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Overview 

Global avian biodiversity is under great threat, primarily due to human-caused habitat 

conversion (Gaston et al. 2003).  Conservation of biodiversity is therefore of critical importance.  

Understanding the causes of spatial heterogeneity in biodiversity remains one of the most 

pressing challenges for ecologists (Gaston 2000).  One shortcoming of the current pool of 

biodiversity studies is that most explore only one or two types of explanatory factors in isolation.  

A broader perspective of the drivers of biodiversity is needed.  MacArthur (1972) hypothesized 

that biodiversity is a function of productivity, climatic stability, and habitat structure.  Even 

though MacArthur’s framework has existed for 40 years, few studies have considered these three 

factors jointly.  Measures of productivity and climatic stability are amenable to remote sensing, 

and therefore relatively easy to quantify over broad extents.  Habitat structure, in contrast, has 

thus far been measured primarily with labor-intensive field-based techniques.  In order to 

consider the influence of habitat structure on nationwide patterns of avian biodiversity, improved 

remotely sensed methods for quantifying habitat structure are needed.   

Even with a better theoretical understanding of the factors influencing avian biodiversity 

patterns, the resulting information must be presented in a form useful to resource managers and 

decision-makers in order to make a practical difference in conservation.  With limited resources 

for habitat conservation, the accurate identification of high-value bird habitat is crucial (Turner et 

al. 2003).  Few national maps of biodiversity exist, and those that do are of relatively coarse 

resolution (e.g., Dobson et al. 1997).  A nationwide, fine-resolution map of avian biodiversity is 

therefore needed to inform conservation decision-making. 
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The overarching goal of my dissertation was to explain and predict geographic 

patterns of avian species richness across the contiguous United States.  My objectives were 

to evaluate methods of characterizing habitat structure over broad extents from remotely 

sensed data, to determine the relative roles that productivity, climatic stability, and habitat 

structure play in influencing nationwide patterns of avian species richness, and to produce 

fine-resolution, nationwide maps of predicted avian species richness. 

   I explored the relationships of avian species richness to measures of productivity, 

climatic stability, and habitat structure, and I investigated the relative importance of each.  

Because of the broad-extent of my work, I extensively used remotely sensed data.  Remotely 

sensed measures of habitat structure are relatively few and untested, therefore a substantial 

portion of my dissertation involved the evaluation of these measures, in particular image texture.  

I also compared remotely sensed measures of vertical and horizontal habitat structure, and 

evaluated the relative contribution of each in explaining avian species richness patterns.  Lastly, 

and most importantly I modeled nationwide patterns of avian species richness as a function of 

productivity, climatic stability, and habitat structure.  I conducted two separate analyses as part 

of this modeling process.  In the first, my goal was to examine the importance and relationship 

between these three categories of measures and avian species richness.  In the second analysis 

my goal was to produce nationwide, fine-scale maps of species richness for several avian guilds. 

 

Chapter Summaries 

 The performance of image texture measures for the quantification of habitat structure was 

one major focus of my dissertation.  Because my study area was nationwide, it was apparent that 
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I would be unable to acquire satellite imagery at the same phenological stage nationwide.  

Therefore, in Chapter 1, I investigated the effect of phenological variability on measures of 

image texture.  The study area for this chapter included three Landsat footprints selected to 

include contrasting biomes.  The first footprint was an area composed primarily of desert scrub 

along the border of New Mexico, Texas, and Mexico.  The second footprint was primarily in 

southwestern Ontario, extending slightly over the border of Minnesota, consisting of boreal 

forest.  The third footprint was in the Appalachian Mountains including portions of western 

Maryland, eastern West Virginia, and Virginia.  Landcover included deciduous forests on 

mountain slopes and agricultural areas.   

For each study site, I selected three to four scenes spanning the growing season.  For each 

image, I calculated a suite of first- and second-order image texture measures.  For each texture 

measure, I calculated the coefficient of variation for each pixel across all images for each of the 

three sites.  All study sites showed substantial seasonal variation in measures of both first- and 

second-order textures.  Among the three study sites, first-order measures were consistently 

ranked in their robustness to phenological variation, with mean and entropy being the most 

robust, followed by variance then skew.  In contrast, no clear pattern of robustness emerged in 

second-order measures because robustness ranking was not consistent among study sites, 

although homogeneity, entropy, and dissimilarity appeared to be more robust than other 

measures.  I also analyzed whether texture measures calculated with certain window sizes, or of 

certain bands, were more robust to phenological variation.  Phenological variability did not show 

strong differences among bands.  There appeared to be a slight reduction in variability with 

increasing window size, but the affect was not strong. 
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My overall finding in this chapter was that phenological variation does indeed strongly 

influence measures of texture calculated from Landsat imagery.  Some measures of texture 

appeared to be more robust to phenological variation than others, but the difference was 

relatively small.  My findings suggest that, in studies considering measures of image texture, 

images should be acquired at similar phenological stages if possible.  If this is not possible, 

texture measures may still be useful, but phenological variation will introduce noise into the 

measures. 

