assessments of fire activity, fire risk modeling, 

disturbance ecology, and biogeochemical cycling. 

Methods 

Reference fires 

We selected reference fire polygons from the U.S. Geological Survey (USGS) / U.S. 

National Park Service (NPS) Burn Severity Mapping program and the USGS / U.S. 

Forest Service (USFS) Monitoring Trends in Burn Severity program.  These polygons 

represent fire perimeters of burn scars, manually interpreted from pre and post-fire 

Landsat images close to the peak of the growing season.  The fires mapped by these 
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projects were selected from existing fire databases, such as the federal incident reports.  

Small fire perimeters exist in the data but mapping priority was given to fires large 

enough to leave visible scars in Landsat imagery (≥ 202 hectares in the East and ≥ 404 

hectares in the West).  We selected these fire polygons as reference data because there 

was little spatial uncertainty in the location of fires, unlike other fire data sources such as 

the Federal Fire Occurrence Database (Brown et al. 2002). 

We only used reference fire perimeters after 2003, the date at which both MODIS 

Terra and Aqua were operational.  Reference data included perimeters of 38 fires from 

2003, 31 from 2004, and 16 from 2005 from the NPS / USGS National Burn Severity 

Mapping project2 and 276 fires from 2004 from the USGS / USFS Monitoring Trends in 

Burn Severity project3.  These were all the fires available through the two burn severity 

mapping projects at the time this study was performed.  The size of reference fires ranged 

from 18 ha to 48,360 ha (Figure 1.1). 

We converted the reference fire polygons to raster images with the same spatial 

resolution as the MODIS active fire data (1 km).  Although MODIS georeferencing errors 

are reported as being low (approximately 0.1 pixels; Wolfe et al. 2002), we expanded the 

reference fire perimeters by a 1-km buffer to account for potential georeferencing errors 

and pixel overlap (Figure 1.2). 

                                                 

2 http://burnseverity.cr.usgs.gov/ 

3 http://svinetfc4.fs.fed.us/mtbs/index.html 
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MODIS active fire data 

We compared the reference fire data to MODIS Terra and Aqua daily active fire data 

(MOD14a1 and MYD14a1, Collection 04).  MODIS data were acquired from the Land 

Processes Distributed Active Archive Center4.  For each day, the MOD14a1 or 

MYD14a1 files were mosaicked and reprojected to Albers Equal Area with the 1983 

North American Datum using the MODIS Land Data Operational Product Evaluation 

tools5. 

Data analysis 

To compare fire detection rates between the two sensors, we determined the proportion of 

reference fires detected for three different combinations of the MODIS Aqua and Terra 

active fire products: (1) Aqua only, (2) Terra only, and (3) Aqua and Terra combined.  In 

the combined MODIS data, pixels were flagged as having an active fire if either Aqua or 

Terra detected a fire.  A reference fire was considered detected if it was within 1 km of at 

least one MODIS active fire pixel from either satellite during the year the reference fire 

was reported (Figure 1.2).  For this analysis, we included all MODIS active fires of low 

confidence or greater. 

We also assessed how many reference fires were detected by the MODIS active 

fire product when lower confidence MODIS fires were excluded.  We used the same 

three data combinations as in the detection rates between MODIS sensors (Aqua only, 
                                                 

4 LPDAAC, http://edcdaac.usgs.gov/modis/dataproducts.asp 

5 LDOPE; http://edcdaac.usgs.gov/landdaac/tools/ldope/ 
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Terra only, and Aqua or Terra).  When the Aqua and Terra data were combined, we 

retained the highest confidence level for detected fires. 

To examine the effects of cloud cover on MODIS active fire detection rates, we 

compared the number of cloudy days between detected and undetected reference fires.  

The MODIS active fire product implements a simple mask to exclude areas covered by 

optically thick clouds from processing (Giglio et al. 2003a).  Optically thin clouds might 

also be present but are generally considered to have negligible effects on fire detection 

and are not identified by the masking algorithm.  We assumed that the presence of any 

cloud pixels within the reference fire perimeters was indicative of cloud or smoke cover 

that might have obscured fire activity. 

For each reference fire, we calculated the number of days with cloud cover 

between the fire’s start date and 14 days after the start date.  End dates were not reported 

for many fires.  However, visual examination of the MODIS data showed that most fire 

activity occurred within two weeks of the reported start date, so we constrained our cloud 

cover analysis to that time span.  We used two-sided t-tests assuming unequal variance to 

determine whether there was a statistically significant difference in the number of days 

with cloud cover between detected and undetected fires. 

In order to assess the effects of fire size on detection rates, we related reference 

fire size (x) to the proportion of reference fires not detected by MODIS (P) using a 

logistic regression with the logit-link function (Agresti 1996). 
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=P π

π

e
e
+1 , where εββπ ++= x10 (Equation 1; β0 = intercept; β1 = slope).   

We calculated the size at which 50% of the reference fires were not detected as 

10%50 / ββ=x  (Equation 2; Agresti 1996). 

To make regional comparisons of MODIS active fire detection rates, we 

subdivided the United States into three areas by grouping Omernik Level 1 ecoregions 

(Omernik 1987).  The West included Omernik’s Northwestern Forested Mountains, 

Marine West Coast Forest, North American Deserts, Mediterranean California, Southern 

Semi-arid Highlands, and Temperate Sierras.  The East included Omernik’s Northern 

Forests, Eastern Temperate Forests, and Tropical Wet Forests.  The Great Plains was 

composed solely of Omernik’s Great Plains ecoregion.  Within each region, we 

calculated the proportion of reference fires detected by each sensor individually and 

combined. 

Results 

When active fire data from both MODIS satellites were combined, 82% of the reference 

fires were detected.  The combined detection rate was greater than when either of the 

MODIS sensors were considered individually (73% for Aqua and 66% for Terra).  

Excluding low-confidence MODIS active fire detections had little effect on detection 

rates, decreasing the total number of fires detected by 1 for Aqua and 2 for Terra.  

However, excluding nominal-confidence MODIS active fire detections had a greater 
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effect, decreasing the number of fires detected by 12% and 14% for Aqua and Terra 

respectively. 

The number of cloudy days during the first two weeks of fire activity was 

generally low, but reference fires not detected by MODIS had more cloudy days (Table 

1.1).  The difference was statistically significant (p-values < 0.05) for the combined 

MODIS Aqua and Terra data when all fires across the U.S. were considered, as well as in 

the East and in the West.  When Aqua and Terra were treated individually, the pattern of 

more cloudy days for undetected fires persisted, but was only significant when all fires 

across the U.S. were considered.  At regional levels (East, Great Plains, and West), cloud 

cover effects on Aqua or Terra fire detections were most pronounced in the East. 

There were significant differences in the size of fires detected and undetected by 

MODIS for Terra and Aqua.  The smallest reference fire detected by Aqua was 17.6 ha 

versus 27.8 ha for Terra.  Mean fire sizes of detections were 915 and 1,044 ha for Aqua 

and Terra respectively, while mean fire sizes of non-detections were 364 and 346 ha for 

Aqua and Terra.  The largest fire not detected by Aqua was 2,638 ha and 2,484 for Terra. 

The proportion of reference fires detected increased with reference fire size 

(Figure 1.3, Table 1.2).  The models including both Aqua and Terra sensors and the 

model based on Aqua alone generally exhibited greater detection rates relative to fire size 

than the model based on Terra alone.  This is demonstrated by the threshold at which > 

50% of fires were detected: 105 ha (combined Aqua and Terra), 195 ha (Aqua only), and 

334 ha (Terra only). 
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MODIS fire detection rates also varied regionally across the United States (Figure 

1.4).  When the Aqua and Terra sensors were combined, overall detection rates were 

greatest in the West (89%), slightly lower in the Great Plains (80%), and lowest in the 

East (60%).  When the sensors were considered individually, Aqua and Terra performed 

equally well in the West, where both sensors detected 81% of the reference fires.  

However, we found different detection rates between sensors in the Great Plains, where 

detection rates were 69% for Aqua and 60% for Terra, and in the East where detection 

rates were 58% for Aqua and 39% for Terra (Figure 1.5). 

Discussion 

Overall, we found that the MODIS active fire products detected the majority of our 

reference fires.  Detection rates were greatest when the active fire product data from both 

MODIS Aqua and Terra were used together, and individually Aqua outperformed Terra.  

The difference in the detection rates between the two MODIS sensors is most likely 

related to their overpass timing.  Fire activity follows a diurnal cycle, often peaking in the 

afternoon, when weather conditions are most favorable for burning (Prins et al. 1998, 

Giglio 2007).  Aqua’s early afternoon (13:30) overpass is closest to this peak and is the 

most likely reason for Aqua’s higher detection rates.  The daily data for Terra did detect a 

small number of fires not found by Aqua, about 9% of 361 total fires.  These additional 

fires represent early morning or late evening fires that were not active at Aqua’s overpass 

times (1:30 and 13:30).  Unless there is specific interest in diurnal variability in fire 
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activity, we recommend combining the Aqua and Terra active fire observations to 

obtain the greatest detection rates. 

Almost no additional reference fires were detected when low confidence MODIS 

active fire pixels were included in the analysis.  Low-confidence fire pixels tended to 

occur at the periphery of clusters of high and nominal confidence active fire pixels, and 

these reference fires would have been detected by the nominal and high confidence active 

fire pixels alone.  Including low-confidence fire pixels might be desirable for other 

applications such as mapping clusters of fire activity (Loboda and Csiszar 2007) or 

approximating burned area (Giglio et al. 2006b); however, low-confidence fire pixels did 

not improve detection rates for our analysis of large fires.   

Clouds are a confounding factor affecting estimates of fire activity by reducing 

satellite fire detection rates (Flannigan and Vonder Haar 1986).  We observed a 

significantly greater number of days with cloud cover for undetected reference fires.  This 

pattern was strongest in the Eastern U.S., where the spring and fall fire seasons may 

coincide with higher cloud cover.  However, in most cases the difference in the number 

of cloudy days was small.  We had little information on when and where fires were active 

within our reference fire perimeters.  Because of this, we assumed the presence of at least 

one MODIS cloud pixel within the reference fire perimeter represented clouds or smoke 

that could obscure fire activity.  This assumption might have overestimated the influence 

of clouds on MODIS detection rates.  However, cloud cover is clearly an important factor 

affecting MODIS detection rates and satellite fire detections will underestimate true fire 

activity in regions with persistent cloud cover. 
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MODIS active fire detection rates decreased as the size of reference fires 

decreased.  There are several reasons why this might have occurred.  First, the duration a 

fire burns might decline with total fire size.  Shorter duration fires have fewer chances of 

being detected at MODIS overpass.  It was not possible to test this because of the limited 

temporal information associated with our reference fires; however our reference fires 

were typically large fires that likely burned for multiple days.  Another possible 

explanation for the decline in detection rate with fire size is that small reference fires 

lacked the energy output needed to trigger the thresholds of the MODIS active fire 

product algorithms (Giglio et al. 2003a).  For instance, a small surface fire burning leaf 

litter under a deciduous forest canopy might not have generated temperatures high 

enough for MODIS detection. 

Even though detection rates increased with fire size, the MODIS active fire 

products failed to detect two large fires (>2,000 ha, Figure 1.4).  One of these was a shrub 

fire in west-central Washington and the other was a grassland fire in southern Florida.  

The number of days with cloud cover for both fires was between 3 and 4, but there were 

no days where the view of both satellites was entirely obscured by clouds.  Fires in flashy 

fuels such as shrubs and grasses can burn rapidly and often lack large fuels that would 

continue to burn after the fire front has passed.  It is possible that these two large fires, 

and other reference fires, were not detected by the MODIS active fire products because 

they had rapidly moving flaming fronts that were extinguished before, and left little 

residual heat at MODIS overpass time.  This is a plausible explanation, but to fully 

address this question, detailed information about the location of the fire front at the time 
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of MODIS overpass would be needed.  Unfortunately, this information was not 

available and we were not able to perform such an analysis. 

Across the United States, MODIS active fire detection rates were lowest in the 

East and greatest in the West.  Fire sizes tended to be smaller in the East than in the Great 

Plains and West (Figure 1.5).  However, we believe the different detection rates were 

primarily caused by differences in forest types, landscape pattern, fuel loadings, and fire 

behavior.  The majority of fires in the Great Plains and eastern U.S. occurred in 

grasslands and deciduous forests that typically experience surface fires.  Fuels in these 

ecosystems experience limited post-frontal combustion and if fires are not active during 

MODIS overpass there will be little chance of detection.  In contrast, many forests in the 

Western U.S. are coniferous and experience a variety of fire behavior including intense 

crown fires (Agee 1993).  Heavy fuels in western fires may continue to combust after the 

fire front has passed.  The increased energy output of active western fires and their 

remaining residual heat makes them more likely to be detected by the MODIS active fire 

products. 

Most of our reference fires occurred on state and federal lands.  As a 

consequence, our results may not be valid for substantially different vegetation types and 

fuel loadings.  For instance, agricultural lands in the United States experience frequent 

fire activity that is clearly visible in the MODIS imagery (Korontzi et al. 2006, McCarty 

et al. 2007).  Fuel loadings in forests and grasslands are quite different than those found 

in agricultural fields where fires tend to be small and short in duration (McCarty et al. 
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2007).  Hence, we would expect detection rates for agricultural fires to be slightly less 

than those we observed for wildland fires. 

If all fire activity is considered, there are many small fires (<1 ha; Brown et al. 

2002).  However, our reference fires were burn scars mapped from Landsat imagery.  

Using these data limited our analysis to fires that were large enough to make a visible 

burn scar in 30 m Landsat imagery; the smallest reference fire we included was 18 ha.  

Data for small fires, 1 ha or less, with the necessary spatial accuracy were not available 

for analysis.  For that reason, our results tell us little about MODIS active fire detection 

rates for such small fires.  However, given that the size threshold at which 50% of the 

reference fires were detected was 105 ha, we believe it is safe to assume that most small 

fires remain undetected by the MODIS active fire products. 

How can we improve efforts to monitor global fire activity in the future?  Our 

results highlighted that the size detection threshold above which fires on the ground are 

likely detected by the MODIS active fire product is fairly large (105 ha).  However, these 

results are specific to the United States and differed depending on ecoregion.  More 

studies in other biomes are needed to understand the spatial variability of the detection 

threshold and field-based studies on errors of commission are needed to interpret the 

MODIS active fire data fully. The primary limitation of the fire detection capabilities of 

the MODIS sensors appears to be the temporal gaps between satellite overpasses.  During 

these gaps, it is not possible to monitor small fires or rapidly burning fires that extinguish 

before the next overpass.  More frequent observations offered by geostationary systems, 
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i.e., GOES (Prins et al., 1998; Prins & Menzel, 1992) and multi-sensor approaches 

(Eva and Lambin 1998b, Giglio 2007) offer promise to fill the gaps between MODIS 

overpasses and provide a more comprehensive record of fire occurrence.   

Small and low intensity fires are less likely to be detected by the MODIS active 

fire products.  Increased sensor resolution might help to detect small, low temperature 

fires, but simulations and ASTER validation studies suggest that these fires are quite 

visible if active during MODIS overpass (Giglio et al. 1999, Giglio et al. 2003a, 

Morisette et al. 2005a, Morisette et al. 2005b, Csiszar et al. 2006).  Detection is heavily 

dependent on fire intensity, which varies with fuel loads, moisture levels, and weather; 

regional fire detection algorithms, tuned to local variability in fuels and fire behavior 

might offer greater fire detection than global algorithms (Loboda et al. 2007, Wang et al. 

2007). 

Our results have consequences for the use of the MODIS active fire product in fire 

management.  Fire fighting is most effective when fires are detected before they become 

large, but the MODIS active fire products may be of limited value as an early-warning 

system because small fires are often undetected.  The use of MODIS active fire data to 

differentiate burn scars from other disturbances may be questionable, because small fires 

are less likely to have an active fire detect, and burned area estimates would be 

downwardly biased.  The accuracy of the MODIS active fire product also has 

consequences for estimating the effects of fires.  For instance, wildfire aerosol and trace 

gas emission estimates relying on the MODIS active fire data (Kaufman et al. 2003) may 



   35

be low because not all fires are included.  However, since the undetected fires are 

likely to be small, they should have a relatively small effect on total emissions.  The 

active fire data are quite useful for tracking large fires and since large fires account for 

the majority of area burned, the MODIS active fire products should be useful to quantify 

relative differences in fire activity among regions with similar biophysical characteristics.  

In summary, the MODIS active fire product provides important data for fire management, 

but the interpretation of the data needs to take the detection size threshold into account to 

avoid false conclusions. 

Conclusions 

MODIS active fire products provide a valuable source of data about fire activity that 

capture spatial and temporal patterns not represented in other fire data.  Based on our 

analysis, overall detection rates of fires by the MODIS active fire products were high 

(82%) when data from both the Aqua and Terra sensors were combined.  However, small 

fires were less likely to be detected than large fires.  MODIS fire detection rates varied 

across the country, being greatest in the West and lowest in the East.  We suggest that the 

MODIS active fire data are appropriate for applications where relatively large and intense 

fires are of primary interest.  We recommend that users of the MODIS active fire data 

perform an individual quality assessment to ensure that fires relevant to their application 

are represented. 
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Table 1.1.  Mean number of cloudy days for reference fires that were detected and 

undetected by the MODIS active fire products.  P-values indicate significance for two-

sided t-test of difference in mean number of cloudy days assuming equal variance. 