Measures of image texture, as a method to quantify habitat structure, have been 

successfully used to explain patterns of avian distribution and species richness.  However, these 

studies were carried out over limited spatial extents and included only a limited range of 

landcover types (St-Louis et al. 2006, Wood et al. 2012).  In order to determine whether image 

texture measures can be useful in nationwide models of biodiversity including diverse 

ecosystems, a more substantial analysis was needed.  In Chapter 2, I evaluated the ability of 

image texture measures to explain patterns of avian species richness over the Midwestern United 

States.  The study area covered 1,498,000 km
2
, including habitats ranging from grassland to 

forest.  I calculated a suite of image texture measures from 114 Landsat TM scenes, and I used 

those measures to model avian species richness for forest birds, grassland birds, and shrubland 

birds, as well as Neotropical migrants, permanent residents, and short-distance migrants.  As a 

benchmark for comparison, I also calculated measures of landscape composition from the 

National Landcover Dataset (NLCD).  Models of avian species richness for each guild were 

fitted using texture measures alone, landscape composition measures alone, and both together.  

Models were fitted for the entire study area, as well as for each of the three ecoregion provinces 
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comprising the study area (Laurentian Mixed Forest, Eastern Broadleaf Forest, and Prairie 

Parkland).   

At the study-wide level and for the Eastern Broadleaf Forest and Prairie Parkland 

Ecosystems, landscape composition measures explained slightly more of the variability in avian 

species richness than image texture measures, with both types of models explaining roughly one-

third of the variability in species richness.  When both types of measures were considered 

simultaneously, model adjusted R
2
 values showed modest improvement.  However, in the 

Laurentian Mixed forest, the outcome was notably different.  There, texture measures explained 

24% of species richness variability while landscape composition metrics explained only 18%.  

When both types were combined, they explained 33% of the variability. 

My results indicated that while measures of image texture were not universally superior 

to measures of landscape composition, the approach was still valuable.  In the Laurentian mixed 

forest, texture measures demonstrated superior performance and there was a large increase in 

adjusted R
2
 when both types of measures were considered.  These results indicate that, in this 

heavily forested ecoregion, measures of image texture were capturing information that was not 

present in landscape composition metrics.  It may be that in the Prairie Parkland and Eastern 

Broadleaf Forest, between-class heterogeneity, which landscape metrics capture well, was a 

driving factor of species richness patterns, while in the Laurentian mixed forest, within-class 

heterogeneity, which landscape composition does not capture but texture does, was more 

important.  The complementarity of landscape composition metrics and image texture measures 

that I found in the Laurentian Mixed Forest indicates that the two approaches should be used in 
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conjunction when possible, and in areas where landcover classifications are not available, image 

texture measures can characterize habitat structure over broad extents. 

In addition to texture, other options exist for characterizing habitat structure over broad 

scales.  Considering that bird habitat is three-dimensional by nature, I was especially interested 

in vertical habitat structure.  A well-recognized relationship exists between avian species 

richness and measures of vertical structure, such as foliage height diversity (MacArthur and 

MacArthur 1961).  The problem is that these labor-intensive field measurements are completely 

unfeasible over broad scales.  Light detection and ranging (LiDAR) has shown the ability to 

characterize vertical habitat structure, but existing data sets are available only at local to state 

scales.  Consequently, other approaches are needed.  In Chapter 3, I evaluated the effectiveness 

of several measures of horizontal and vertical habitat structure for explaining nationwide patterns 

of avian species richness.  The study area for this chapter included the entire contiguous United 

States.  As in Chapter 2, I modeled avian species richness, derived from the Breeding Bird 

Survey (BBS), as a function of measures of habitat structure from the area surrounding each BBS 

route.  A key focus of this chapter was canopy height and biomass measures from the National 

Biomass and Carbon Dataset 2000 (NBCD) as representions of vertical habitat structure.  I 

included measures of landscape composition and configuration derived from the NLCD as 

representations of horizontal structure.  Landscape configuration metrics were calculated using 

morphological spatial pattern analysis (MSPA) and included area of core and edge forest, 

grassland, and shrubland.  I fitted models of species richness for seven avian guilds as a function 

of habitat structure nationwide and for three ecoregions: the Central Appalachian Broadleaf 

Forest, Eastern Broadleaf Forest, and Great Plains.  To quantify the explanatory contribution of 
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variables, I first used best subset selection and ranked variables by the number of times they 

were included in top models.  In addition, I used hierarchical partitioning on the top-ranked 

variables (as determined by best subsets) to establish the independent contribution of each 

variable in the context of the others. 

Avian species richness was strongly related to at least some measures from each of the 

explanatory variable groups (canopy height and biomass from the NBCD as well as NLCD-

derived measures of landcover composition and configuration).  Mean canopy height exhibited 

particularly strong relationships and explained 55% of the nationwide variability of forest bird 

species richness.  The combination of both horizontal and vertical habitat structure measures was 

most powerful, and nationwide multivariate models of forest and grassland bird species richness 

yielded adjusted R
2
 values of 0.70 and 0.48 respectively.  Models developed at the scale of 

individual ecoregion provinces had slightly weaker performance but still showed strong 

relationships between species richness and measures of both vertical and horizontal structure.  In 

the nationwide models, measures of both vertical and horizontal habitat structure ranked high in 

independent contribution (from hierarchical partitioning) and inclusion in top-models (from best 

subsets selection). 

My study showed that measures of vertical structure, as characterized by estimates of 

biomass and canopy height from the NBCD, capture information not present in measures of 

horizontal structure.  As expected, methods characterizing horizontal habitat structure, such as 

proportion of landcover class, also contributed to explanation of species richness patterns.  The 

high independent contribution values of both horizontal and vertical measures of habitat structure 

in the hierarchical partitioning analysis indicate that these measures are complementary, rather 
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than redundant, in their explanation of species richness patterns.  For this reason, I recommend 

that future studies of broad scale avian biodiversity include measures of both vertical and 

horizontal structure.  

The focus of Chapters 1-3 was evaluating potential remotely sensed measures of habitat 

structure.  In Chapter 4, I returned to MacArthur’s framework of productivity, climatic stability, 

and habitat structure as primary factors influencing biodiversity.  My aim was to determine 

which groups of measures (and specifically which variables) had the most predictive power and 

whether there was complementarity between these three groups.  I modeled nationwide patterns 

of avian species richness using measures of habitat structure from Chapters 2 and 3, as well as 

additional measures of productivity and climatic stability.  As in Chapter 3, I modeled 

nationwide patterns of species richness, derived from the BBS, of seven avian guilds.  Measures 

of productivity included annual sum and annual minimum fraction of photosynthetically active 

radiation (fPAR), a measure strongly related to vegetative productivity.  Seasonal variation of 

fPAR, and ecoregion province were used as measures of climatic stability.  Image texture 

measures, canopy height, biomass, and landcover composition metrics were used to represent 

habitat structure.  I included more measures of habitat structure than productivity or climatic 

stability because I modeled species richness at the scale of a BBS route, and local variation in 

species richness is more strongly influenced by habitat structure (Mackey and Lindenmayer 

2001, Pearson and Dawson 2003).  In order to evaluate the explanatory power of individual 

variables as well as measures of productivity, climatic stability, and habitat structure as groups, I 

again employed best subset selection and hierarchical partitioning. 
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As expected, all three categories made some contribution to explaining avian species 

richness patterns, and habitat structure measures were the strongest overall.  For five of seven 

guilds (all birds, forest birds, shrubland birds, Neotropical migrants, and short-distance 

migrants), measures of habitat structure contributed the bulk of explanatory power followed by a 

moderate contribution from productivity measures and a small contribution from measures of 

climatic stability.  In the remaining guilds, a different pattern was observed.  For grassland birds, 

habitat structure measures were again dominant, but to a lesser extent, and productivity and 

climatic stability made moderately strong contributions.  For permanent residents, the 

contribution of different variable groups was roughly split three ways, with productivity 

explaining the most, followed by climatic stability, then habitat structure.  Though habitat 

structure measures were dominant on the whole, the top-performing individual variables 

included measures from all three categories.  In fact, the strongest performing variable overall 

was mean annual sum of fPAR (productivity). 