  Entire US East Great Plains West 

 Degrees of freedom 359 109 63 183 

  

Combined Detected 0.45 0.75 0.81 0.21 

 Undetected 1.20 1.42 1.15 0.75 

 p-value < 0.0001 0.0032 0.2996 0.0006

     

Aqua Detected 3.14 3.68 4.62 2.49 

 Undetected 4.08 4.65 4.65 2.87 

 p-value 0.0036 0.0645 0.9666 0.4430

     

Terra Detected 2.88 3.36 4.59 2.31 

 Undetected 4.00 4.21 4.69 2.97 

 p-value 0.0001 0.0883 0.8754 0.1749
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Table 1.2.  Logistic regression parameters, standard errors and z and p-values for 

proportion of references fires that were not detected by the MODIS active fire products 

from 2003 to 2005.  β0 = Intercept, β1 = Slope, sample size = 361 fires. 

 Coefficient Estimate 

Standard 

error z-value p-value 

Aqua or Terra 

combined β0 13.0267 3.1901 4.083 < 0.0001 

 β1 -0.9379 0.2094 -4.478 < 0.0001 

      

Aqua β0 12.2055 2.7944 4.368 < 0.0001 

 β1 -0.8433 0.1819 -4.637 < 0.0001 

      

Terra β0 13.8224 2.7396 5.045 < 0.0001 

 β1 -0.922 0.1775 -5.196 < 0.0001 
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Figure 1.1.  Histogram of the fire size distribution of the reference fires used for 

comparison with the MODIS active fire products.  X-axis increments follow a log scale. 
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Figure 1.2.  Example of fire comparison methods used to determine MODIS active fire 

detection rates.  Data are shown for the Balcony House Fire in Wyoming, 2003.  

Reported start date was Julian date 196 (July 15).  Reported stop date was Julian date 221 

(August 9); however, no MODIS fire pixels occurred within the perimeter after Julian 

day 197 (July 16). 
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Figure 1.3.  MODIS active fire product detection status in relation to reference fire size 

for (a) Aqua or Terra combined, (b) Aqua only, and (c) Terra only.  X-axis increments 

follow a log scale.  Black lines show the fitted logistic regression curve for the proportion 

of fires not being detected by MODIS against log(fire size). 
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Figure 1.4.  Geographic distribution of reference fires detected and not detected by the 

MODIS active fire product between 2003 and 2005.  Total number of reference fires was 

361. 
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Figure 1.5.  Mean size of reference fires among regions of the U.S.  Error bars show ± 

95% confidence levels.  Fires were significantly smaller in the East compared to the U.S. 

(ANOVA difference of means p-value < 0.0001). 
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Chapter 2: Patterns of fire occurrence among land cover and 

property types of the United States  

 

Abstract 

Understanding the geography of fire is important for determining the ecological effects of 

fire disturbances, assessing risk, and prioritizing funds for fire management.  Basic 

questions regarding the geographic distribution of fire in the United States remain largely 

unanswered, especially beyond the boundaries of public lands.  Our objective was to 

quantify where fires occurred and where houses were in close proximity to fires across 

the United States.  We used active fire observations collected between 2003 and 2006 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors 

with 1 km resolution.  First, we compared fire occurrence among four property types 

(wildland-urban interface, federal lands, wilderness areas, and all other lands) and 8 land-

cover categories (developed, agriculture, wetlands, grasslands, shrublands, and evergreen, 

deciduous, and mixed forests).  Second, we identified spatially and temporally contiguous 

clusters of MODIS active fire pixels and examined how the number of MODIS fires and 

houses in MODIS fires varied relative to the size of MODIS fire clusters.  On average, 

MODIS fires were observed for 1.24% of the U.S. per year and over 1 million houses 

were located in MODIS fires.  Approximately 6% of all MODIS fires occurred in the 

wildland-urban interface (WUI) and 23% on federal lands.  Fifty eight percent of all 
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shrubland and evergreen forest MODIS fires were in the West compared to 38% in the 

East, but the number houses in those fires was less in the West than in the East (28,100 

vs. 37,300).  Among ecoregions, the Southeastern U.S. and Mediterranean California had 

the greatest number of houses in shrubland and evergreen forest MODIS fires.  Small 

fires predominated in the WUI and more than 50% of all the WUI fire pixels were found 

in fire clusters 4 pixels or less in size.  Approximately 80% of all WUI houses in MODIS 

fires were found in clusters less than 12 pixels in size.  However, in Mediterranean 

California, more than 50% of the WUI houses in MODIS fires were contained in 11 large 

fire clusters, each spanning more than 200 pixels.  Our results highlight the regional 

variability in fire occurrence across property and land cover types and the different 

challenges they present to fire management.  Recognizing these differences can be 

important when promoting the ecological benefits of fire while limiting its undesirable 

effects. 

Introduction 

Limiting fire risk to a growing number of houses in the wildland-urban interface and 

determining where fires should be allowed to burn in wildlands are primary questions in 

the debate about the role of fire in the U.S.  The questions are not trivial; however, basic 

information is lacking about what proportion of the U.S. burns, where it burns, and how 

many houses are exposed to fire.  Without such information, comparisons of where fires 

are most likely to occur, where houses are most at risk, and where fire use is feasible are 

difficult to address.  Thus, because fires have ecological, social, and economic 
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importance, a greater understanding of the patterns of fire occurrence at the national-

scale is needed (Noss et al. 2006, U.S. Department of Agriculture 2006).  In this paper we 

quantified the location and extent of fire in the U.S. among property types and vegetation 

categories at multiple scales and identified areas where houses were most exposed to 

fires. 

Federal fire suppression expenditures have steadily increased, exceeding $1 

billion in four of the seven years between 2000 and 2006 (U.S. Department of 

Agriculture 2006).  As suppression costs have risen, so has the annual area burned (NIFC 

2008) and escalating costs are in part related to increases in burned area (Calkin et al. 

2005).  However, the increasing expense of fire suppression has also been attributed to 

the large and growing number of houses in the wildland-urban interface (WUI), which is 

the zone where houses and wildland vegetation intermingle (U. S. Department of 

Agriculture and U. S. Department of Interior 2001).  Nearly 39% of all houses in the U.S. 

were located in the WUI in 2000 (Radeloff et al. 2005) and housing growth rates in the 

WUI are considerably higher than in non-WUI areas (Hammer et al. 2007). 

The opportunities to realize the ecological benefits of fires are becoming 

increasingly limited as development expands into the surrounding wildlands (Noss et al. 

2006).  People have an antagonistic relationship with fire, typically increasing fire 

ignitions but also decreasing the area burned through suppression efforts (Cardille et al. 

2001, Syphard et al. 2007b).  Many plant communities are adapted to and maintained by 

periodic fire disturbance (Keeley et a. 1998; Bond and Keeley 2005).  Human-driven 

changes in fire regimes, whether caused by suppression or increased ignitions, can push 
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ecosystems outside their historic range of variability and can cause shifts in species 

composition and ecosystem structure and function (Keeley et al. 1999, Lorimer and 

White 2003, Franklin et al. 2005, Syphard et al. 2006, Syphard et al. 2007a).  Maintaining 

fire disturbance within the historic range of variability may be critical for the protection 

of many fire adapted ecosystems and that puts many conservation goals at odds with risk-

reducing fire suppression and management activities. 

The balance between managing the risks and the benefits of fire depend to a large 

extent on the property type and the landscape surrounding the property.  Wilderness 

Areas are recognized as “an area where the earth and its community are untrammeled by 

man” (Wilderness Act of 1964) and lightning fires may be allowed to burn under certain 

conditions (USDA-USDI 2000).  Wildland fire use (WFU) is increasing in both 

Wilderness Areas and other federal lands, but in practice, less than 30% of Wilderness 

Areas in the U.S. have a ‘let burn’ or WFU policy explicitly stated in their management 

plans and most natural fires are still extinguished (Miller 2006).  In contrast, fire 

suppression efforts and fuel treatments are focused in the WUI and at the boundary of 

public and private lands to protect human life and property (Healthy Forests Restoration 

Act of 2003).  Because of these different fire management objectives, there is a gradient 

of decreasing ecological benefit and increasing risk of fire moving from Wilderness 

Areas to the WUI. 

The patterns of fire occurrence in different property types along the wilderness to 

WUI gradient is largely unknown and even less is known about where houses are in close 
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proximity to fires.  Such information is important because fire management is often 

focused on public lands but most houses and structures at risk from fire are on private 

lands in the WUI (Radeloff et al. 2005, Theobald and Romme 2007).  Quantifying fire 

occurrence along the wilderness to WUI gradient could help to determine whether or not 

fire management goals and efforts are being focused in the most appropriate places. 

In addition to property types, a variety of other variables can influence fire 

occurrence.  Humans play a large role in fire ignition patterns, but total area burned 

typically has a stronger relationship with biophysical variables (Cardille et al. 2001, 

Syphard et al. 2007b).  Among these variables are the three sides of the classic fire 

environment triangle: weather, fuels, and topography, which interact in complex ways to 

determine when and where fires occur and spread (Pyne et al. 1996).  Fuels alone can be 

good indicators of potential fire behavior over long time periods and many fire risk 

assessments are based primarily on current or historic fuel type (Schmidt et al. 2002, 

Haight et al. 2004, Theobald and Romme 2007).  Specifically shrublands and coniferous 

forests are important because these vegetation types are prone to intense crown fires 

under severe weather conditions (Agee 1993, Turner and Romme 1994, Keeley et al. 

1999).  Thus, in addition to quantifying fire occurrence among property types, including 

vegetation type can provide additional information about the expected intensity of fires 

and risks to society. 

Fires can vary greatly in their frequency, size, and intensity.  Small fires are most 

common; however, large fires present the most series challenges to fire managers because 
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they are difficult to control and account for a disproportionate amount of burned area 

and economic damage (Strauss et al. 1989, Kasischke et al. 2002, Finney 2005).  Because 

size is a good proxy measure for the management challenges presented by fires, it can 

provide additional information about the ecological and social significance of fires. 

Vegetation type influences fire occurrence at local scales, but broad-scale 

variability in weather, climate, and culture can also matter (Pyne 1982, Swetnam and 

Betancourt 1990, Veblen et al. 2000, Rollins et al. 2002).  Ecoregional boundaries are 

based largely on climate, soils, and vegetation gradients and could be useful for 

examining fire occurrence patterns at different spatial extents while controlling for broad-

scale variability in the drivers of fire occurrence (Omernik 1987, Bailey et al. 1994).  

Multi-scale analyses of fire occurrence are important because policies are provided at a 

national scale, but how these policies are implemented locally varies depending on 

regional social and environmental context. 

Poor fire data may limit national-scale analyses of fire occurrence.  The federal 

fire occurrence database provides much information about fires on public lands.  

However, the federal fire data have questionable spatial accuracy, are often aggregated to 

the county-level, and fires outside of public lands may not always be included (Brown et 

al. 2002, Schmidt et al. 2002).  Furthermore, the federal data typically include only point 

locations, not the entire fire perimeter, although efforts are underway to remedy this 

situation (i.e., the National Trends in Burn Severity Mapping program), it will be some 

time before they are complete. 
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In comparison to the federal fire occurrence database, satellite fire detections 

are useful for national-scale analyses because they span all ownerships and property 

types, can monitor the extent of fire activity (not just point locations), and have more 

consistent spatial detail.  Several studies of fire occurrence have analyzed satellite fire 

observations across broad regions (Li et al. 1997, Giglio et al. 2003b, Pu et al. 2007) and 

the entire globe (Dwyer et al. 2000, Csiszar et al. 2005, Giglio et al. 2006a).  Those 

studies demonstrated the ability of satellite fire detections to track important spatial and 

temporal patterns of fire.  However, no study explicitly examined fire patterns across 

vegetation and property types, and the range of spatial scales relevant for fire 

management in the U.S. 

Our objective was to determine the location of fires and their potential impacts to 

human communities.  We addressed the direct impacts of fire on human communities and 

ecosystems by asking first “what is burning where in the U.S.?” and second, “where are 

houses near fires in the U.S.?” Our third and fourth research questions addressed 

management challenges posed by large fires and asked “where are large fires and where 

do houses and large fires coincide?” 

Methods 

When wildfires threaten communities, priority is given to protecting lives, homes, and 

other structures.  We focused our analysis on homes because they are stationary (while 

people are evacuated), information on the number and approximate location of housing 

units are readily available, and housing units serve as a proxy measure of population.  
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Last but not least, the number of structures protected and lost is often considered used 

as a measure of fire fighting effectiveness. 

Fire management decisions are made at a variety of scales but national-level 

analyses are particularly valuable for policy decisions.  Most categorical data analyses 

quantify data as a proportion calculated for each group i.e., the proportion of fire pixels to 

forest pixels.  We took a different approach, because we wished to quantify the total not 

relative impact of fires.  Hence, we quantified the number of fires and houses in fires for 

the contiguous 48 states of the U.S. 

MODIS Active Fire Detections 

We used active fire observations collected by the MODIS sensors onboard the NASA 

Earth Observing System Aqua and Terra satellites (Justice et al. 2002b, Giglio et al. 

2003a).  These data are categorical and represent fires that were actively flaming at the 

time of satellite overpass, 1:30 and 13:30 for Aqua and 10:30 and 22:30 for Terra (Justice 

et al. 2002a).  We restricted our analysis to the years for which both the Aqua and Terra 

data were complete, 2003 – 2006 (Figure 2.1).  We combined the Terra and Aqua data 

and classified pixels as a “MODIS fire” if either sensor had detected a fire within any 

given year.  The MODIS fires are assigned one of three categories depending on fire 

detection confidence.  We retained high- and nominal-confidence fire detections but 

excluded low-confidence fire detections to avoid false positives and limit the analysis to 

fires intense enough to generate a thermal signature visible from space (Giglio et al. 

2003a). 
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For the sake of simplicity, we refer to the MODIS active fire observations as 

MODIS fires throughout this paper.  However, we urge readers to use caution when 

interpreting our results.  The MODIS fires do not necessarily imply that the entire 1 km2 

pixel burned, only that there was fire activity somewhere within the pixel. 

Property types 

Polygon data for the WUI, federal lands, and Wilderness Areas were provided by the 

authors (Radeloff et al. 2005) and downloaded from the National Atlas6 and converted to 

raster data with 1-km resolution.  Commonly used polygon to grid conversion algorithms 

assign pixels the value of the polygon overlapping the pixel center.  Our property type 

classification assigned each pixel a categorical value depending on which property types 

it intersected.  Pixels were assigned only one property type and labeling priority was 

given to WUI first, federal land second, then wilderness (Figure 2.2a).  If a pixel did not 

overlap any of those three property types, it was assigned to the ‘other’ category.  With 

this methodology, pixels labeled as federal lands or wilderness were not necessarily 

entirely in federal ownership or designated Wilderness Areas, but contained some portion 

of those property types.  Furthermore the ‘other’ category does not imply private land 

ownership and may have included land in state and county ownership.  We refer to these 

data as property types because they reflect differences in both land ownership and 

management. 

                                                 

6 www.nationalatlas.gov 
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Housing units 

The WUI data are based in part on a housing density criteria, thus the data also included 

housing information (Radeloff et al. 2005, Stewart et al. 2007).  Using these data, we 

quantified the number of housing units within each 1-km pixel for the entire U.S. by 

rasterizing the 2000 Census Data polygons using area-proportional allocation (Figure 

2.2b).  In the Census data, a housing unit is not necessarily an individual house, but could 

also be a duplex, apartment building, or other multi-unit dwelling that the Census Bureau 

classified as a housing unit. 

Land cover 

We expected variability in fire occurrence among different land cover types and we 

accounted for this variability using land cover data from the 2001 Multiple Resolution 

National Land Cover Database7 (NLCD; Homer et al. 2004).  The NLCD data were 

derived from Landsat imagery and have 30 meter resolution.  We grouped NLCD classes 

to simplify the number of land cover types in the analysis and combined the 4 developed 

categories (developed - open space; developed - low intensity; developed - medium 

intensity; and developed - high intensity) into a single developed class.  We also grouped 

the four woody wetland and four emergent herbaceous wetland NLCD classes into a 

single wetland category.  NLCD pasture/hay and cultivated agriculture were combined 

into a single agriculture class.  We grouped the open water, permanent snow/ice, and 

                                                 

7 http://www.mrlc.gov/mrlc2k_nlcd.asp  
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barren because they represented a very small fraction of pixels in the contiguous 48 

states of the U.S.  All other NLCD classes were retained.  In total, we included eight land 

cover categories: developed, agriculture, wetland, grassland, shrubland, evergreen forest, 

deciduous forest, and mixed forest (Figure 2.2c).  Finally, we aggregated the reclassified 

30-m NLCD data to 1-km resolution using a majority rule. 

Ecoregions 

We used three scales of analysis to compare regional patterns of fire occurrence.  The 

first scale examined national patterns of fire occurrence in the conterminous U.S. as a 

whole.  The second scale we examined divided the conterminous U.S. into three broad 

geographic regions: the East, the Great Plains, and the West (Figure 2.2d).  Our third 

scale of analysis was based on the 21 Omernik level II ecoregions (Figure 2.2d).  At this 

scale the effects of climate, soils, and vegetation were assumed to be more homogenous 

within the ecoregion than among ecoregions (Omernik 1987). 

Questions 1 and 2: What is burning where and where are houses near fires? 

To answer our first question, we compared the average number of MODIS fires among 

property and land cover types for each year between 2003 and 2006.  These quantities 

were intended to determine which property and land cover types experienced the most 

and least amount of fire activity.  For reference, we also calculated the total number of 

MODIS pixels (fires and non-fires) for each vegetation and land cover type in the 

conterminous U.S.  Thus, our results always summed across property types and land 
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cover categories to equal the total number of MODIS pixels and MODIS fires in the 

U.S. (9,110,100 and 113,400 respectively). 

We used a similar method to answer our second question, but summed the number 

of housing units in MODIS fires according to property and land cover types.  We 

compared the total number of housing units in all MODIS pixels (115,183,100 housing 

units) and MODIS fire pixels (1,017,800 housing units) across the conterminous U.S. for 

each group.  Because of the resolution of the MODIS fire data, it was impossible to know 

exactly how many housing units were directly affected by fires because fire activity could 

have occurred anywhere within the 1 km2 MODIS pixels.  Thus, our results should be 

interpreted as a relative comparison of where housing units were in close proximity to 

fires among property and land cover types. 