While I expected these three factors to exhibit complementarity in explaining patterns of 

avian species richness, my results did not always support that prediction.  The ranking of the top 

individual variables seemed to indicate complementarity, but comparison of adjusted R
2
 values 

provided mixed evidence.  For the all bird, forest bird, shrubland bird, Neotropical migrant, and 

short-distance migrant guilds, models yielded adjusted R
2
 values comparable to the habitat 

structure-only models from Chapter 3.  This would seem to indicate little complementarity, 

however, in this chapter, canopy height (one of the strongest performing variables in Chapter 3) 

was not included in final models because it was highly correlated with mean annual sum of fPAR 

(the strongest performing variable in chapter 4).  The grassland bird and permanent resident 
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species richness models showed notable improvement in adjusted R
2
, showing that for these 

guilds there was complementarity between measures of productivity, climatic stability, and 

habitat structure. 

In order to create a final data product that would be of use to planners and resource 

managers, in Chapter 5, I produced nationwide, fine-scale maps of predicted avian species 

richness.  As in Chapter 4, this analysis considered explanatory variables representing 

productivity, climatic stability, and habitat structure.  In contrast to Chapter 4, the goal was to 

produce accurate maps of predicted avian species richness, rather than developing explanatory 

models to evaluate drivers of species richness patterns.  The statistical analysis, therefore, was 

quite different.  I used two different machine learning approaches to develop the predictive 

models: random forests and support vector regression.  Analysis of mean squared error of both 

approaches, as well as visual inspection of resulting predictive maps, showed the random forest 

models to be superior.  I therefore used the random forest models to produce maps of nationwide 

avian species richness for all birds, forest birds, shrubland birds, grassland birds, Neotropical 

migrants, short-distance migrants, and permanent residents.  The maps were of 1-km resolution, 

with each cell indicating the expected number of species present on a hypothetical BBS route 

centered at that location. 

The nationwide maps showed patterns of species richness that matched expectations.  For 

example, forest birds and Neotropical migrants had highest species richness in the eastern half of 

the United States and in forested areas in the western half of the country, and grassland bird 

species richness was heavily concentrated in the Great Plains.  I also visually evaluated the 

predicted maps of species richness for the state of Wisconsin.  Again, predicted patterns of 
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richness followed known patterns, such as high Neotropical migrant species richness in northern 

forests, and highest grassland bird species richness in heavily agricultural areas. 

 

Significance 

My dissertation focused on explaining and predicting patterns of avian species richness, 

and makes technical, theoretical, and applied contributions.  The technical contributions are 

primarily related to the use of image texture.  In Chapter 1, I showed that changes in vegetation 

phenology significantly influence measures of texture, and that close attention should be paid to 

the phenological stage of imagery when performing multi-image texture analysis.  In Chapters 2 

and 4, I show that it is feasible (though challenging) to use texture analysis over a very broad 

extent, and measures of image texture are useful in explaining avian species richness over 

numerous ecosystem types.  In Chapter 5, I evaluated two relatively new and novel machine 

learning techniques, support vector regression and random forests, in a biodiversity modeling 

context and found that random forests were very effective.  Though best subset selection and 

hierarchical partitioning are not new techniques, I showed that in tandem, they are useful 

approaches in evaluating the contribution of explanatory variables, particularly in the context of 

other variables. 

 The main theoretical contributions in my dissertation are Chapters 3 and 4.  In Chapter 3, 

I showed that measures of both horizontal and vertical habitat structure were important and 

complementary in explaining avian species richness patterns nationwide.  In Chapter 4, I tested 

numerous hypotheses regarding the importance and interaction of productivity, climatic stability, 

and habitat structure with regard to their influence of patterns of species richness for several 
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avian guilds.  For example, I found that for most avian guilds, measures of habitat structure made 

the strongest contribution to explaining species richness at the BBS route level.  Permanent 

resident birds were the exception: in that case, measures of productivity made the largest 

contribution to explaining patterns of species richness. 

 Lastly, with Chapter 5, I made a significant contribution to applied conservation science 

by using my theoretical findings to produce a concrete product, nationwide maps of predicted 

species richness for several avian guilds.  These maps are of a scale appropriate to inform 

conservation planners and managers about geographic patterns of avian species richness and 

perhaps highlight areas worthy of further field investigation.  By producing maps for several 

guilds, I intended to convey a significant amount of information in an easily understandable 

manner.  Although the maps are primarily intended for resource managers, I hope they inspire 

others to take theoretical findings and use them to produce a useable product.  In fact, I hope 

others also undertake broad-extent predictive biodiversity modeling similar to my study, perhaps 

improving upon my methods and results.  Along those lines, some of the technical contributions 

of my dissertation have an applied aspect as well.  The steps and analysis I undertook to produce 

my maps provide technical advancement to the field of habitat modeling, and I hope my 

techniques will be applied to other taxa and other regions of the world.  
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Chapter 1    

The Impact of Phenological Variation on Texture Measures of Remotely Sensed 

Imagery 

 

Abstract 

Measures of image texture derived from remotely sensed imagery have proven useful in 

many applications.  However, when using multi-temporal imagery or multiple images to cover a 

large study area, it is important to understand how image texture measures are affected by 

surface phenology.  Our goal was to characterize the robustness to phenological variation of 

common first- and second-order texture measures of satellite imagery.  Three North American 

study sites were chosen to represent different biomes.  At each site, a suite of image textures 

were calculated for three to four dates across the growing season.  Texture measures were 

compared among dates to quantify their stability, and the stability of measures was also 

compared between biomes.  Interseasonal variability of texture measures was high overall (mean 

interseasonal coefficient of variation = 0.79), indicating that care must be taken when using 

measures of texture at different phenological stages.  Certain texture measures, such as first-

order mean and entropy, as well as second-order homogeneity, entropy, and dissimilarity, were 

more robust to phenological change than other measures.   
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Introduction 

Remotely sensed images are composed of both tone (spectral variation) and texture 

(spatial variation) (Haralick 1979, Baraldi and Parmiggiani 1995).  While spectral information is 

relatively easy to quantify, texture is more difficult to quantify because it involves measurements 

of pattern variability, shape, and size (Coburn and Roberts 2004).  Because of the difficulties in 

measurement and interpretation, texture has been less utilized in remote sensing than spectral 

analysis.  This is unfortunate, because pixel-wise spectral analyses ignore the large amount of 

information present in image texture.  The use of texture measures has been recognized as an 

important method for quantifying spatial heterogeneity and its use has recently increased in 

studies of land cover classification (Coburn and Roberts 2004, Franklin et al. 2000, Franklin et 

al. 2001a), habitat modeling (Hepinstall and Sader 1997, Tuttle et al. 2006, Estes et al. 2008), 

and measurement of vegetation structure (Estes et al. 2008, Kayitakire et al. 2006, Wunderle et 

al. 2007). 

 The most commonly used measures of texture are divided into two groups: first-order 

(occurrence) and second-order (co-occurrence) (Haralick et al. 1973). First-order measures are 

statistics calculated from the spectral values of pixels in a defined neighborhood, typically 

implemented as a moving window.  Common first-order measures include minimum, maximum, 

range, mean, standard deviation, skewness, and kurtosis.  Of these measures, standard deviation 

(or variance) is the most commonly used (Coburn and Roberts 2004, Hepinstall and Sader 1997, 

Tuttle et al. 2006, Tuominen and Pekkarinen 2005).  First-order measures are limited in power 

because they quantify variation in spectral information without regard to the spatial arrangement 
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within the moving window.  However, first-order measures are computationally simple and can 

be quickly calculated over large spatial extents. 

 Second-order texture measures take into account the spatial distribution of spectral values 

(Coburn and Roberts 2004).  These measures are derived from the gray-level co-occurrence 

matrix (GLCM) [11].  The GLCM is a symmetric n-by-n matrix, where n is the number of 

possible gray-tone values.  Entries Pij in the matrix, represent the relative frequency of pixels 

with tone levels i and j co-occurring at a user specified distance and direction (Haralick et al. 

1973).  There are four commonly used directions, 0° (horizontal), 45° (right diagonal), 90° 

(vertical), and 135° (left diagonal).  The distance parameter, d, is typically set to 1, thus 

comparing adjacent pixels (Musick and Grover 1991).  In multispectral imagery, a separate 

GLCM is computed for each band of interest. 

 The GLCM assumes that the texture information of an image can be represented in 

adjacency relationships between specific gray tones (Haralick et al. 1973, Tso and Mather 

2001)(Haralick et al. 1973).  Similar to first-order measures, the GLCM is calculated for a 

neighborhood, typically a moving window.  Haralick (1973) originally proposed 14 texture 

measures derived from the GLCM: angular second moment, contrast, correlation, difference 

entropy, difference variance, entropy, information measures of correlation (2 different features), 

inverse difference moment (now more commonly referred to as homogeneity), maximal 

correlation coefficient, sum average, sum entropy, sum of squares variance, and sum variance.  