We made comparisons among all land cover and property types at the national 

scale.  At the regional scale, we also compared the number of MODIS fires and housing 

units in MODIS fires among shrublands and deciduous and evergreen forests.  Among 

these three land cover types, shrublands and evergreen forests are most relevant to fire 

management because they are the vegetation types most likely to experience 

uncontrollable, high-intensity, stand-replacing fires (Agee 1993, Pyne et al. 1996).  

Finally, we compared the number of MODIS fires and housing units in MODIS fires by 

ecoregion, relative to U.S. totals.  These comparisons were made first across all land 

covers and then in shrublands and evergreen forests. 
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Questions 3 and 4: Where are large fires and where are houses in large fires? 

Large fires were visible as distinctive clusters of connected MODIS active fire pixels.  To 

determine the variation of fire cluster size across the country, we developed an algorithm 

that identified individual fire clusters by tracking the spatial and temporal spread of 

MODIS active fires.  Previous studies have used a similar approach with AVHRR 

(Chuvieco and Martin 1994) and MODIS active fire data (Loboda and Csiszar 2007).  

Our algorithm was based on user-specified distances defining the amount of spatial and 

temporal overlap required to label pixels as part of a contiguous fire cluster.  Through 

visual comparison with known fire perimeters, we found that one pixel spatial and one 

day temporal overlap identified fire clusters while keeping different fire events separate. 

We examined the cumulative proportion of MODIS fires in relation to the size of 

fire clusters that contained each MODIS fire pixel.  We first compared the cumulative 

proportion of MODIS fires in relation to fire cluster size among property types at the 

national scale and then at the Omernik level 2 ecoregion scale.  For these two analyses, 

we did not stratify among land cover types due to land cover heterogeneity within fire 

clusters. 

Results 

On average, 1.2% or 113,400 of the 9,110,100 MODIS pixels spanning the conterminous 

U.S. contained an active fire each year from 2003 to 2006.  The number of MODIS fires 

in the U.S. varied among years, with 2006 having the most fires (128,600 pixels) and 

2004 the least (90,500 pixels).  The majority of fires occurred in the ‘other’ property type 
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(on average 80,500 pixels in the U.S. or 71.0% of all fires).  Federal lands had the 

second highest amount of fire activity with an average of 20,400 MODIS fires per year.  

The WUI and Wilderness Areas had the lowest number of fire activity (7,200 and 5,300 

MODIS fires respectively) and less variability among years (Table 2.1).  Differences in 

fire activity across property types were generally consistent over the four years we 

analyzed. 

Distribution of MODIS fires  

Anthropogenic land cover types (developed and agriculture) contained an average of 

37,200 active fire pixels per year between 2003 and 2006; this represented 33% of all 

MODIS fires, but only 0.41% of the entire U.S.  Almost all MODIS fires in 

anthropogenic land cover were located in the ‘other’ property type (Table 2.2).  

Grassland and wetland fires accounted for 22,100 MODIS fire pixels and were also 

mainly in the ‘other’ property type. 

The average number of MODIS fires in shrubland pixels was 15,700, or 14% of 

all active fires per year.  A few of these fires were located in the Great Plains and East 

and most of those were outside federal lands and the WUI (Table 2.2).  The majority of 

shrubland fires, however, were in federal lands and the ‘other’ property type 

(approximately 5.5% and 6.5% of all fires respectively) and most of those were in the 

West.  Only 0.7% of western shrubland pixels experienced MODIS fires even though the 

total shrubland area was extensive (1,636,900 pixels).  In the East, the percent of fires in 
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shrublands was relatively greater than in the West (3.3%) even though the total area in 

was small (only 48,900 pixels). 

MODIS fires in pixels classified as forest were nearly as common as MODIS fires 

in anthropogenic land covers (33.2% of all fires; Table 2.2).  MODIS fires in forest pixels 

were primarily in the ‘other’ and federal property types (18.2% and 9.9% of all MODIS 

fires in the U.S.) while only 2.4% of all MODIS fires were in both forest and the WUI.  

There were more eastern than western forests (16.7% vs. 9.7% of all pixels respectively), 

and only a few in the Great Plains (1.3% of all pixels).  Similarly, there were more active 

fires in eastern than western forests (17.6% and 12.7% of all MODIS fires respectively) 

and very few fires in the forests of the Great Plains (2.9% of all MODIS fires).  Forests 

and fire activity in the eastern U.S. were primarily outside of federal lands and in the 

WUI property type, while in the West, federal lands and wilderness accounted for the 

greatest number of forest pixels and active fires. 

We also examined fire occurrence among different forest types.  In the West, 

evergreen forests were more common than deciduous forests and accounted for a much 

greater area than the East (9.0% vs. 4.1% of the U.S.; Table 2.2).  However, fire 

occurrence was only slightly greater in western than eastern evergreen forests (12.3% of 

all MODIS fires for the West vs. 10.9% of all MODIS fires for the East). 

Distribution of housing units in MODIS fires  

On average between 2003 and 2006, there were 1,017,800 housing units in MODIS fires 

each year.  That represents less than 1% of the 115,183,100 housing units in the 
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conterminous U.S.  The majority of housing units and housing units in MODIS fires 

occurred in developed areas (81,004,000 and 730,500 respectively; Table 2.3).  Most of 

these housing units were in the WUI and ‘other’ property types.  The agriculture land 

cover pixels contained the next highest number of housing units in MODIS fires 

(117,700); this category also contained the second highest number of all housing units 

(13,181,300).  Wetlands, grasslands, and mixed forests had the lowest percents of all 

housing units in the U.S. (1.8%, 1.4%, and 0.6% respectively) and represented the lowest 

numbers of housing units in MODIS fires (25,800; 20,300; and 4,000 respectively).  

Shrublands contained 1,932,300 of all U.S. housing units, but only 24,600 housing units 

were in shrublands with MODIS fires (17,300 of those housing units were in the West 

and 4,600 were in the East). 

After the developed and agriculture land covers, deciduous and evergreen forests 

contained the third and fourth highest percentage of all housing units in the U.S. (8.3 and 

2.4% respectively).  A greater number of housing units were found in eastern forests 

compared to western forests (11.6 million vs. 1.0 million houses respectively).  MODIS 

fires in eastern forests also contained a greater number of housing units than in western 

forests (70,900 vs. 11,400 houses respectively).  When only housing units in evergreen 

forests were considered, 0.75% of all housing units were in western evergreen forests and 

1.55% of all housing units were in eastern evergreen forests.  From 2003 to 2006, the 

average number housing units that were in evergreen forests with fires was 32,700 per 

year (0.03% of all housing units) in the East and 10,800 per year (0.01% of all housing 
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units) in the West.  These housing units were predominantly in the WUI in the West 

and split between the WUI and ‘other’ property types in the East. 

Ecoregion patterns of MODIS fires and housing units in MODIS fires 

The ecoregions that contained the largest number of MODIS fires were the Southeastern 

Plains, South Central Semi-Arid Prairies, and Mississippi Alluvial and Southeast Coastal 

Plain (Figure 2.3a).  These three were followed by the Western Cordillera, the Western 

Interior Basins and Ranges, and the Temperate Prairies.  Ecoregions in the northeastern 

U.S. and the extreme southwestern U.S. contained the lowest number of MODIS fires. 

Ecoregions with the greatest proportion of the nation’s housing units in MODIS 

fires included the Southeastern Plains, Mississippi Alluvial and Southeast Coastal Plain, 

and the Ozark, Ouachita-Appalachian Forests (Figure 2.3b).  These regions were closely 

followed by Mediterranean California, the Mixed Wood Plains, and the Central Plains.  

Because of the large number of agricultural and grassland fires, the Great Plains also 

stood out, whereas the Western Cordillera and Marine West Coast forests contained a 

relatively small number of housing units in MODIS fires. 

We also examined which ecoregions had the greatest amount of land cover types 

with potential for high-severity fires, i.e., shrublands and evergreen forests.  Ecoregions 

in the western U.S. contained the majority of these land cover types (Figure 2.3c).  

However, the number of housing units that were in these land cover types in western 

ecoregions was generally small.  The top three ecoregions containing the greatest number 

of housing units in shrublands and evergreen forests were the Southeastern Plains, the 
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Western Cordillera, and the Sonoran and Mohave Desert.  The Mississippi Alluvial 

and Southeast Coastal Plain, the Western Interior Basin and Ranges, and the South-

Central Semi-Arid Prairies also had a high number of housing units in shrubland and 

evergreen forest cover types (Figure 2.3d). 

Ranking ecoregions by the number of pixels with MODIS fires occurring in 

shrublands and evergreen forests did not follow the ranking by the number of pixels in 

those land cover types by ecoregion (Figure 2.3c & e).  The Western Cordillera and 

Interior Basins and Ranges were in the top three with the Southeastern Plains.  The Upper 

Gila Mountains, Mississippi Alluvial and Southeast Coastal Plan, and the South-Central 

Semi-Arid Prairies also had a high number of shrubland and evergreen MODIS fires. 

Ecoregions with the greatest number of housing units in MODIS fires in 

shrublands and evergreen forests included the Southeastern Plains, Mediterranean 

California, and the Mississippi Alluvial and Southeast Coastal Plain (Figure 2.3f).  Other 

ecoregions with a high number of houses in shrubland and evergreen forest MODIS fires 

also included the Western Cordillera, the Upper Gila Mountains, and the Western Interior 

Basins and Ranges.  The South-Central Semi-Arid Prairies, the Sonoran and Mohave 

Deserts, and the Ozark, Ouachita-Appalachian Forests were also notable, but the 

northeastern and north-central U.S. did not have many housing units in MODIS fires in 

shrublands and evergreen forest. 
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Distribution of large fires  

There were clear differences in spatial patterns of fire sizes (Figure 2.4).  Most MODIS 

fires in federal lands were part of large fires; nearly 50% of all federal MODIS fires were 

part of fire clusters at least 17 pixels and 39 pixels in size for Wilderness Areas.  In 

contrast, most MODIS fires in the WUI and ‘other’ property types were part of small fire 

clusters; nearly 50% of all WUI MODIS fires were part of clusters that were 4 pixels or 

less in size. 

Western ecoregions had the greatest range of fire cluster sizes (Figure 2.5), 

reaching 1,280 pixels in Mediterranean California.  Among ecoregions in the Great Plains 

and East, the largest fire clusters were found in the West-Central Semi-Arid Prairies (661 

pixels), the South-Central Semi-Arid Prairies (281 pixels), and the Everglades (163 

pixels).  Across all ecoregions, the largest fire clusters occurred primarily in wilderness 

and federal lands.  In most regions WUI fires were small; however, large fire clusters 

burning the WUI were observed in Mediterranean California. 

Housing units in large fires 

The cumulative proportion of housing units among fire cluster sizes followed similar 

trends as the cumulative proportion of fire pixels in fire cluster sizes (Figure 2.3b & 

Figure 2.6).  Approximately 80% of all houses in WUI fires were in fire clusters of 12 of 

fewer pixels.  A few large MODIS fire clusters of approximately 200 pixels and 950 

pixels caused a large increase in the cumulative percent of WUI houses in fires.  Because 

of the resolution of our analysis and private property inholdings, there were a few 
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housing units in the federal lands and wilderness property types (1.98% and 0.03% of 

all housing units in the U.S. respectively).  The proportion of housing units in MODIS 

fires in the federal property type followed a pattern similar to that of the WUI, but 

housing units in MODIS fires near wilderness were more erratic. 

Ecoregional patterns of the proportion of housing units in relation to MODIS fire 

cluster size followed the national trend (Figure 2.6).  However, the influence of large 

fires in the Western U.S. was especially apparent in Mediterranean California, the 

Western Sierra Madre Piedmont and the Sonoran and Mohave Deserts ecoregions.  In 

these areas, large increases in the proportion of housing units in MODIS fires were 

caused by a few very large fires.  For example, in Mediterranean California, 11 large fires 

contained for approximately 50% of all housing units in MODIS fires; these clusters of 

MODIS fires included the 2003 Cedar Fire (1,280 pixels), the Simi and Piru fires (955 

pixels), the Padua, Grand Prix, and Old fires (943 pixels) and the 2006 School (962 

pixels), and the Sawtooth and Millard complexes (525 pixels).  

Discussion 

A small proportion of the U.S. experienced fire (1.24% annually); however, the potential 

impacts of fires are great and approximately 1 million housing units each year were 

located within MODIS active fires.  A large proportion of fire activity and housing units 

in fires were outside of federal lands.  This pattern held true when all MODIS fires and 

only wildland vegetation fires were considered.  Our results emphasize that fire 
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management is not a challenge limited to public agencies and effective fire 

management strategies will require cooperation across a variety of land ownership and 

property types. 

MODIS fires were relatively uncommon in the WUI with only 6.4% of all fires 

occurring there, even though the WUI covers 9% of the U.S. (Radeloff et al. 2005)  Fire 

protection and suppression limit fire occurrence in the WUI but when fires do escape the 

risk is high because the WUI contains 34% of all houses in the U.S.  The WUI represents 

the dangerous confluence of houses and wildland vegetation, especially in vegetation 

types where intense crown fires are possible.  Nearly 53% of all housing units in MODIS 

fires in shrubland and evergreen forests were in the WUI.  This demonstrates that the 

WUI is rightfully the focus of efforts to reduce risk of wildfire damage to houses.  

However, because approximately 37% of all housing units in MODIS fires in shrubland 

and evergreen forests were not in the WUI or federal lands, it may be worth considering 

extending fire management priorities beyond the current property type definitions used to 

prioritize fuel treatments. 

Because fire prevention and suppression efforts are strong in the WUI, very few 

structures in the WUI are actually destroyed by fires but protecting these structures 

entails great effort and expense.  One government report suggests that 50-95% of the 

costs of large wildfire are dues to homes and property protection in the WUI (USDA 

Forest Service 2006).  Given the high growth rates in the WUI and rural areas (Hammer 

et al. 2007), greater efforts are needed reduce the risk to existing development and limit 

the impacts of future development in fire prone areas. 
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Patterns of fire occurrence varied across the U.S. and because fire occurrence is 

related to weather, climate, topography, and vegetation, as well as development, certain 

ecoregions were disproportionately prone to fire.  The southeastern U.S. had a large 

number of MODIS fires in shrublands and evergreen forests.  It is unlikely that all the 

fires observed by MODIS in the Southeast were wildfires because prescribed fire is 

commonly used in this region to reduce fire risk and understory vegetation (Cleaves et al. 

2000, Haines et al. 2001, Lafon et al. 2005).  In contrast, fire use is less common in the 

western U.S. (Pyne et al. 1996, Cleaves et al. 2000, Miller 2006) and wildfire activity is 

predominantly driven by extreme weather (Bessie and Johnson 1995, Keeley 2004) . 

MODIS fire occurrence and fire size varied regionally and these differences 

require different fire management strategies.  In the southeast, MODIS fires were 

common, but tended to be consistently small.  In the West, there was greater variability in 

the size of MODIS fire clusters and large fires were more common.  Although there are 

large contiguous blocks of forest in the Southeast, they are highly fragmented by 

development and roads, which can limit the spread fires (Turner et al. 1989, Duncan and 

Schmalzer 2004).  The challenge in the southeastern U.S. is managing frequent fire in the 

presence of a large number of houses and across fragmented ownership patterns where 

the indirect impacts of fire are distributed across a large population. 

When conditions are right for fires to reach such very large sizes, spread can 

occur quickly and direct attack is nearly impossible.  The large fire clusters in 

Mediterranean California captured by the MODIS active fire data demonstrate the 
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extreme end of this variability.  The 2003 southern California fires alone destroyed 

3,361 homes (Keeley et al. 2004) and again in October 2007, more than 1,500 homes 

were destroyed and 346,000 homes were evacuated in southern California8.  The 

challenge in the West will continue to be confronting large conflagrations and limiting 

their impacts on communities.  However, because housing development tends to be 

spatially concentrated and public lands are extensive in the West, the opportunities to use 

fire for its ecological benefits may remain. 

Potential limitations 

The MODIS active fire product does not detect all fires and previous research has shown 

detection rates to be greatest in the western U.S. and lowest in the eastern U.S. 

(Hawbaker et al. 2008).  Detection rates are greatest for large fires and these fires tend to 

burn the majority of area and cause the most damage (Kasischke and French 1995, 

Neuenschwander et al. 2000, Finney 2005).  Because the MODIS data do not include all 

fires, our results provide a conservative estimate of fire activity.  However, the MODIS 

active fires do provide a national view of fire activity that spans all property types and 

has greater spatial resolution and certainty in fire locations than existing fire databases 

(Brown et al. 2002).  Thus, even though satellites do not capture all fires, we suggest they 

have great utility for broad-scale fire assessments.  Additionally, the MODIS active fire 

data used in this study represent a relatively short time-span; 2003 – 2006.  These four 

                                                 

8 http://en.wikipedia.org/wiki/California_wildfires_of_October_2007#cite_note-AP_1024-6 
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years exhibited some of the most extensive fire activity in history; however, there has 

been an increasing trend in the amount of area burned (Calkin et al. 2005) and if this 

trend continues, our analysis may well estimate the impacts of fire for the near future. 

Our observation units, MODIS active fire pixels, had 1 km spatial resolution.  At 

this resolution, land cover, ownership, and housing counts can be highly heterogeneous 

within pixels.  Thus, our findings should be interpreted with scale-dependence in mind 

and our findings might change if more detailed data were used.  However, comparison 

with results from similar studies suggests the difference would be small.  Previous 

estimates put the proportion of the U.S. in vegetation types with potential for high-

severity fires at 36.7% based on 30 meter pixels (Theobald and Romme 2007) compared 

to our estimate of 35.6% based on 1 km pixels (Table 2.2).  Thus, we believe our analysis 

is relatively robust in regards to the grain of resolution. 