Many of these original second-order measures have been found to be highly correlated, and a 

subset of six measures is considered most useful for remote sensing analysis: angular second 
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moment (ASM), contrast, correlation, homogeneity, variance, and entropy, with the first three 

being the least correlated (Baraldi and Parmiggiani 1995, Kayitakire et al. 2006).  

 Several types of remote sensing data analyses benefit from the inclusion of textural 

measures.  Texture measures are frequently included as additional (or sole) inputs in image 

classifications.  The use of texture measures is especially helpful in classifications of areas such 

as forests, where species may have similar spectral characteristics but different spatial patterns 

(Coburn and Roberts 2004, Franklin et al. 2000, Franklin et al. 2001a).  Measures of texture are 

also well-suited to quantify vegetation structure (Kayitakire et al. 2006, Johansen et al. 2007), 

including forest structure (Kayitakire et al. 2006), forest age class (Franklin et al. 2001b)(Hudak 

and Wessman 1998), woody plant encroachment (Hudak and Wessman 1998)(Wulder et al. 

1998), and leaf area index (Wulder et al. 1998).  More recently, habitat modeling studies have 

incorporated texture measures.  For animals such as birds, vegetation structure is an important 

cue for habitat selection (MacArthur and MacArthur 1961, Cody 1981).  Texture measures 

derived from remotely sensed imagery have proven useful in bird species presence/absence 

models (Hepinstall and Sader 1997), relating vegetation structure to habitat preference (Tuttle et 

al. 2006, Bellis et al. 2008), and modeling avian species richness (St-Louis et al. 2006, St-Louis 

et al. 2009). 

 However, while the utilization of texture measures in remote sensing analyses is 

increasing, there is a significant issue that has thus far been mostly overlooked.  Any texture 

analysis involving images of different areas or multi-temporal images of the same area must take 

into account factors that may severely affect texture measures.  Absolute texture comparisons 

between images are confounded by factors such as light angle, atmospheric effects (Hudak and 
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Wessman 1998), and vegetation phenology (Vega-Garcia and Chuvieco 2006).  In particular, the 

effect of phenology could significantly affect multi-temporal analyses.  Even though these 

factors can introduce substantial problems to analyses, thus far only a few studies have 

mentioned the possible effects of phenology on texture measures (Vega-Garcia and Chuvieco 

2006, Peroni et al. 2000), and none of these studies explicitly examined the effect. 

 At the same time, the potential upside of phenological variation in image texture is that 

texture differences among multi-temporal images could contain important information.  The 

analysis of temporal variation in image texture could thus yield insight into phenological 

processes and help distinguish different vegetation types.  Texture measures derived from certain 

phenological stages will likely be better suited to specific purposes, such as plant species 

identification, and specific texture signatures related to a process or feature of interest may be 

more pronounced at specific phenological stages.  To exploit these relationships, more 

understanding is needed on the behavior of specific texture measures in different biomes over the 

growing season and which parts of the growing season yield the best texture measures to be 

related to specific processes.   

 As computing power increases, so does the ability to carry out analyses over large spatial 

extents.  The historical archive of remotely sensed imagery is growing, and data are becoming 

more freely available (as with the free release of the USGS Landsat archive).  All of these factors 

will contribute to increases in multi-temporal and large-spatial-extent analyses that utilize texture 

measures.  Thus, both positive and negative implications of the effects of phenology on measures 

of image texture need more study. 
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 The primary goal of our research was to determine how first- and second-order texture 

measures respond to changes in phenology.  We were interested in finding the degree to which 

measures of image texture are robust to phenological change.  In addition, we were interested in 

understanding how phenology-related variability in texture measures differs across different 

biomes, window sizes, and spectral bands. 

 We expected that image texture measures that are invariant to linear transformations of 

the digital numbers (e.g., angular second moment and entropy (Haralick et al. 1973)) would be 

the most robust to phenological change.  We also expected that measures of texture would vary 

the most in biomes with high seasonal variation in vegetation.  Strong fine-scale variation in 

vegetation would lead to high spectral variation, which we expected would translate into higher 

variation of texture measures.   