The spatial extent of the ecoregions we used might not fully capture the spatial 

heterogeneity of fire potential and occurrence.  The Omernik level 2 ecoregions do not 

delineate fire prone areas such as the Jack Pine barrens of Michigan, Wisconsin, New 

Jersey, and the Boundary Waters of Minnesota.  These areas historically experienced 

frequent stand-replacing fires and occasionally experience them now, such as the Mack 

Lake Fire in 1980 (Simard et al. 1983).  More detailed ecoregion delineations might 

capture these patterns, but with a loss of generality.  Thus, our results do not capture 

variability within the ecoregions we used and this should be kept in mind when 

interpreted our findings. 
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Implications for fire policy and management 

Risk modeling calls for integrating probabilities of event occurrence with potential for 

damage caused by the event (Bachman and Allgöwer 1999).  Risk analyses based on 

vegetation or fuel types alone can be misleading because they do not account for 

variability in fire occurrence within vegetation types.  Our results highlight the 

importance of such a risk modeling approach.  We examined the location of housing units 

in evergreen forests and shrublands; vegetation types with potential for intense wildfires.  

We also examined the extent of fires in those areas.  Our results suggest that the location 

and extent of risk varies depending on how risk is assessed, especially whether or not fire 

occurrence is incorporated.  Risk analyses based only on fire potential could overestimate 

the extent of risk and cause home owners, policy makers, and land managers to 

misinterpret fire risk in the places where it matters most. 

Our analysis considered housing units as the only value at risk from wildfires; 

however the impacts of fire extend beyond just houses in the WUI.  Other resources 

beyond houses are also impacted by fires, such as increased surface erosion and debris 

flows (Gresswell 1999, Wondzell and King 2003), or undesired impacts on wildlife and 

aquatic species (Rieman and Clayton 1997).  However, fire risk to houses is one of the 

primary reasons for fire suppression (Parsons 2000).  Thus, understanding where fire risk 

to houses is greatest is a necessary step in the process of determining where the benefits 

of fire can be realized.  Until that risk is fully addressed the opportunities for the 

ecological benefits of fire will remain limited. 
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The default response of suppressing wildfires has become increasingly 

expensive as the area burned has grown in recent years (Calkin et al. 2005, U.S. 

Department of Agriculture 2006).  Accommodating fire but limiting its negative effects 

by altering fuel arrangement and loadings is one strategy that may apply in certain 

ecosystems, such as southwestern ponderosa pine forests (Covington 2000, Allen et al. 

2002).  However, fuel treatments are not a universal solution because their effectiveness 

is short-lived and limited in ecosystems where fire occurrence and spread is controlled 

less by fuel load and more by extreme fire weather (e.g., chaparral shrublands or 

lodgepole pine forests; Agee 1993, Turner and Romme 1994, Keeley et al. 1999, Noss et 

al. 2006). 

Approaches that limit the negative consequences of fire in these ecosystems are 

needed.  A few potential approaches to reduce risk in landscapes where fires are driven 

by extreme weather include implementing fire-safe zones and building codes (Cohen 

2000, 2004) and limiting additional housing growth into such areas (Hammer et al. 2007, 

Syphard et al. 2007b).  The time to act is now, because the number of houses exposed to 

fire is likely to increase in the near future and the challenges of fire management in the 

WUI are unlikely to diminish.  Housing growth has been high in rural areas (Brown et al. 

2005), especially in the WUI (Hammer et al. 2007, Theobald and Romme 2007).  New 

development will bring new risks (Syphard et al. 2007b) and fewer opportunities to 

realize the ecological benefits of fire.  Managing fire in the face of ongoing housing 

development is destined to become more challenging and more expensive unless serious 

efforts are made to counteract new development in fire-prone ecosystems. 
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Table 2.1.  Annual number of MODIS active fire pixels by property type for the 

conterminous United States.  Total number of pixels (fire and non-fire) for each property 

type is in parentheses. 

Year 
WUI 

(838,000) 
Federal 

(1,857,500)
Wilderness 
(348,100) 

Other 
(6,066,500)

Total 
(9,110,100) 

2003 6,600 20,800 6,300 78,600 112,200 
2004 5,900 15,000 2,200 67,400 90,500 
2005 8,000 20,100 5,200 89,100 122,300 
2006 8,500 25,700 7,500 86,900 128,600 

Average 7,200 20,400 5,300 80,500 113,400 
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Figure 2.1. MODIS active fire detections from the EOS-1 Terra and EOS-2 Aqua 

satellites, 2003 - 2006. 
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Figure 2.3.  Omernik level 2 ecoregions ranked by (a) average number of pixels with 

active fires (ecoregion fire pixel count / total pixel count in US); (b) average number of 

houses in pixels with active fires (ecoregion count of housing units in active fire pixels / 

total housing unit count for US); (c) average number of pixels classified as shrubland and 

coniferous forest (ecoregion shrubland and coniferous forest pixel count / total pixel 

count in US) and (d) average number of houses in shrubland and coniferous forest pixels 

(ecoregion count of housing units in shrubland and coniferous forest pixels / total housing 

unit count for US);  (e) proportion of pixels classified as shrubland and coniferous forest 

with active fires (ecoregion in shrubland and coniferous forest pixels with fires count / 

total pixel count in US); (f) proportion of houses in shrubland and coniferous forest pixels 

with active fires (ecoregion count of housing units in shrubland and coniferous forest 

pixels with fires / total housing unit count for US) for years 2003 – 2006. 
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Figure 2.4.  Cumulative proportion of (a) pixels and (b) houses by land type as a 

function of the size of contiguous clusters of active fire pixels. 

 

(a) (b)  
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Figure 2.5.  Cumulative proportion of active fire pixels as a function of the size of fire 

clusters by land type for Omernik Level 2 Ecoregions. 
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Figure 2.6.  Cumulative proportion of houses in active fire pixels as a function of the 

size of fire clusters by land type for Omernik Level 2 Ecoregions. 
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Chapter 3: Human influences on fire occurrence and fire 

potential in the conterminous United States 

Abstract 

National scale models of fire occurrence are needed to prioritize fire management 

activities across the United States.  However, national scale patterns and drivers of fire 

occurrence are not fully understood.  We used satellite active fire detections collected by 

the moderate resolution imaging spectroradiometer (MODIS) Terra and Aqua sensors 

between 2000 and 2006 in logistic regression models to compare the relative strength of 

vegetation, physical, and human variables for predicting fire occurrence across the United 

States.  Human variables were important in our models, but their strength was low 

relative to vegetation and physical variables, and fire in the U.S. is still largely driven by 

weather, vegetation and topography.  We found positive relationships with fire at low 

housing unit densities and short distance to roads and negative relationships at high 

housing unit densities and distance from roads.  However, the shape and strength of the 

relationships varied among years.  Predicted potential for fire occurrence was high and 

localized in the western U.S. to mountainous regions and southern California, and high 

potential for fire occurrence was also widespread in the Southeast.  The probability of fire 

occurrence is an important component to risk modeling and our results show that fire 

occurrence can be highly variably in both space and time.  Uncertainty in fire risk models 
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could be minimized by incorporating probabilistic measures of fire occurrence in 

addition to vegetation type and potential fire behavior. 

Introduction 

Wildfire management in the United States has to balance the ecological benefits of fire 

with the risks wildfires pose to society.  On one hand, fire suppression is necessary to 

limit the damage and expense of wildfires.  On the other hand, fire is an important 

disturbance process in many ecosystems and its periodic occurrence is desirable.  In the 

U.S., fire policies, management directives, and funding are national in scope (Stephens & 

Ruth 2005).  In spite of national fire policies, national scale patterns and drivers of fire 

occurrence are not fully understood.  National scale models of fire occurrence are needed 

to help prioritize fire management and fire use.  In this paper, we compared the relative 

influence of human and biophysical drivers of fire occurrence and developed predictive 

models of where fires were most likely to occur in the conterminous United States. 

The expense of fighting wildfires and the damage of uncontrolled wildfires to 

society can be great.  In October 2007, more than 1,500 homes were destroyed and 

346,000 homes were evacuated in southern California9.  Much of southern California had 

also burned in 2003 when 3,361 houses were destroyed (Keeley 2004).  Large fires are 

not limited to southern California though.  In 2000, the Cerro Grande fire burned 235 

homes in New Mexico (National Park Service 2006), and in 1998, 340 homes were 

                                                 

9 http://en.wikipedia.org/wiki/California_wildfires_of_October_2007#cite_note-AP_1024-6 
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destroyed in Florida wildfires (Butry et al. 2001).  The recent history of houses lost to 

wildfires demonstrates that the problem is national in scope, but exhibits temporal and 

geographic variability. 

Federal fire suppression expenditures exceeded $1 billion in four of the seven 

years between 2000 and 2006 (U.S. Department of Agriculture 2006).  Wildfires also 

have indirect costs.  By reducing timber supply, tourism, and increasing health care costs, 

the 1998 wildfires in Florida had a greater economic impact than expected by a category 

2 hurricanes (Butry et al. 2001).  Because the expense of fighting fires is large and the 

consequences of uncontrolled wildfires are great, there is a need to understand and 

predict fire occurrence across broad scales. 

The expense of preventing and suppressing fires is stretching public agencies thin 

during a time when there are few resources for other management activities that could 

promote the ecological benefits of fire (Dombeck et al. 2004, Noss et al. 2006).  This is 

unfortunate, because fire is an important disturbance process in many ecosystems (Pyne 

et al. 1996; Bond & Keeley 2005).  Active management can maintain fire regimes of 

ecosystems within their historic ranges of variability, which is often considered a 

benchmark for conservation success (Hunter 1993; Morgan et al. 1994; Landres et al. 

1999). 

Today, few ecosystems have fire regimes within their historic range of variability.  

In many cases fire return intervals have increased by an order of magnitude (Cowell 

1998, Rollins et al. 2001, Cleland et al. 2004, Grissino-Mayer et al. 2004).  Changes in 
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fire regimes have ecological consequences.  In some places, reductions in fire 

frequencies can allow changes to a more fire resistant state, as in many eastern U.S. 

forests where fire intolerant species, such as maple, are replacing fire adapted oak species 

(Foster et al. 1998, Abrams 2003).  In other places, such as the dry ponderosa pine forests 

of the Southwest, fire regimes have shifted from frequent low and mixed severity fires to 

less frequent, high severity fires (Covington and Moore 1994, Baker et al. 2007).  Human 

development affects fire occurrence, and can push disturbance regimes beyond the 

historic range of variability. 

Human development influences fire occurrence through two primary mechanisms: 

ignition and suppression.  Human activities in wildlands, correlated with roads and 

housing, cause novel ignition patterns that do not necessarily match the patterns of 

natural, lightning-caused ignitions (Chuvieco and Congalton 1989, Cardille et al. 2001, 

Kasischke et al. 2002, Stephens 2005).  Suppression often counteracts ignitions.  

Suppression occurs both through direct action, i.e. fuel treatments and fire fighting 

(Rideout and Omi 1990, Prestemon et al. 2002).  The effects of suppression can be 

especially pronounced in the wildland-urban interface where the fire risk to houses and 

expense of uncontrolled fires is assumed to be greatest (Cohen 2000, Radeloff et al. 2005, 

Syphard et al. 2007b).  Suppression can also occur indirectly through landscape-level 

alteration of the arrangement and type of fuels across which fires can spread (Turner et al. 

1989, Finney 2001, Duncan and Schmalzer 2004).  The impacts of human development 

on fire occurrence have not been examined at a national-scale.  Understanding national-

scale relationships between humans and fires is important because the magnitude and 
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shape of the relationship between human development and fire has ecological, 

economic, and social implications. 

Biophysical variables of weather, vegetation, and topography have a large effect 

on fire occurrence and constitute the three sides of the fire environment triangle (Pyne et 

al. 1996).  Long-term precipitation and temperature patterns influence patterns of fuel 

type, loads and moisture (Neilson 1995, Rollins et al. 2004, Bond et al. 2005).  Deviation 

from long term precipitation patterns can indicate drought and increased fire activity 

(Simard et al. 1985, Swetnam and Betancourt 1990, Veblen et al. 2000).  Short-term 

weather changes in precipitation, temperature, humidity, and solar radiation cause 

changes in fuel moisture, while wind dominates fire spread (Rothermel 1972, Bessie and 

Johnson 1995).  The effects of short-term weather controls are moderated by vegetation 

type and topographic influences on fire spread (Rothermel 1972, Rollins et al. 2004).  

Because biophysical variables have such strong relationships with fire occurrence, their 

effects need to be accounted for in order to untwine the human relationships. 

In summary, fire occurrence in a given place is a function of human variables that 

influence ignition patterns and suppression efforts, as well as a suite of biophysical 

variables influencing spread rate, such as fuel type, fuel amount, fuel moisture, 

topography, and weather.  Our primary research questions were: (1) how did the relative 

importance of human variables on fire occurrence differ among different ecoregions of 

the United States; and (2) how did the probability of fire occurrence vary within and 

among ecoregions in the conterminous United States?  We developed a statistical 
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approach that examined the human variables and their influence on fire occurrence, 

while controlling for the vegetation, weather, and topographic effects (question 1).  Then, 

using our statistical model, we estimated the potential for fire occurrence, assuming that 

places on the landscape most likely to burn would be similar to places that did burn 

(question 2). 

Methods 

Data sources 

Our understanding of national-scale patterns of fire occurrence has been limited by the 

lack of good fire data.  The federal fire occurrence database is frequently used in broad-

scale fire studies (Schmidt et al. 2002, Westerling et al. 2003, Stephens 2005), but it does 

not include fires across all land ownership, its spatial resolution is limited to the county 

level in many states, and the spatial locations of fires are often inaccurate (Brown et al. 

2002). 

Satellite fire observations of fire occurrence offer an alternative information 

source (Flannigan and Vonder Haar 1986, Giglio et al. 1999, Justice et al. 2002a).  

Satellite fire data should capture important patterns because they include some of the 

most extreme fire years in recent history (Calkin et al. 2005, U.S. Department of 

Agriculture 2006).  Additionally, satellites observe fires with consistent methodology and 

effort across all ownerships and vegetation types.  This is especially relevant for fire risk 

monitoring because most structures occur outside of public lands. 
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Fire Observations 

We used observations of fire occurrence collected by the MODIS sensors onboard 

NASA’s Earth Observing System Aqua and Terra satellites (Justice et al. 2002b, Giglio 

et al. 2003a; Figure 3.1).  The MODIS fires capture actively flaming fires at satellite 

overpass, 1:30 and 13:30 for Aqua and 10:30 and 22:30 for Terra (Justice et al. 2002a).  

MODIS Terra was launched in December of 2000 and MODIS Aqua in April of 2002.  

Thus, we used MODIS Terra active fire observations for years 2000 – 2002 and 

combined MODIS Terra and Aqua fire observations for the years 2003 – 2006.  Image 

mosaicking, reprojection, and conversion with the MODIS land data operational product 

evaluation software tools10 resulted in 926 m resolution pixels.  For all years, we removed 

low-confidence MODIS active fire detections to avoid false detections and limit the 

analysis to the most intense fires.  The remaining nominal- and high-confidence MODIS 

fires were combined and labeled as fire if an active fire was observed by Terra or Aqua 

within a given year, otherwise pixels were labeled as no-fire. 

Throughout this paper, we refer to the MODIS active fire observations as MODIS 

fires.  However, we caution readers to interpret our results carefully.  The MODIS fire 

detections only indicate that there was fire activity somewhere within the pixel, not that 

the entire pixel burned.  Additionally, some fires may have been missed by MODIS, 

especially small and low intensity fires (Hawbaker et al. 2008) 

                                                 

10 ; http://lpdaac.usgs.gov/landdaac/tools/ldope/  
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Human variables 

To represent the influence of human activity on ignitions and human development on 

landscape fragmentation, we selected housing unit density (housing units / km2) and 

median distance to roads as variables to include in our models.  Polygon-level housing 

unit density data, derived from the U.S. Census Bureau Decennial Census were acquired 

and converted to 1 km grids (Radeloff et al. 2005).  Rasterizing polygon data can result in 

a loss of information when individual grid cells overlap multiple polygons.  Typical 

polygon to grid conversion assigns grid cells the polygon value at the center of the grid 

cell or the majority of the cell.  To avoid information loss, we used an area aggregation 

method that weighted the value of each polygon by the proportion of the grid cell area.  

Euclidian distances to road data were available at 30 meter resolution from the National 

Overview Road Metrics database (Watts et al. 2007).  We aggregated these data to 1 km 

resolution using a median rule. 

Both housing unit density and median distance to road data contained many small 

values and few large values, so both variables were ln (X+1) transformed prior to 

analysis.  Additionally, past studies found that housing density best predicts fire 

occurrence at intermediate levels (Syphard et al. 2007b) so we included quadratic terms 

for both housing density and median distance to roads. 
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Land cover 

Fire occurrence varies among vegetation types and we accounted for that variability using 

land cover classes from the 2001 Multiple Resolution National Land Cover Database11, 

derived from 30 m resolution Landsat imagery (NLCD; Homer et al. 2004).  We 

combined some of the NLCD classes to simplify the number of categories used in our 

models (Table 3.2).  After combining classes, we had a modified land cover data set with 

eight unique land cover categories: developed, agriculture, wetland, grassland, shrubland, 

evergreen forest, deciduous forest, and mixed forest.  These 8 land cover categories were 

aggregated to 1 km resolution with a majority rule. 

Topography 

We expected that fire occurrence would be more likely on south-facing slopes than north-

facing slopes, on steeper slopes, and at lower elevations.  We measured aspect, percent 

slope, and elevation using the GTOPO 30 global elevation dataset12.  These data have a 

30 arc second or approximately 1 km spatial resolution.  Southerly or southwesterly 

facing slopes receive greater incident solar radiation and hence fuels dry more quickly on 

these slopes.  Using equation 1 (Beers et al. 1966), we converted aspect, measured as 

degrees clockwise from north, to a southwesterly index increasing from -1 (northeast) to 

1 (southwest). 

                                                 

11 http://www.mrlc.gov/mrlc2k_nlcd.asp  

12 http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html  
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180
135)cos(aspect π

×+=esssouthwestn  Equation 1. 

Annual weather 

Monthly summaries of temperature and precipitation data with 4 km spatial resolution 

were acquired from the PRISM Group at Oregon State University13.  To represent inter-

annual variability in weather, we averaged the monthly mean maximum temperature, 

summed the monthly precipitation over each year of our analysis, calculated the 

difference in annual precipitation between the current year and the previous year, and the 

difference in annual precipitation between the current year and precipitation averages 

from 1971-2000. 

We expected that the probability of fire occurrence would have quadratic 

relationships and be greatest at intermediate temperature and precipitations because this 

allows for high fuel production.  The extreme ends of the temperature and precipitation 

gradients represent places where fuel production is either too low to support fire spread, 

or places with high moisture levels where fires are rare.  We also expected that the 

differences in precipitation between years would explain fire occurrence because dry 

years following wet years experience more fires (Swetnam and Betancourt 1990).  We 

included both the difference in precipitation from the previous year and from long-term 

averages because the effects of long-term drought on fire occurrence might not be 

captured by a one year difference in precipitation. 

                                                 

13 http://www.prismclimate.org  
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Modeling approach 

The total volume of our data (9,110,100 pixels per year) prevented us from building a 

single national model of fire occurrences.  Instead, we used a divide and conquer 

modeling strategy.  We were primarily interested in wildland fire occurrence, so we 

removed all fire observations in agriculture, developed, barren, permanent snow/ice, and 

open water.  Second, we subdivided the remaining data according to Omernik level II 

ecoregions (Omernik 1987; Figure 3.2).  These are well suited geographic units to 

subdivide data for fire modeling because weather, climate, soils, and vegetation can be 

assumed to be less variable within ecoregions than among ecoregions. 

For each year of observations in the ecoregion subsets, we took the following 

modeling approach.  A subset of fire and non-fire observations was systematically 

sampled from each ecoregion.  Our systematic subsampling approach subdivided the 

ecoregion into 3x3 blocks of pixels.  Within each block, one fire and one non-fire 

observation were randomly selected.  If there were no fire observations within a block, 

then the non-fire observation was still retained.  Likewise, if there were no non-fire 

observations within a block then the fire observation was kept.  We generated 5 

systematic subsample replicates for each year and ecoregion.  Exploratory data analysis 

showed that averaging models across subset replicates and over years reduced the 

influence of spatial autocorrelation and provided estimates of variability in the regression 

coefficients both within years and among years. 

The proportion of fire and non-fire observations in our samples was different from 

the proportion in the entire population of observations.  These differences can bias 
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logistic regression results and we applied a correction factor (Manly et al. 2002, 

Keating and Cherry 2004).  The correction factor (equation 2) weighted the sampled 

proportion of fires (Pf) and sampled non-fires (Pn) relative to their prevalence in the entire 

population of fires and non-fires; Bi and Xi are the regression coefficients and predictor 

variables. 

⎥
⎦

⎤
⎢
⎣

⎡
Β++Β+Β+Β++

Β++Β+Β+Β+
==

)X...XX()/Pln(P1
)X...XX()/Pln(P

exp)X|1P(fire
ii22110fn

ii22110fn  Equation 2. 

Drivers of fire occurrence 

To compare the importance of human variables to biophysical variables we considered 

four different models.  For each ecoregion, we selected an initial model including all 

variables that explained probability of fire occurrence using a modeling approach 

described in more detail in the next section; we refer to this model as the full model.  We 

compared the full model to three additional models, each using a subset of the variables 

included in the full model.  The first model assumed that fire occurrence could be 

explained by vegetation type alone; we refer to this model as the vegetation model.  The 

second model added human variables (housing unit density and distance to roads) to the 

vegetation model.  The third model added the physical variables representing weather and 

topography to the vegetation model.  The full model then included vegetation, physical, 

and human variables.  These four models were used to compare the relative importance 

of human, vegetation and physical variables for explaining fire occurrence. 
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We fit the four models to the systematic subset replicates for each year and 

ecoregion.  Step-wise selection was used to eliminate variables that had little influence on 

fire occurrence (Chatterjee et al. 2000).  When step-wise selection included quadratic 

variables, the linear form of the variable was also included in the models.  We pooled 

regression coefficients, their standard errors, and area-under curve (AUC) of receiver-

operator plots (ROC) first across model replicates and then across years for each 

ecoregion.  Pooling averaged regression coefficients, but accounted for within and among 

group differences when combining standard errors (Levy and Lemeshow 1991; page 

320).  The relative importance of variables for explaining fire occurrence was assessed by 

comparing the predictive ability of the four models, measured using AUC, a threshold-

independent measure of classification success.  AUC can be interpreted as the probability 

of correctly classifying a pair of random observations, given the knowledge that the pair 

contains one fire and one non-fire (Hanley and McNeil 1982). 

Ecoregional variability in predicted fire occurrence 

To examine variability in fire occurrence among ecoregions, we made predictive maps of 

the probability of fire occurrence.  Using the ‘full model’ described in the previous 

section, predictions were made for each replicate dataset for each year.  We averaged 

replicate predictions within a year, and then across years, and calculated the average, 

standard deviation, and maximum annual probability of fire occurrence.  We also made 

comparisons of the probability of fire occurrence among and within ecoregions by 
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summarizing the proportion of ecoregion area in different ranges of fire occurrence 

probabilities. 

Results 

Our models predicting the occurrence of fire performed well.  The success of our best 

models, measured by area-under-curve ranged between 0.65 and 0.87 (Table 3.3).  

Among the subset data replicates our models provided consistent results with low 

variability in regression coefficients within years (Table 3.4).  Our models were also 

generally consistent in their predictive ability among the different years, measured by low 

among-year variability in AUC.  However, among-year variability in regression 

coefficients was often large. 

Drivers of fire occurrence 

In many regions, models including both vegetation and human variables had nearly the 

same predictive power as models including both vegetation and physical variables (Table 

3.3).  Ecoregions where the vegetation and human model performed nearly as well as the 

vegetation and physical model included the Southeast Plains, the Central Plains, 

Mediterranean California, and the Mixed Wood Shield.  Ecoregions where the vegetation 

and physical models had greater AUC than the vegetation and human models included 

the South-Central Semi-Arid Prairies, Western Interior Basin and Ranges, and Temperate 

Prairies.  The AUC of the full models was similar to that of the vegetation and physical 

models, but generally increased with inclusion of the human variables (Table 3.3).  The 

exception was the Western Interior Basin and Ranges ecoregions, where human variables 
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did not increase AUC when the vegetation and physical variables were also included 

in the model. 

Effects of human variables 

Interpreting individual regression coefficients in logistic regression models can be 

complicated because the relationships are not linear and the coefficient values depend on 

the presence of the other variables in the model (Gelman and Hill 2007).  To help 

interpret the regression coefficients, we used scatter plots of the predicted values plotted 

against individual variables.  We summarized the general trends from these plots and 

presented here a few noteworthy examples. 

The probability of fire occurrence generally declined with increasing housing unit 

density, even though models for all ecoregions included both the quadratic and linear 

terms (Table 3.3).  In a few ecoregions, predicted fire occurrence was more likely at 

intermediate housing unit densities.  These were primarily in the Southwest and included 

The Sonoran and Mohave Deserts, the Chihuahuan Desert, Mediterranean California, and 

the Upper Gila Mountains (Figure 3.3). 

The relationships between distance from roads and fire occurrence were more 

variable among ecoregions (Table 3.4).  In general, fire occurrence decreased as distance 

to roads increased.  This was especially true in the Mixed Wood Shield and the Atlantic 

Highlands (Figure 3.4a).  However, in most ecoregions, the decrease in fire occurrence as 

distance to roads increased was preceded by a slight increase in fire occurrence, 

indicating a quadratic effect (Figure 3.4b).  There were a few exceptions to these trends.  
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In the Western Cordillera and the Upper Gila Mountains, fire potential exhibited a U-

shaped relationship with distance from roads, where fire was most likely near roads and 

far from roads and less likely at intermediate distances (Figure 3.4c). 

Among years, there was a wide range of variability in the shape of the 

relationships both between fire occurrence and housing unit density and distance from 

roads (Table 3.4).  Generally speaking, the replicate models within years produced 

consistent coefficient estimates, but the shape of the relationships changed among years. 

Ecoregional variability in potential fire occurrence 

There was wide strong ecoregional variability in potential fire occurrence across the 

United States (Figure 3.5a).  Mediterranean California stood out as having both high 

mean and maximum potential for fire occurrence.  Elsewhere in the West, isolated 

hotspots occurred in the Western Cordillera and Upper Gila Mountains, while broad 

regions with high fire potential occurred in the southern Great Plains and the Southeast.  

In contrast, much of the northeast, northern Great Plains, and Interior Basins and Ranges 

had low potential for fire occurrence. 

In areas where the potential for fire occurrence was high, there was also 

considerable variability in the potential for fire occurrence among years (Figure 3.5b).  

The variability was especially noticeable in Mediterranean California, but also in the 

Southeastern, Western Cordillera, and Upper Gila Mountains.  Maximum potential for 

fire occurrence generally followed the same patterns as mean potential for fire occurrence 

and variability in potential for fire occurrence (Figure 3.5c). 
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Within ecoregions, the mean potential for fire occurrence was often low and 

skewed to the right (Figure 3.6).  This suggested that a small proportion of most 

ecoregions had a similar combination of predictor variables as places where MODIS fires 

occurred.  A few ecoregions had less skewed distributions (Western Cordillera, 

Southeastern Plains, Mississippi Alluvial and SE Coastal Plain, Texas-Louisiana Coastal 

Plain, Mediterranean California, and Everglades).  In these ecoregions, there was a 

greater range in potential for fire occurrence and a relatively smaller area of the ecoregion 

had low potential for fire occurrence. 

Discussion 

We found that human variables influenced fire in most ecoregions of the United States, 

but with varying strength among ecoregions.  However, the magnitude of anthropogenic 

effects was small relative to the influence of vegetation and physical variables.  Human 

development has had a large effect on shaping landscape structure and ecological 

processes (Turner et al. 1996, Foster et al. 1998, Hawbaker et al. 2006).  However, fire 

remains a largely biophysical process, dominated by patterns of weather, vegetation, and 

topography.  We found this to be especially true in many western ecoregions, where fire 

occurrence had high variability and the size of fire events was quite large (Chapter 2). 

Our results showed that human variables exhibited both positive and negative 

influences on fire occurrence.  Positive relationships between humans and patterns of fire 

ignitions have been shown by previous studies in many regions; however, many of these 

studies found measures of human development to have little explanatory power for large 
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fire occurrence (Cardille et al. 2001; Sturtevant et al. 2007; Syphard et al. 2007).  

Given the limited predictive power of human variables in previous studies, our results 

were somewhat surprising, especially given the coarse resolution of our analysis, and that 

our fire data included both large and small fires. 

Human variables improved models most in the Upper Great Lakes region and the 

southwestern deserts.  It appears that the primary effect of development was to limit fire 

occurrence, whether through active fire management (Veblen et al. 2000) or indirect 

effects of landscape fragmentation (Miller and Urban 1999, Duncan and Schmalzer 

2004).  Many of our models also included quadratic relationships between human 

variables, indicating that the human effect was positive at low housing densities or close 

to roads, but negative at high densities and distant from roads.  However, even within an 

ecoregion, the shape of the relationships between human variables and fire changed 

among years.  Thus, relationships between people and fire developed from long-term fire 

data may capture long-term trends, but are likely to be dominated by time periods with 

high fire activity and may not fully represent year to year variability in patterns of fire 

occurrence. 

Limitations of methods and approach 

The grain of our fire observations was approximately 1 km. At this spatial resolution, 

fine-scale effects of predictor variables could have been masked by coarse-scale 

measures.  For instance, within a square kilometer, topographic variability fragmenting 

fuels is not fully represented.  Likewise, we assigned vegetation types to pixels using a 
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majority rule.  Using this approach, we assumed that MODIS fires occurred within 

the predominant vegetation type when in reality fires could have occurred in any of the 

vegetation types present in the pixel.  Hence, one has to be careful when drawing strong 

conclusions about the drivers of fire occurrence from our results, because we examined 

coarse-scale relationships among our variables.  However, our results suggest that there 

were general relationships among our predictor variables that held true with varying 

levels of strength across the country. 

The MODIS satellite fire observations have a relatively short history with the first 

data collected in early 2000.  Since that time, the U.S. has experienced several record 

years of fire activity (U.S. Department of Agriculture 2006).  Because of the limited 

history of the MODIS fire data, extrapolating our results beyond the time period of our 

study (2000-2006) would require some important assumptions.  Primarily, one would 

have to assume that future weather and climates are well represented by the annual 

weather summaries we used for 2000 – 2006.  This is a difficult assumption to make 

given that the western U.S. has been in a drought for most of these years14.  Furthermore, 

climate change scenarios suggest that future weather patterns will be different and 

patterns of fire occurrence will likely shift accordingly (Flannigan et al. 2000, Lenihan et 

al. 2003).  Thus, our findings represent relative potential for fire occurrence over the 

years the data were collected and it would be questionable to extrapolate them beyond 

that time period. 

                                                 

14 http://www.drought.unl.edu/DM/monitor.html  
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We built our models with the assumption that satellite observations of fire 

activity capture the fires most important from ecological and social perspectives.  Our 

observations of fire occurrence were based on imperfect satellite data (Hawbaker et al. 

2008).  Because we used the MODIS fires as samples in logistic regression models, we 

believe that the effect of undetected fires on our results would be minimal as long as we 

can assume the fires detected by MODIS were representative of all fires.  The MODIS 

fire data underrepresent small fires (Hawbaker et al. 2008), so our logistic regression 

models explain the occurrence of large fires which are most relevant for fire 

management. 

Our analyses were performed individually for Omernik level 2 ecoregions.  

Because we used the same input data and modeling approaches, we believed our logistic 

regression results were comparable among ecoregions.  However, the explanatory power 

of our models may have been limited by small sample sizes, especially the Northeast 

where fires events were rare. 

Statistical models of fire occurrence do not fully represent the underlying 

processes of primary production, water balance, and weather that influence fuels, fuel 

moisture, and fire spread (Rollins et al. 2004).  Our models used indirect measures of the 

biological and physical environment to describe ecological and climate processes.  

However, previous studies have shown that the indirect measures that we used are good 

predictors of ecological processes of primary production (Zaks et al. 2007) and fuel 

dynamics (Rollins et al. 2004).  Our objectives were to estimate the human impacts on 
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fire and to predict relative fire potential, and we operated with the assumption that our 

measures of weather, vegetation, and topography would control for patterns and 

processes relevant to fire occurrence and allow us to examine the effects of human 

variables. 

Implications for ecosystem conservation and fire management 

Our models showed that human variables influence fire occurrence across most of the 

U.S.  Even though the relative strength of human compared to vegetation and physical 

variables for describing patterns of fire occurrence was low, the human impacts have 

implications for both ecosystem conservation and fire management.  The cumulative 

impacts of human influence on fire regimes have both increased fire frequency (Veblen et 

al. 2000, Cleland et al. 2004, Grissino-Mayer et al. 2004) and decreased fire frequency 

(Keeley 2006, Syphard et al. 2006).  Both types of change push disturbance regimes 

beyond their historic range of variability and have consequences for biodiversity and 

ecosystem function.  These include changes in plant community types (Lorimer 1977, 

Franklin et al. 2005, Scheller et al. 2005), exotic species invasions (Brooks et al. 2004, 

Keeley 2006), landscape structure (Baker 1992, Radeloff et al. 1999) and ecosystem 

processes (Reed et al. 1999, Turner et al. 2004, Smithwick et al. 2005).  As human 

development grows (Hammer et al. 2007, Syphard et al. 2007a), we can expect human 

impacts on fire to become more pronounced and present greater management challenges. 

In our models, fire occurrence remained strongly tied to biophysical variables.  

When fires do occur, their spread and intensity are largely determined by weather and to 



   113

a lesser extent by fuels and topography (Bessie and Johnson 1995, Keeley 2004).  

Human activities do have an influence on fire occurrence, but because their impact is 

small, we have less control over fire occurrence than we might like.  Fires are natural 

events and development in fire-prone landscapes should adapt to reduce the losses caused 

fire’s inevitable occurrence. 

Even though our models did not include all components important for fire risk 

analysis, our results demonstrated some of the potential risks to U.S. society.  In the East 

both development and fire occurrence were widespread and, in these places, fire risk can 

be high where vegetation types with potential for extreme fire behavior exist.  Relative to 

the East, fire sizes in the West tended to be larger, more variable (chapter 2), and more 

localized.  Development is constrained by topography and land ownership (Miller et al. 

1996; Turner et al. 1996), and the localized nature of western development is both good 

and bad.  On one hand, the limited footprint of human development could limit the area 

needing direct fire management.  However, on the other hand, when large fires do occur 

in or near development, houses are also concentrated and loss can be great. 

Potential for fire occurrence is an important component of fire risk modeling; 

however, the limitations of the federal fire database have constrained the use of national-

scale fire probability maps in risk analyses.  A common approach is to make assumptions 

about fire risk based on vegetation or potential fire behavior (Schmidt et al. 2002, 

Hessburg et al. 2007, Theobald and Romme 2007).  However, both estimates of the 

probability of fire occurrence and the potential for fire damage are needed in a true risk-
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modeling framework (Bachman and Allgöwer 1999, Finney 2005).  Our results 

showed that potential for fire occurrence varies within ecoregions and vegetation types 

and across the U.S.  Because of this variability, risk models based on vegetation type or 

potential fire behavior alone may not fully estimate the spatial variability in fire risk. 
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Table 3.1.  Input variables and units for logistic regression models. 