Texture measures are influenced by window size since the scale of the spatial patterns 

measured is dependent on window size, but we did not expect different window sizes to 

substantially differ in their response to phenological change.  However, since a larger window 

contains a larger sample size, we predicted a slight reduction in variance.  Lastly, we expected 

that variance of texture measures would not be uniform across spectral bands.  In particular, we 

believed that Landsat TM band 4 would have higher interseasonal variability in texture measures 

because near-infrared reflectance is strongly correlated with vegetative vigor (Tucker 1979), 

which varies substantially across growing seasons. 
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Methods 

 We calculated a suite of texture measures for three study sites representing different 

biomes, and for images acquired at different points in the growing season.  The resulting texture 

measures were compared among image dates to determine which measures were most robust to 

change in surface phenology and whether ranking in terms of robustness was consistent among 

different biomes.  We used several window sizes and spectral bands in order to analyze their 

effect on texture measure robustness to phenological variation. 

 Three study sites were chosen, representing contrasting biomes: a desert scrub region in 

New Mexico, a mix of deciduous and evergreen forests in Ontario, Canada, and an area of 

deciduous forest and agriculture in Virginia.  These sites correspond to Landsat TM path 33 row 

38, path 27 row 26, and path 16 row 33, respectively (Figure 2-1). 

 The New Mexico site was centered near Las Cruces, New Mexico, and includes areas of 

New Mexico, Texas, and Chihuahua, Mexico.  The area was primarily desert scrubland of the 

Chihuahuan Desert Province (Bailey 1995), with relatively flat basins as well as mountainous 

areas.  The Rio Grande River was a prominent feature in the scene, with a swath of agriculture 

approximately 5 miles wide running along the river.  The metropolitan area of El Paso, Texas 

and Ciudad Juárez, Mexico (population approximately 2.2 million) was included in the scene. 

 The Ontario study site covered mostly southwestern Ontario with a small area of northern 

Minnesota also included.  The scene was in the Boreal Shield ecozone (Wiken 1986).  This area 

had a very low human population and was composed almost entirely of forests and small lakes.  

The forests were primarily evergreen or mixed evergreen/deciduous.  Heavy forest harvesting 

was apparent in parts of the imagery. 
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 The Virginia site included portions of western Maryland, eastern West Virginia, and 

Virginia.  The West Virginia portion of the image was dominated by deciduous forests on slopes 

of the Appalachian Mountains, with some agriculture in the valleys.  Agriculture dominated most 

of the Virginia portion of the image, with some mountainous deciduous forest, including nearly 

all of Shenandoah National Park.  The area was primarily in the Central Appalachian Broadleaf 

Forest-Coniferous Forest-Meadow Province with a small section of Southeastern Mixed Forest 

Province (Bailey 1995). 

For each study site, a collection of Landsat images was assembled with the goal of having 

mostly cloud free images spanning the growing season within a 1-3 year period (Table 2-1, 

Figure 2-2).  For the Ontario study site, approximately 15% of the 09/12/2000 image was 

affected by clouds and about 25% of the 04/29/2000 image was contaminated by smoke.  In the 

Virginia site, the 05/24/2002 image contained 10% cloud cover.  These affected areas were 

masked out from all images for the final analysis of each study site. 

Within each study site, one image was chosen as the reference and the others were 

georeferenced to that image using Erdas Imagine Autosync (Leica Geosystems 2005).  A second 

order polynomial model was applied, and images were resampled using nearest neighbor 

interpolation.  Images were projected in UTM NAD83 zones 13, 15, and 17 North for the New 

Mexico, Ontario, and Virginia study sites, respectively.  

 A suite of texture measures were calculated for each of the 10 images using ENVI 

(Research Systems Inc. 2005) (Figure 2-2 D-I for example).  For each image band, first-order 

texture measures: mean, variance, entropy, and skewness were calculated using window sizes of 

3x3, 7x7, and 11x11.  The second-order texture measures: correlation, contrast, angular second 
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moment, homogeneity, dissimilarity, entropy, and variance were also calculated for each band.  

When calculating second order measures, care must be taken to avoid sparsely populated 

GLCMs (Haralick et al. 1973, Vega-Garcia and Chuvieco 2006).  With small window sizes, the 

number of pixel adjacencies is relatively small, and a GLCM of 8-bit data will have 65,536 cells 

(256 by 256).  This results in a value of 0 in most cells of the GLCM, causing instability in the 

texture measurement.  For this reason, we calculated second-order measures with larger window 

sizes of 11x11 and 15x15, and we reduced the radiometric resolution to 6 bits (64 values, 

yielding a GLCM with 4,096 cells) instead of the 8 bits of the original data.  GLCMs were 

calculated for the horizontal direction with a distance parameter of 1 pixel. 