Variable name Units Source 
   
Elevation Meters GTOPO 30, USGS 
Slope Percent GTOPO 30, USGS 
Southwestness NA GTOPO 30, USGS 
Mean maximum temperature 
(TMAX) 

°C (PRISM Group 2004) 

Annual precipitation (PPT) Millimeters (PRISM Group 2004) 
Precipitation difference, 1 –
year lag (ΔPPT1 year) 

Millimeters (PRISM Group 2004) 

Precipitation difference from 
long-term averages 
(ΔPPT30 year averages) 

Millimeters (PRISM Group 2004) 

Housing unit density* Housing units / km2 (Radeloff et al. 2005) 
Median distance to road* Meters (Watts et al. 2007) 
Land cover 8 categories: 

    Developed, 
    Water, barren, and ice, 
    Agriculture, 
    Wetlands, 
    Grasslands, 
    Shrublands, 
    Evergreen forest, 
    Mixed forest, 
    Deciduous forest 

(Homer et al. 2004) 

* natural-log transformed 
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Table 3.2.  Original national land-cover database classes (Homer et al. 2004) and 

merged classes that were used in our analysis. 

NLCD land cover category Merged category 
Developed (4 classes) Developed 
Pasture / hay Agriculture 
Cultivated agriculture Agriculture 
Woody wetlands (4 classes) Wetland 
Emergent herbaceous wetlands (4 classes) Wetland 
Open water Water, etc. 
Permanent snow and ice Water, etc. 
Barren Water, etc. 
Grassland Grassland 
Shrubland Shrubland 
Evergreen forest Evergreen forest 
Deciduous forest Deciduous forest 
Mixed forest Mixed forest 
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Table 3.3.  Area-under-curve (AUC) and standard error for the four regression models 

for each ecoregion. 

  Vegetation   
Vegetation & 

human   
Vegetation &

physical   

Vegetation &  
physical & 

human   
Ecoregion mean se   mean se   mean se   mean se   

Mixed Wood Shield 
(5.2) 0.58 0.04  0.67 0.05  0.73 0.03  0.76 0.02  
Atlantic Highlands 
(5.3) 0.60 0.07  0.74 0.12  0.85 0.06  0.87 0.07  

Western Cordillera 
(6.2) 0.56 0.01  0.60 0.03  0.67 0.03  0.68 0.03  
Marine West Coast 
Forest (7.1) 0.54 0.01  0.62 0.01  0.69 0.04  0.71 0.03  
Mixed Wood Plains 
(8.1) 0.64 0.03  0.75 0.06  0.81 0.05  0.85 0.04  
Central Plains (8.2) 0.54 0.04  0.69 0.05  0.71 0.03  0.77 0.04  

Southeastern Plains 
(8.3) 0.64 0.01  0.67 0.02  0.69 0.01  0.70 0.02  

Ozark, Ouachita-
Appalachian Forests 
(8.4) 0.58 0.01  0.66 0.03  0.76 0.03  0.77 0.03  
Mississippi Alluvial 
and SE Coastal 
Plains (8.5) 0.55 0.01  0.60 0.02  0.64 0.01  0.65 0.01  
Temperate Prairies 
(9.2) 0.58 0.02  0.61 0.02  0.73 0.03  0.75 0.03  
West-Central Semi-
Arid Prairies (9.3) 0.61 0.05  0.64 0.04  0.69 0.04  0.70 0.04  
South Central Semi-
Arid Prairies (9.4) 0.59 0.02  0.62 0.02  0.76 0.05  0.77 0.05  
Texas-Louisiana 
Coastal Plain (9.5) 0.59 0.03  0.62 0.03  0.70 0.06  0.71 0.06  
Tamaulipas-Texas 
Semiarid Plain (9.6) 0.55 0.04  0.58 0.05  0.71 0.03  0.72 0.04  

Western Interior 
Basins and Ranges 
(10.1) 0.57 0.04  0.61 0.06  0.75 0.01  0.75 0.01  
Sonoran and Mohave 
Deserts (10.2) 0.56 0.05  0.73 0.11  0.79 0.08  0.82 0.08  
Chihuahuan Desert 
(10.4) 0.54 0.02  0.63 0.06  0.72 0.03  0.76 0.03  
Mediterranean 
California (11.1) 0.59 0.02  0.64 0.02  0.67 0.05  0.69 0.04  
Western Sierra 
Madre Piedmont 
(12.1) 0.58 0.09  0.66 0.08  0.77 0.05  0.79 0.04  
Upper Gila 
Mountains (13.1) 0.65 0.06  0.69 0.09  0.77 0.05  0.78 0.05  
Everglades (15.4) 0.50 0.01   0.58 0.05   0.69 0.06   0.71 0.05   
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Table 3.4.  Pooled regression coefficients and standard errors (in parentheses as 

within year; among years; and total) for full models. 

Ecoregion 
Mixed Wood Shield 

(5.2) 
Atlantic Highlands 

(5.3) Western Cordillera (6.2) 
    
Area under curve 
(AUC) 0.76 (0.02) 0.87 (0.07) 0.68 (0.03) 
    
n non-fires sampled 22,987 (37) 22,633 (41) 96,700 (192) 
n fires sampled 133 (73) 20 (13) 2,968 (999) 
    
Used vs. available 
correction -1.36 (0.16) -1.75 (0.12) -0.93 (0.15) 
    
Intercept 5.45 (12.30; 39.89; 41.74) -47.22 (33.23; 36.49; 49.35) -4.59 (0.60; 3.58; 3.63) 
Grassland 1.68 (0.46; 0.65; 0.80) 3.89 (1.35; 2.16; 2.55) 0.67 (0.43; 1.31; 1.38) 
Shrubland -0.52 (0.62; 10.39; 10.41) 1.98 (NA; NA; NA) 0.52 (0.37; 0.42; 0.56) 
Evergreen 0.66 (0.32; 0.25; 0.41) -15.98 (938.98; 0.06; 938.98) 0.86 (0.37; 0.37; 0.52) 
Mixed -13.76 (441.83; NA; NA) -0.25 (0.77; 2.27; 2.40) -0.75 (0.58; 6.01; 6.04) 
Deciduous -0.01 (0.22; 0.76; 0.79) 0.78 (0.71; 1.14; 1.34) 0.03 (0.45; 1.06; 1.15) 
PPT (cm) -0.92 (0.20; 0.17; 0.26) 0.27 (0.28; 0.63; 0.69) -0.04 (0.01; 0.04; 0.04) 
PPT2 -0.03 (0.01; 0.00; 0.01) 0.03 (0.02; NA; NA) 0.00 (0.00; 0.00; 0.00) 
ΔPPT1 year -0.11 (0.17; 0.54; 0.57) -0.15 (0.32; 0.75; 0.82) -0.01 (0.02; 0.09; 0.10) 
ΔPPT30 year averages 0.86 (0.25; 0.48; 0.54) -0.63 (0.30; 0.43; 0.53) 0.00 (0.01; 0.06; 0.06) 
TMAX (°C) -1.21 (2.13; 7.04; 7.36) 6.40 (5.45; 6.04; 8.14) 0.26 (0.05; 0.36; 0.36) 
TMAX2 0.07 (0.10; 0.34; 0.35) -0.23 (0.22; 0.27; 0.35) -0.01 (0.00; 0.01; 0.01) 
Elevation (km) 12.48 (11.86; 14.40; 18.66) -5.72 (2.86; 4.53; 5.36) 0.68 (0.16; 0.77; 0.79) 
Elevation2 -18.93 (15.93; 21.82; 27.02) 7.44 (3.60; 3.03; 4.71) -0.37 (0.05; 0.28; 0.29) 
Slope (%) -0.57 (0.41; 0.92; 1.01) -0.49 (0.34; 0.37; 0.51) 0.01 (0.01; 0.01; 0.01) 
Southwestness 0.29 (0.13; 0.23; 0.27) -0.79 (0.52; NA; NA) 0.07 (0.03; 0.02; 0.04) 
ln(dist. from roads) 
(m) 0.35 (0.81; 1.05; 1.33) 0.52 (4.10; 3.62; 5.47) -0.46 (0.11; 0.35; 0.37) 
ln(dist. from roads)2 -0.07 (0.08; 0.11; 0.13) -0.34 (0.46; 0.41; 0.62) 0.04 (0.01; 0.03; 0.03) 

ln(housing unit 
density) (units / km2) -1.15 (0.35; 0.31; 0.47) -0.33 (1.04; 1.23; 1.61) -0.21 (0.09; 0.11; 0.14) 
ln(housing unit 
density)2 0.28 (0.11; 0.08; 0.13) -0.02 (0.32; 0.45; 0.56) 0.07 (0.04; 0.03; 0.05) 
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Table 3.4 continued. 

Ecoregion 
Marine West Coast Forest

(7.1) 
Mixed Wood Plains 

(8.1) 
Central Plains 

(8.2) 
    
Area under curve 
(AUC) 0.71 (0.03) 0.85 (0.04) 0.77 (0.04) 
    
n non-fires sampled 9,135 (31) 20,227 (85) 3,332 (43) 
n fires sampled 338 (125) 75 (45) 55 (34) 
    
Used vs. available 
correction -1.34 (0.10) -1.40 (0.11) -1.46 (0.20) 
    
Intercept -32.98 (5.97; 7.90; 9.90) 0.55 (12.49; 22.64; 25.85) -51.74 (23.71; 25.73; 34.99) 
Grassland 1.26 (0.64; 0.61; 0.89) -0.94 (0.52; 7.51; 7.53) -2.66 (401.74; 9.18; 401.85) 
Shrubland 1.03 (0.64; 0.33; 0.72) -4.36 (NA; NA; NA)  
Evergreen 0.82 (0.63; 0.32; 0.71) -0.17 (0.60; NA; NA) 2.02 (0.93; NA; NA) 
Mixed 1.01 (0.62; 0.36; 0.71) -10.74 (448.48; 7.24; 448.54)  
Deciduous -13.02 (314.09; 0.65; 314.09) -0.66 (0.33; 0.31; 0.46) 0.16 (0.59; 2.11; 2.20) 
PPT (cm) 0.02 (0.01; 0.04; 0.04) -0.44 (0.22; 0.43; 0.49) 0.68 (0.33; 0.43; 0.55) 
PPT2 0.01 (0.01; 0.00; 0.01) -0.02 (0.01; 0.01; 0.01) 0.01 (0.02; 0.06; 0.06) 
ΔPPT1 year 0.02 (0.04; 0.19; 0.20) -0.13 (0.17; 0.36; 0.40) -0.01 (0.23; 0.52; 0.57) 
ΔPPT30 year averages -0.06 (0.02; 0.04; 0.05) 0.63 (0.32; 0.22; 0.39) -1.23 (0.45; 0.16; 0.47) 
TMAX (°C) 3.25 (0.66; 1.10; 1.28) -1.17 (1.99; 3.28; 3.84) 5.70 (2.80; 3.37; 4.39) 
TMAX2 -0.09 (0.02; 0.03; 0.04) 0.05 (0.06; 0.30; 0.31) -0.19 (0.09; 0.11; 0.14) 
Elevation (km) -0.74 (0.92; 2.38; 2.55) 13.06 (15.44; 20.18; 25.41) 18.88 (52.05; 30.29; 60.22) 
Elevation2 0.84 (1.17; 3.42; 3.61) -32.10 (28.77; 29.50; 41.21) -70.15 (126.63; 65.33; 142.49) 
Slope (%) -0.03 (0.03; 0.07; 0.07) -0.72 (0.50; 0.60; 0.79) -1.04 (0.62; 0.34; 0.71) 
Southwestness 0.09 (0.10; 0.19; 0.21) -0.14 (0.15; 0.69; 0.71) 0.07 (0.26; NA; NA) 
ln(dist. from roads) 
(m) 0.62 (0.72; 1.46; 1.62) 0.68 (1.17; 1.71; 2.07) 0.62 (3.17; 3.91; 5.03) 
ln(dist. from roads)2 -0.05 (0.06; 0.12; 0.14) -0.10 (0.13; 0.21; 0.25) -0.02 (0.38; 0.59; 0.70) 

ln(housing unit 
density) (units / km2) -0.41 (0.21; 0.15; 0.26) -1.85 (0.35; 0.31; 0.47) -1.38 (0.45; 0.47; 0.65) 
ln(housing unit 
density)2 -0.14 (0.10; 0.01; 0.10) 0.30 (0.07; 0.06; 0.10) 0.24 (0.09; 0.08; 0.12) 
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Table 3.4 continued. 

Ecoregion 
Southeastern Plains 

(8.3) 

Ozark, Ouachita-
Appalachian Forests 

(8.4) 
Mississippi Alluvial and SE 

Coastal Plains (8.5) 
    
Area under curve 
(AUC) 0.70 (0.02) 0.77 (0.03) 0.65 (0.01) 
    
n non-fires sampled 74,554 (134) 49,448 (82) 24,118 (54) 
n fires sampled 5,736 (1,828) 1,360 (517) 2,041 (903) 
    
Used vs. available 
correction -1.23 (0.02) -1.34 (0.05) -1.22 (0.02) 
    
Intercept -26.94 (2.54; 10.67; 10.97) -22.44 (95.50; 5.84; 95.68) -6.34 (2.42; 7.12; 7.52) 
Grassland 0.65 (0.09; 0.24; 0.26) 4.44 (95.44; 5.08; 95.57) 0.36 (0.13; 0.29; 0.31) 
Shrubland 0.33 (0.07; 0.21; 0.23) 4.92 (122.60; 7.16; 122.81) 0.55 (0.14; 0.21; 0.26) 
Evergreen 0.44 (0.04; 0.07; 0.08) 3.68 (103.08; 5.47; 103.23) 0.21 (0.06; 0.15; 0.16) 
Mixed 0.19 (0.09; 0.06; 0.11) 5.03 (134.08; 8.00; 134.32) -4.80 (98.30; 8.50; 98.67) 
Deciduous 0.03 (NA; NA; NA) 5.31 (139.48; 8.72; 139.76) -0.67 (0.35; 0.38; 0.52) 
PPT (cm) 0.04 (0.01; 0.06; 0.06) -0.02 (0.03; 0.11; 0.11) 0.05 (0.03; 0.07; 0.08) 
PPT2 0.00 (0.00; 0.00; 0.00) 0.00 (0.00; NA; NA) 0.00 (0.00; 0.01; 0.01) 
ΔPPT1 year -0.01 (0.01; 0.13; 0.13) 0.07 (0.03; 0.12; 0.12) 0.00 (0.02; 0.11; 0.11) 
ΔPPT30 year averages -0.13 (0.02; 0.16; 0.16) -0.09 (0.04; 0.06; 0.08) -0.14 (0.03; 0.04; 0.05) 
TMAX (°C) 1.96 (0.22; 0.95; 0.98) 1.02 (0.32; 0.41; 0.52) 0.06 (0.19; 0.61; 0.64) 
TMAX2 -0.04 (0.00; 0.02; 0.02) -0.02 (0.01; 0.01; 0.01) 0.00 (0.00; 0.01; 0.02) 
Elevation (km) 1.85 (0.97; 3.15; 3.29) 2.73 (0.77; 1.80; 1.96) 10.43 (3.92; 16.73; 17.19) 
Elevation2 -13.82 (3.43; 10.45; 11.00) -2.69 (0.75; 1.24; 1.45) -223.56 (85.74; 380.97; 390.50) 
Slope (%) -0.22 (0.06; 0.06; 0.08) -0.05 (0.02; 0.08; 0.08) -0.32 (0.30; 0.75; 0.81) 
Southwestness 0.03 (0.02; 0.04; 0.05) 0.10 (0.05; 0.02; 0.06) 0.10 (0.04; 0.04; 0.05) 
ln(dist. from roads) 
(m) -0.10 (0.10; 0.11; 0.15) 0.56 (0.40; 0.52; 0.66) 0.05 (0.17; 0.25; 0.30) 
ln(dist. from roads)2 0.01 (0.01; 0.03; 0.03) -0.06 (0.04; 0.04; 0.06) -0.01 (0.01; 0.03; 0.03) 

ln(housing unit 
density) (units / km2) -0.51 (0.05; 0.15; 0.15) -0.61 (0.08; 0.27; 0.28) -0.28 (0.07; 0.12; 0.14) 
ln(housing unit 
density)2 0.07 (0.02; 0.03; 0.03) 0.12 (0.02; 0.05; 0.06) 0.03 (0.02; 0.04; 0.04) 
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Table 3.4 continued. 

Ecoregion 
Temperate Prairies 

(9.2) 
West-Central Semi-Arid 

Prairies (9.3) 
South Central Semi-

Arid Prairies (9.4) 
    
Area under curve 
(AUC) 0.75 (0.03) 0.70 (0.04) 0.77 (0.05) 
    
n non-fires sampled 8,451 (63) 65,174 (91) 82,180 (119) 
n fires sampled 503 (312) 601 (376) 2,961 (1,911) 
    
Used vs. available 
correction -1.35 (0.14) -1.09 (0.17) -1.28 (0.13) 
    
Intercept -0.81 (2.39; 4.06; 4.71) 0.35 (2.90; 8.61; 9.09) -9.02 (2.03; 5.90; 6.25) 
Grassland 0.16 (0.23; 0.57; 0.61) -0.70 (0.16; 0.33; 0.37) -0.21 (0.17; 0.54; 0.56) 
Shrubland  0.69 (0.18; 0.40; 0.43) -0.03 (0.32; 0.43; 0.53) 
Evergreen  1.11 (0.34; 0.30; 0.45) 0.60 (0.20; 0.31; 0.37) 
Mixed  1.96 (0.84; NA; NA) -2.71 (75.25; 7.45; 75.62) 
Deciduous -0.60 (0.20; 0.15; 0.25) -2.95 (130.56; 13.22; 131.23) -0.24 (0.25; 0.65; 0.70) 
PPT (cm) 0.19 (0.09; 0.08; 0.12) -0.14 (0.06; 0.16; 0.17) 0.50 (0.04; 0.15; 0.15) 
PPT2 0.00 (0.00; 0.01; 0.01) 0.00 (0.00; 0.01; 0.01) 0.00 (0.00; 0.01; 0.01) 
ΔPPT1 year 0.02 (0.07; 0.29; 0.30) -0.30 (0.08; 0.17; 0.19) -0.13 (0.02; 0.15; 0.15) 
ΔPPT30 year averages -0.24 (0.12; 0.20; 0.24) 0.15 (0.06; 0.66; 0.66) -0.29 (0.05; 0.25; 0.26) 
TMAX (°C) -0.92 (0.21; 0.36; 0.42) -1.05 (0.28; 1.09; 1.12) 0.30 (0.19; 0.63; 0.66) 
TMAX2 0.03 (0.01; 0.01; 0.01) 0.06 (0.01; 0.02; 0.03) -0.01 (0.00; 0.02; 0.02) 
Elevation (km) 20.89 (4.54; 8.72; 9.83) 3.29 (0.91; 2.78; 2.93) 1.35 (0.55; 1.23; 1.34) 
Elevation2 -29.36 (6.05; 10.98; 12.54) -1.96 (0.41; 0.98; 1.06) -1.07 (0.24; 0.44; 0.50) 
Slope (%) -0.25 (0.19; 0.31; 0.36) 0.08 (0.03; 0.10; 0.11) 0.27 (0.05; 0.07; 0.09) 
Southwestness 0.05 (0.07; 0.15; 0.17) 0.10 (0.07; 0.14; 0.16) -0.04 (0.03; 0.09; 0.10) 
ln(dist. from roads) 
(m) 0.19 (0.60; 1.14; 1.29) 0.88 (0.72; 1.08; 1.30) -0.28 (0.21; 0.19; 0.28) 
ln(dist. from roads)2 -0.03 (0.06; 0.12; 0.13) -0.09 (0.06; 0.08; 0.10) 0.03 (0.02; 0.02; 0.03) 

ln(housing unit 
density) (units / km2) -0.82 (0.25; 0.16; 0.30) 0.51 (0.39; 0.64; 0.75) -0.45 (0.11; 0.18; 0.21) 
ln(housing unit 
density)2 0.13 (0.06; 0.02; 0.06) -0.26 (0.26; 0.40; 0.48) 0.07 (0.03; 0.04; 0.05) 
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Table 3.4 continued. 

Ecoregion 
Texas-Louisiana Coastal 

Plain (9.5) 
Tamaulipas-Texas Semiarid 

Plain (9.6) 

Western Interior 
Basins and Ranges 

(10.1) 
    
Area under curve 
(AUC) 0.71 (0.06) 0.72 (0.04) 0.75 (0.01) 
    
n non-fires sampled 4,278 (29) 5,882 (23) 125,254 (123) 
n fires sampled 483 (199) 137 (110) 1,610 (755) 
    
Used vs. available 
correction -1.11 (0.10) -1.42 (0.15) -0.92 (0.09) 
    
Intercept 112 (38; 34; 51) 163 (243; 268; 361) -7.60 (1.30; 7.26; 7.37) 
Grassland 0.54 (0.21; 0.18; 0.27) -1.50 (0.62; 0.79; 1.00) -0.58 (0.30; 0.78; 0.83) 
Shrubland 0.47 (0.24; 0.16; 0.29) -1.45 (0.52; 0.57; 0.77) -0.50 (0.16; 1.04; 1.05) 
Evergreen 0.42 (0.17; 0.11; 0.21)  0.04 (0.37; 0.57; 0.68) 
Mixed -9.22 (244; 6.36; 244)  -4.27 (NA; NA; NA) 
Deciduous -7.13 (190; 10; 190) -13.88 (419; 0.91; 419) -1.47 (0.60; 0.84; 1.03) 
PPT (cm) 0.14 (0.05; 0.07; 0.09) -0.59 (0.44; 1.06; 1.14) 0.28 (0.03; 0.06; 0.07) 
PPT2 -0.01 (0.00; NA; NA) -0.01 (0.01; 0.02; 0.02) 0.01 (0.00; 0.01; 0.01) 
ΔPPT1 year -0.08 (0.07; 0.20; 0.21) 0.01 (0.27; 0.66; 0.71) -0.20 (0.05; 0.40; 0.40) 
ΔPPT30 year averages -0.14 (0.09; 0.18; 0.20) 0.16 (0.61; 2.13; 2.22) -0.05 (0.04; 0.18; 0.18) 
TMAX (°C) -8.41 (2.74; 2.58; 3.76) -12.51 (17.47; 19.23; 25.98) 0.61 (0.11; 0.83; 0.83) 
TMAX2 0.15 (0.05; 0.05; 0.07) 0.34 (0.32; 0.42; 0.52) -0.02 (0.00; 0.03; 0.03) 
Elevation (km) 21.75 (12.61; 23.50; 26.67) -2.34 (9.45; 17.21; 19.63) -1.08 (0.23; 0.99; 1.02) 
Elevation2 -539 (256; 363; 445) -29.42 (34.82; 68.19; 76.56) 0.03 (0.08; 0.40; 0.40) 
Slope (%) -0.46 (0.82; 2.01; 2.17) -0.03 (0.57; 1.45; 1.56) 0.05 (0.01; 0.04; 0.04) 
Southwestness 0.13 (0.11; 0.27; 0.29) -0.31 (0.26; NA; NA) -0.05 (0.05; 0.15; 0.15) 
ln(dist. from roads) 
(m) 0.31 (0.45; 0.73; 0.86) 0.65 (1.23; 1.29; 1.78) -0.10 (0.27; 0.55; 0.61) 
ln(dist. from roads)2 -0.03 (0.03; 0.06; 0.07) -0.06 (0.11; 0.13; 0.17) 0.01 (0.02; 0.05; 0.06) 

ln(housing unit 
density) (units / km2) -0.48 (0.15; 0.24; 0.28) 0.41 (0.83; 0.86; 1.20) 0.07 (0.15; 0.66; 0.67) 
ln(housing unit 
density)2 0.07 (0.05; 0.09; 0.10) -0.31 (0.62; 0.55; 0.83) 0.05 (0.05; 0.17; 0.18) 
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Table 3.4 continued. 

Ecoregion 
Sonoran and Mohave 

Deserts (10.2) 
Chihuahuan Desert 

(10.4) 
Mediterranean California 

(11.1) 
    
Area under curve 
(AUC) 0.82 (0.08) 0.76 (0.03) 0.69 (0.04) 
    
n non-fires sampled 29,714 (50) 22,702 (12) 14,443 (115) 
n fires sampled 199 (278) 83 (42) 612 (345) 
    
Used vs. available 
correction -1.11 (0.24) -1.33 (0.20) -0.93 (0.23) 
    
Intercept 3.17 (79.76; 18.33; 81.84) 4.06 (16.69; 28.04; 32.63) -11.87 (4.13; 7.99; 8.99) 
Grassland -3.46 (0.74; 6.84; 6.88) -3.47 (1.47; 1.17; 1.88) -1.20 (0.30; 0.49; 0.57) 
Shrubland -1.10 (95.79; 3.34; 95.85) -2.36 (1.68; 1.64; 2.35) -0.89 (0.29; 0.33; 0.43) 
Evergreen 1.23 (1.19; 9.27; 9.34) -5.93 (95.13; 8.60; 95.52) -1.06 (0.36; 0.59; 0.69) 
Mixed -14.34 (NA; NA; NA)  -1.30 (0.58; 0.61; 0.84) 
Deciduous 14.39 (NA; NA; NA) -3.46 (2,237.47; NA; NA) -3.80 (113.22; 5.59; 113.36) 
PPT (cm) 0.57 (0.39; 0.86; 0.95) 0.60 (0.32; 0.84; 0.90) -0.04 (0.02; 0.12; 0.12) 
PPT2 -0.09 (0.06; 0.45; 0.45) -0.01 (0.04; 0.07; 0.08) 0.00 (0.00; 0.01; 0.01) 
ΔPPT1 year -0.48 (0.20; 0.80; 0.83) -0.43 (0.30; 0.70; 0.76) 0.05 (0.06; 0.55; 0.55) 
ΔPPT30 year averages -0.16 (0.29; 1.00; 1.04) -0.76 (0.24; 0.26; 0.35) -0.09 (0.05; 0.28; 0.28) 
TMAX (°C) -0.50 (0.61; 1.36; 1.49) -1.35 (1.37; 2.05; 2.47) 0.86 (0.33; 0.78; 0.85) 
TMAX2 0.01 (0.01; 0.02; 0.03) 0.04 (0.03; 0.05; 0.06) -0.03 (0.01; 0.01; 0.01) 
Elevation (km) -4.76 (1.32; 4.62; 4.80) 4.64 (3.54; 8.59; 9.29) 0.00 (0.36; 0.72; 0.81) 
Elevation2 1.36 (0.52; 0.71; 0.88) -1.58 (1.54; 3.72; 4.03) -0.01 (0.19; 0.56; 0.59) 
Slope (%) 0.01 (0.06; 0.13; 0.14) -0.06 (0.13; 0.25; 0.28) 0.00 (0.02; 0.05; 0.05) 
Southwestness 0.13 (0.19; 0.57; 0.60) -0.41 (0.18; 0.21; 0.27) 0.02 (0.05; NA; NA) 
ln(dist. from roads) 
(m) 1.16 (0.99; 1.27; 1.61) 0.00 (0.52; 0.38; 0.64) 0.02 (0.48; 1.15; 1.25) 
ln(dist. from roads)2 -0.12 (0.09; 0.13; 0.16) -0.06 (0.05; 0.09; 0.11) -0.02 (0.04; 0.11; 0.12) 

ln(housing unit 
density) (units / km2) 0.88 (0.41; 0.77; 0.87) 1.31 (0.82; 1.28; 1.52) 0.34 (0.13; 0.29; 0.32) 
ln(housing unit 
density)2 -0.18 (0.11; 0.16; 0.20) -0.36 (0.39; 0.58; 0.70) -0.12 (0.04; 0.07; 0.08) 
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Table 3.4 continued. 

Ecoregion 
Western Sierra Madre 

Piedmont (12.1) 
Upper Gila Mountains 

(13.1) Everglades (15.4) 
    
Area under curve 
(AUC) 0.79 (0.04) 0.78 (0.05) 0.71 (0.05) 
    
n non-fires sampled 5,492 (17) 14,619 (67) 1,891 (11) 
n fires sampled 78 (49) 570 (289) 140 (83) 
    
Used vs. available 
correction -0.97 (0.39) -0.78 (0.22) -1.08 (0.13) 
    
Intercept -1.10 (216; 43.2; 220) -8.72 (3.03; 13.70; 14.03) -1,179 (552; 781; 957) 
Grassland 2.61 (1.18; NA; NA) 0.95 (0.42; 0.46; 0.62)  
Shrubland 7.31 (346; 6.80; 346) 0.57 (NA; NA; NA)  
Evergreen 9.99 (401; 8.42; 401) 1.17 (0.27; 0.40; 0.48) 1.84 (0.91; 0.42; 1.00) 
Mixed    
Deciduous    
PPT (cm) 0.22 (0.34; 0.99; 1.04) 0.43 (0.07; 0.12; 0.14) 0.07 (0.18; 0.36; 0.41) 
PPT2 0.01 (0.02; 0.04; 0.04) -0.01 (0.00; 0.01; 0.01) 0.00 (0.01; 0.03; 0.03) 
ΔPPT1 year -0.20 (0.43; 1.03; 1.11) -0.36 (0.15; 0.26; 0.30) -0.04 (0.14; 0.78; 0.79) 
ΔPPT30 year averages -0.04 (0.14; 0.69; 0.70) -0.30 (0.10; 0.17; 0.20) -0.60 (0.33; 0.53; 0.63) 
TMAX (°C) -0.67 (1.57; 3.44; 3.78) 0.43 (0.30; 2.13; 2.15) 93.90 (40.81; 42.53; 58.94) 
TMAX2 0.02 (0.04; 0.08; 0.09) -0.01 (0.01; 0.07; 0.07) -1.67 (0.66; 0.65; 0.92) 
Elevation (km) 3.40 (3.96; 7.97; 8.90) 3.30 (1.95; 4.69; 5.08) 795 (310; 752; 813) 
Elevation2 -0.57 (1.21; 2.08; 2.41) -0.89 (0.49; 1.28; 1.37) -146,794 (61,879; 109,949; 126,166) 
Slope (%) 0.00 (0.05; 0.19; 0.19) 0.00 (0.02; 0.10; 0.10) -13.08 (11.26; 56.99; 58.09) 
Southwestness -0.30 (0.17; 0.79; 0.81) -0.15 (0.08; 0.06; 0.10) 0.28 (0.25; 0.86; 0.89) 
ln(dist. from roads) 
(m) -0.24 (0.72; 0.59; 0.94) -1.00 (0.45; 1.21; 1.29) 0.06 (0.71; 1.41; 1.58) 
ln(dist. from roads)2 0.03 (0.06; 0.06; 0.09) 0.07 (0.04; 0.11; 0.11) -0.01 (0.05; 0.11; 0.12) 

ln(housing unit 
density) (units / km2) 0.81 (1.42; 1.10; 1.80) 0.33 (0.25; 0.19; 0.31) 0.22 (0.59; 0.78; 0.98) 
ln(housing unit 
density)2 -0.89 (2.74; 1.56; 3.15) -0.11 (0.11; 0.09; 0.14) -0.17 (0.37; 0.52; 0.64) 
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Figure 3.1.  MODIS active fires from both the Terra and Aqua sensors from 2000 to 

2006. 

 



   137

Figure 3.2.  Omernik level II ecoregions. 
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Figure 3.3.  Fitted potential for fire occurrence against housing unit density gradient 

for Mediterranean California, 2001.  Black dots show individual fitted values.  Red dots 

show fitted values at the mean value of all other variables in the model. 
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Figure 3.4.  Fitted potential for fire occurrence against distance from road gradient for 

(a) Mixed Wood Shield 2001, (b) West-Central Semi-Arid Prairies 2006, and (c) Upper 

Gila Mountains 2003.  Black dots show individual fitted values.  Red dots show fitted 

values at the mean value of all other variables in the model. 
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Figure 3.5.  Mean potential for fire occurrence (a), standard deviation in potential for 

fire occurrence (b), and maximum potential for fire occurrence (c) for years 2000 – 2006. 
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Figure 3.6.  Histograms of the count of MODIS pixels (on y-axis) by ecoregion 

according to potential for mean fire occurrence from 2000 to 2006. 
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Chapter 4: National and ecoregional patterns of fire risk to 

housing units in the conterminous United States 

 

Abstract 

Protection of lives and property is a primary goal of fire management, and much is 

known about national patterns of human development.  Less is known about national 

patterns of fire risk.  Our goal here was to conduct a national-scale assessment of wildfire 

risk to houses developed with consistent methods to help fire planning, budgeting, and 

management efforts.  We defined risk as a function of the probability of fire occurrence 

and housing locations across the U.S.  We compared risk among vegetation types based 

on their potential for severe fire behavior.  We also examined the relative contribution of 

housing numbers and fire potential to risk and then compared ecoregional differences in 

fire risk to houses.  Our measure of risk did not differentiate areas with low housing 

density and high fire probability from areas with high housing density and low fire 

probabilities.  However, it did provide an aggregate estimate of the exposure of houses to 

fires.  Risk to houses in shrublands and evergreen forest was twice as high as risk in other 

vegetation types.  We found that 3.2 million housing units (2.8% of all housing units) 

were located in shrublands and evergreen forests with ≥ 2% chance of fire per year.  

However, those housing units were scattered over 19% of the area of the U.S.  

Regionally, risk was highest in the Southeast, the mountains and some deserts of the 

West, and Mediterranean California.  The scattering of a large number of housing units at 
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risk from fire over a large area may make broad-scale fire risk reduction methods 

difficult to implement.  The results of our analysis demonstrate that national-scale risk 

analysis useful for fire planning are possible and could be used as a guide to where fire 

risk needs to be addressed most in the U.S. 

Introduction 

National scale risk assessments are needed to help prioritize management efforts to 

reduce the threats wildland fires present to communities.  Formally defined, risk 

incorporates both the probability that an event will occur and the potential for that event 

to cause change or damage something of value (Bachman and Allgöwer 1999, Finney 

2005).  For fire risk assessments, human life and property are the primary value of 

concern (U.S. Department of Agriculture and U.S. Department of Interior 2001), 

although watershed and ecosystem health are also considered important (Healthy Forests 

Restoration Act of 2003).  However, because protecting structures in the wildland-urban 

interface (WUI) is a primary goal of federal fire policy, many risk analyses focus on fire 

risk to housing units. 

Measuring risk as a function of the number of housing units accounts for direct 

effects of fire, such as the destruction of structures.  Housing units are highly correlated 

with population, and even when fires do not directly threaten structures, housing units 

represent a measure of the indirect effects and additional costs generated by wildfires.  

For instance, increased health care needs (Butry et al. 2001).  Because housing can 
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represent both direct and indirect types of fire risk, they are a good metric for 

estimating the potential impact of fires on society. 

The responsibility to identify communities at risk has largely been placed on state 

agencies (U.S. Department of Agriculture and U.S. Department of Interior 2001) and the 

National Association of State Foresters (NASF) assists states with that task (National 

Association of State Foresters 2003).  Even though the process is evolving, it allows a 

wide range of interpretations of what constitutes a community at risk (U.S. General 

Accounting Office 2003).  Consequently, individual state fire risk assessments are 

variable in their input data, methods, and outcomes. 

Previous state and regional studies have incorporated a variety of methods and 

data sources to quantify fire risk.  Most use probabilistic function to determine the 

likelihood of fire occurrence (Chou et al. 1993, Neuenschwander et al. 2000). Fire 

occurrence is typically is coupled with estimates of fire intensity from probabilistic 

models based on historic fire behavior (Neuenschwander et al. 2000), potential fire 

intensity (Florida Division of 2002), historic fire regimes (Haight et al. 2004), or 

weighted overlays and expert opinion (Arizona Interagency Coordinating Group 2004).  

The final step in risk estimation is completed by combining fire probability and behavior 

with housing units or population determined from housing point locations (Arizona 

Interagency Coordinating 2004), urban night time lights (Cova et al. 2004), or U.S. 

Census Bureau data (Haight et al. 2004). 
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Different risk assessment methodologies can produce substantially different 

results for the same region (Farris et al. 1999), therefore comparisons among the varying 

regional and state-level risk assessments is difficult because of the varying methodologies 

and data used to generate them.  We’re not brash enough to claim that state-level risk 

assessments are not without value.  They have their advantages and make use of the best 

available local data and knowledge.  However, because many fire policies and fire 

funding are national in scope, national-scale risk assessments are needed to compare the 

relative amount and extent of risk across the U.S. 

Few national-scale studies of fire risk in the WUI have incorporated fine-scale 

probabilistic measures of fire occurrence, most rely on assumed fire potential and 

behavior based on vegetation types alone (Theobald and Romme 2007) or potential fire 

activity from historic weather patterns (Schmidt et al. 2002).  These studies did not 

account for spatial heterogeneity in the probability of fire occurrence.  Our past research 

has shown that the probability of fire occurrence can be quite variable, even within 

homogenous vegetation types (Chapter 3).  Therefore, probabilistic measures of fire 

occurrence could help inform national fire risk assessments when used in combination 

with housing locations. 

Information about the location of the wildland-urban interface (WUI) is well 

defined at the national level (Radeloff et al. 2005) and is often used as a starting point for 
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state-level analyses and fire planning analysis15 by federal agencies.  The SILVIS 

WUI data were based on U.S. Census Bureau Housing data in combination with 

vegetation from the National Landcover Database.  Therefore, the SILVIS WUI data 

identify places where housing and vegetation coincide, but because they do not 

incorporate measures of fire probability or behavior, additional information is needed to 

determine risk.   

In this paper, we examined national patterns of fire risk by combining housing 

locations from the SILVIS WUI data (Radeloff et al. 2005) with probabilistic models of 

fire occurrence based on MODIS active fire observations, and spatial gradients of 

precipitation, temperature, vegetation, topography, and human development (Chapter 3).  

The questions we sought to answer were (1) What is the fire risk to housing units in the 

U.S.?  (2) Does the risk vary among vegetation types?  Because risk to housing units can 

vary based on either housing or fire potential, we also asked (3) what was the relative 

contribution of probability of fire occurrence and number of housing units to risk?  

Finally, we examined regional patterns and asked (4) how does fire risk to housing units 

vary among ecoregions of the U.S.? 

Methods 

We used previously developed predictive models of fire occurrence (Chapter 3) to 

determine where housing units were at risk from wildland fires.  Our models of potential 

                                                 

15 http://www.fpa.nifc.gov/  
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for fire occurrence were based on active fire observations from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) satellite sensors, Terra and Aqua 

(Justice et al. 2002a, Giglio et al. 2003a).  The MODIS fires were used as observations in 

logistic regression models with precipitation, temperature, topography, vegetation, 

housing density, and distance to roads as predictor variables.  Models of fire potential 

were constructed for each year between 2000 and 2006. 

The locations of housing units were derived from 2000 U.S. Census Bureau 

TIGER data (Radeloff et al. 2005).  The finest spatial resolution of these data is block-

level polygons, which have an average of 10.1 ha and standard deviation of 1,082 ha in 

size (Stewart et al. 2007).  We converted the polygon housing data to a raster with the 

same resolution as the MODIS fire potential models (~ 1 km) using an area-weighted 

allocation method. 

Fire risk to houses varies among vegetation types because of differences in 

potential fire intensity and severity.  Fires pose the greatest danger in shrublands and 

evergreen forests where extreme fire behavior can result in crown fires that are nearly 

impossible to control, generate high amounts of radiative heat, and can shower adjacent 

areas with firebrands (Rothermel 1972, Pyne et al. 1996).  These fires are of concern 

because they present the greatest risk to structures and houses (Cohen 2000, 2004).  Fires 

in other vegetation types can also put structures and houses at risk; but fire behavior is 

generally less extreme and fires take considerably less effort to control.  Accordingly, we 

calculated risk to houses for both shrublands and evergreen forests separately from all 

other wildland vegetation types (grasslands, wetlands, deciduous, and mixed forests). 
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We defined vegetation types using the land cover classes from the 2001 

Multiple Resolution National Land Cover Database (NLCD)16, derived from 30 m 

resolution Landsat imagery (Homer et al. 2004).  We combined some of the NLCD 

categories to eight unique land cover categories: developed, agriculture, wetland, 

grassland, shrubland, evergreen forest, deciduous forest, and mixed forest.  These eight 

land cover categories were aggregated to 1 km resolution with a majority rule.  

Developed and agriculture pixels were excluded from this analysis.  We considered all 

the other remaining vegetation types to be wildland vegetation.  Of our vegetation 

groups, all wildland vegetation represented 68.0% of the land area and 16.2% of all 

housing units in the U.S., and shrubland and evergreen forest vegetation alone 

represented 35.6% of the land area and 4.1% of all houses in the U.S. (Chapter 2). 

We considered fire risk to be a function of the number of housing units and the 

potential for fire occurrence.  Risk was calculated per pixel as the product of the number 

of housing units and the average potential for fire occurrence between 2000 and 2006, 

normalized by the total number of housing units in the United States (Equation 1).  Thus 

risk can be interpreted as the probability that a housing unit was exposed to fires under 

average conditions during the years for which our fire potential models were constructed 

(2000-2006). 

 

                                                 

16 http://www.mrlc.gov/mrlc2k_nlcd.asp 
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To answer our first question, what is the fire risk to housing units in the U.S., we 

solved equation 1 for all housing units in all wildland vegetation types in the U.S.  The 

same approach was taken to answer question 2, except that we limited the risk calculation 

to only housing units occurring in shrubland and evergreen forests.   

For our third question, we examined the relative contribution of fire potential and 

housing units to risk across the country.  We subdivided the potential for fire occurrence 

data into seven categories representing a range from very unlikely to almost certain.  We 

also subdivided the housing density data into seven categories representing a potential 

loss gradient.  When combined, these 49 categories represented a two-dimensional 

feature space from fires unlikely, to fires certain and minimal to high housing loss.  We 

calculated the number of pixels and number of housing units in each category to evaluate 

their contribution to risk.  We performed this analysis for all pixels that were wildland 

vegetation (grassland, wetland, shrubland, forest) and for pixels whose vegetation was 

predominantly shrubland or evergreen forest. 

To answer our third question, in which regions of the U.S. are houses most at risk, 

we used Omernik level 2 ecoregions to subdivide our data (Figure 4.1).  Risk was 

calculated in each ecoregion, but normalized by the total number of housing units in an 
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ecoregion instead of the U.S.  Comparison of risk between ecoregions gives a 

measure of the relative risk, or the increased or decreased chance that a house will 

experience a fire in one ecoregion over another. 

Results 

Risk at the national scale 

We quantified risk as the probability that a housing unit was exposed to fires under 

average conditions during the years for which our fire potential models were constructed 

(2000 – 2006).  By this measure, the risk to housing units in all wildland vegetation in the 

U.S. was 0.020.  We performed that same calculation for only housing units occurring in 

shrublands and evergreen forests.  In those vegetation types, risk was greater at 0.035. 

Influence of fire potential and housing units 

The majority of the area with wildland vegetation (35.6% of the U.S.) had low potential 

for fire occurrence (< 0.01; Figure 4.2).  However, nearly an equivalent area had 

moderate to high potential for fire occurrence (≥ 0.01).  Across the range of fire potential 

in wildland vegetation, more than 89% of the area had between 0 and 4 housing units per 

square kilometer.  However, in the remaining 11% of wildland vegetation pixels, housing 

density was higher and there were more than 8.6 million housing units in areas with a 

moderate to high potential for fire ≥ 0.01 (Figure 4.3).  

The amount of land and housing units in shrublands and evergreen forests was 

much less compared to all wildland vegetation (16% of the U.S. and 4.1% of all housing 
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units).  In shrubland and evergreen forest vegetation types, 53% of the area (Figure 

4.4) and 3.2 million housing units (Figure 4.5) were located in moderate to high fire 

potential zones (≥ 0.01).  Housing units in moderate to high fire potential areas had a 

more uniform distribution in shrubland and evergreen forests and a greater proportion of 

high-density housing (Figure 4.6) than all wildland vegetation (Figure 4.3). 

Risk among ecoregions 

Ecoregions in the southeastern U.S. contained a large number of housing units (Figure 

4.8a) and also had a high potential for fire (chapter 3), which resulted in high risk when 

all vegetation types were considered (Figure 4.8b).  The Texas-Louisiana Coastal Plain 

and the Everglades had remarkably high risk when compared to the other ecoregions.  

Risk levels were also high in Mediterranean California, especially in 2003.  Among the 

other western ecoregions, risk was greatest in the Western Cordillera, the Sonoran and 

Mohave Deserts and the Upper Gila Mountains.  However, risk in theses regions was still 

relatively low compared to Mediterranean California and the Southeast.  Not surprisingly, 

risk was low in the northeastern U.S. where few fires were observed by the MODIS 

sensors (Chapter 2). 

The total number of housing units in all ecoregions was substantially less when 

only shrublands and evergreen forests were considered (Figure 4.9a).  However, patterns 

of risk paralleled those found in all wildland vegetation.  Risk remained high in the 

Southeast, especially in the Southeastern Plains ecoregion (Figure 4.9b).  Risk also 
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remained high in Mediterranean California, especially in 2003, and also in the 

Western Cordillera ecoregion (Figure 4.9b). 

When only shrublands and evergreen forests were analyzed, risk was remarkably 

high in the Everglades and Texas-Louisiana Coastal Plain again.  These results were 

unexpected and we examine potential reasons later in the discussion.  Other ecoregions 

with relatively high risk levels in shrublands and evergreen forests included the Southeast 

and parts of the West: Western Cordillera, Sonoran and Mohave Deserts, Mediterranean 

California, and the Upper Gila Mountains (Figure 5b). 

Discussion 

We used a formal risk framework to evaluate the risk of housing units from fire for the 

entire U.S. and among ecoregions in the U.S.  We defined risk as the probability that a 

housing unit was exposed to fires under average conditions during the years for which 

our fire potential models were constructed (2000 – 2006).  Approximately 4.7 million 

housing units were located in areas predominantly covered by shrubland and evergreen 

forest vegetation.  Both of these vegetation types can experience extreme fire behavior 

under certain weather conditions present the greatest concern to fire managers.  Our 

analysis found that relatively more houses were in high fire potential zones in shrubland 

and evergreen forests than other vegetation types.  As a result, fire risk in shrubland and 

evergreen forests was nearly twice as high as it was for all other wildland vegetation.  

The good news is that the 4.7 million housing units in risky vegetation types represent 

only a small fraction of all the houses in the U.S. (4.1%).  The bad new is that they are 
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scattered across nearly 22% of the U.S. land area.  If the management strategy is to 

reduce risk by mechanical fuel treatments and prescribed fires, then there is a lot of 

ground to cover. 

With our definition, the spatial patterns of risk followed patterns of fire 

occurrence and the distribution of housing, and risk was greatest where both high fire 

occurrence probabilities and housing development overlapped.  In the West, this resulted 

in a few concentrated hotspots of risk.  In the Southeast, risk was more evenly distributed 

because both fire potential and housing development were consistently high across a 

large area.  In most parts of the U.S. our results matched our expectations; however, in a 

couple of cases, our risk metric produced some unexpected results. 

The Texas-Louisiana Coastal Plain and the Everglades both had high risk when 

all vegetation types and when only shrublands and evergreen forests were considered.  

We expected risk to be high in both ecoregions, but not to the magnitude we observed.  

Both ecoregions had average fire potential that was normally distributed with a mean 

greater than zero, whereas most other ecoregions had skewed distributions with most of 

their area having fire potential near zero (Chapter 3; Figure 3.6).  Both ecoregions also 

had large urban centers at the periphery of wildland vegetation.  Scatter plots (not shown) 

of housing units and fire potential did not reveal any outliers.  In the Texas-Louisiana 

Coastal Plain, risk was concentrated at the periphery of Houston, TX, along Interstate 10, 

and near Corpus Christi, TX.  This matched the Texas Forest Service description of 

where fire risk in the WUI is greatest in this region (Gray 2008).  Therefore, the high risk 
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levels we observed in these two ecoregions may be valid and appear to be primarily 

related to our predicted high potential for fire occurrence. 

Our analysis was based on 1 km resolution satellite data and at this scale of 

observation what risk actually represents can be uncertain.  The specific location of 

houses, their juxtaposition to fuels, and the potential behavior of fires are not exactly 

known, so evaluating the exact type of risk is difficult.  From a worst-case scenario, areas 

we identified as risky represent places where extreme fire behavior could present a direct 

threat to human lives and destroy structures (Cohen 2000, 2004).  Under less extreme fire 

behavior, our measure of risk represents the potential for indirect impacts of fire, for 

instance, changes in water and air quality (Wondzell and King 2003, McMeeking et al. 

2006, Wiedinmyer et al. 2006).  The type and magnitude of fire impacts on society at the 

national scale could be distinguished with more detailed models differentiating these 

types of risk.  However, our risk model provided a simple index of where conflicts 

between development and fire were most likely to occur.  These places could be good 

starting points for more detailed, local analyses about the different aspects of fire risk.  

Additionally, the locations we identified could be used with existing information about 

the wildland-urban interface (Radeloff et al. 2005) to consistently rank communities at 

risk (National Association of State Foresters 2003). 

Housing growth in rural areas and the wildland urban interface is high (Brown et 

al. 2005, Hammer et al. 2007, Theobald and Romme 2007) and the challenges of 

managing fire risk are likely to increase.  What can be done to limit the risk to housing in 
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fire prone landscapes?  Structural ignitions in wildfires are primarily caused by two 

mechanisms; direct heat transfer and firebrands (Cohen 2000, 2004).  Potential for 

ignition by direct heat transfer is high when houses are surrounded by flammable 

vegetation capable of generating enough heat to ignite building materials.  Firebrands, 

flaming particles of wood or debris that can be carried aloft for several miles before 

falling can also cause structural ignitions.  Establishment of fire-safe zones by clearing 

brush and reducing flammable vegetation is a simple and effective way to protect most 

structures from ignition by direct heat transfer (Cohen 2000, 2004).  To reduce the risks 

posed by firebrands, fuel treatments to limit the extreme fire behavior that produces 

firebrands in the vicinity of development are also a possibility (Agee and Skinner 2005).  

However, fuel treatments are expensive to implement across large spatial extents and 

their effects can be short-lived (Rideout and Omi 1995, Berry and Hesseln 2004).  In 

contrast, fire-safe building standards can limit the ignition potential from both firebrands 

and nearby fires (Cohen 2000, 2004).  Most importantly, we should be smart about where 

new development occurs (Hammer et al. 2007, Syphard et al. 2007b) and avoid 

ecologically sensitive areas with high fire potential. 

Fortunately, land owners in the wildland-urban interface are often aware of fire 

risk and are willing to engage in risk reduction activities on their property when they 

perceive a benefit.  Enthusiasm for funding risk-reduction activities on public lands is 

low in comparison (Fried et al. 1999).  Thus, the most promising prospects of reducing 

fire risk to housing fall largely in the hands of private homeowners at the edge or outside 
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of public lands.  Our risk assessment provides a gradient in which people can evaluate 

their relative risk and take risk reduction actions on their property accordingly. 
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Figure 4.1.  Omernik level 2 ecoregions (Omernik 1987). 
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Figure 4.2  Average potential for fire occurrence (2000 – 2006), grouped by housing 

density categories (# housing units / km2) for all wildland vegetation pixels.   
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Figure 4.3.  Number of housing units according to average potential for fire 

occurrence (2000 – 2006), grouped according to housing density categories (# housing 

units / km2) for all wildland vegetation pixels. 
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Figure 4.4.  Risk according to average potential for fire occurrence (2000 – 2006), 

grouped according to housing density categories (# housing units / km2) for all wildland 

vegetation pixels. 
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Figure 4.5.  Average potential for fire occurrence (2000 – 2006), grouped by housing 

density categories (# housing units / km2) for shrubland and evergreen forest vegetation 

pixels.   
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Figure 4.6.  Number of housing units according to average potential for fire 

occurrence (2000 – 2006), grouped according to housing density categories (# housing 

units / km2) for all shrubland and evergreen forest vegetation pixels. 
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Figure 4.7.  Risk according to average potential for fire occurrence (2000 – 2006), 

grouped according to housing density categories (# housing units / km2) for all shrubland 

and evergreen forest vegetation pixels. 
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Figure 4.8.  (a) Housing units and (b) average risk by ecoregion for all vegetation 

types.  Vertical bars show range between maximum and minimum yearly risk observed 

between 2000 and 2006. 
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Figure 4.9.  (a) Housing units and (b) average risk by ecoregion for shrubland and 

evergreen vegetation types.  Vertical bars show range between maximum and minimum 

yearly risk observed between 2000 and 2006. 

 

 