 Within each study site, the calculated texture measures were compared among image 

dates on a pixel-by-pixel basis.  Because variation in texture measures was consistently higher in 

pixels with a high mean texture value, the per-pixel coefficient of variation was chosen as a more 

representative measure of interseasonal variability.  For each study site, band, texture measure, 

and window size combination, the coefficient of variation of each pixel was calculated among 

the different image dates in order to assess the inter-date variability of the textures measures 

(Figure 2-3).  With three study sites, six bands, four first-order measures with three window 

sizes, and seven second-order measures with two window sizes, this processing yielded 216 

single-band coefficient of variation images for first-order texture measures and 252 images for 

second-order texture measures (Figure 2-4).  To facilitate comparison between texture measures, 

cloud-contaminated areas were masked, and the image-wide mean was calculated for each of the 

single-band coefficient of variation images. 
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Results 

 All study sites showed substantial interseasonal variation in both first- and second-order 

texture measures.  The overall mean coefficients of variation of the calculated texture measures 

were 0.52, 0.66, and 1.06 for the New Mexico, Ontario, and Virginia study sites, respectively.  

These levels are higher than we expected, and it can be seen that the level of variation was 

substantially higher in the Virginia study site.  As a test sample, a small area of evergreen forest 

was selected from the Ontario study site, and 11x11 second-order texture measures of this area 

were plotted for each of the four image dates (Figure 2-5).  The two images from very early in 

the growing season (04/29/00 and 05/21/2002) showed very similar texture measures.  However, 

during the peak of the growing season (07/05/2001) most texture measures changed substantially 

in value.  Entropy, contrast, variance, and dissimilarity show a marked increase in value, while 

correlation and homogeneity show a decrease.  Late in the growing season (09/12/2000) texture 

measures returned to values similar to the two early images. 

 The ranking of seasonal variation in first-order texture measures was consistent between 

the Ontario and New Mexico sites with entropy and mean as the least variable measures, 

followed by variance, then skew (Figure 2-6).  While the relative ordering of variability in 

texture measures of the Virginia site was similar, entropy, mean, and variance had noticeably 

higher seasonal variability.  The variability of skew was similar in all three sites and substantially 

higher than the three other measures.  Overall variation was high for variance and skew, with a 

mean coefficient of variation of approximately 0.7 and 1.75 respectively.  

 Seasonal variability of second-order texture measures was fairly complex (Figure 2-7).  

Variability of contrast, dissimilarity, entropy, homogeneity, and variance were very similar 
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between the New Mexico and Ontario sites, with the New Mexico site being slightly less 

variable in each case.  Differences between Ontario and New Mexico were much larger for 

angular second moment and correlation.  Homogeneity and entropy were the most robust 

measures in these two sites, followed by dissimilarity, contrast, and variance.  However, the 

variation of texture measures of the Virginia site was substantially higher, with most coefficients 

of variation near 1.0.  It is difficult to ascertain the relative robustness of angular second moment 

and correlation given that the level of variation was inconsistent among the three study sites. 

 There were noticeable differences in robustness of texture measures among biomes.  The 

Virginia site had the highest level of variation in 9 of the 11 texture measures, for an overall 

average coefficient of variation of 1.06.  For most of the texture measures, the level of variation 

was similar between the New Mexico and Ontario sites, with New Mexico yielding a slightly 

lower overall mean coefficient of variation of 0.52 compared to 0.66 for the Ontario site. 

 With regard to window size, there appeared to be a slight trend of decreasing 

interseasonal variability with increasing window size when comparing coefficients of variation 

averaged across all bands and texture measures (Figure 2-8).  

 It was expected that texture measures of different Landsat spectral bands would behave 

differently with regard to robustness to seasonal change.  Band 4 (near infra-red) was of 

particular interest as this band is especially sensitive to vegetative vigor, which varies 

substantially over the growing season.  Measures calculated from band 4 did not show 

substantially higher interseasonal variation than those of other bands.  The mean per-band level 

of variability averaged across all texture measures was relatively constant for first order 
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measures (Figure 2-9), with the exception of band 3 in the New Mexico and Ontario site and 

band 4 in the Ontario site. 

 The mean per-band variability averaged across second-order texture measures showed a 

stronger pattern (Figure 2-10).  Once again the Virginia site consistently had the highest 

variation.  Ontario and New Mexico showed higher variability between bands and followed a 

similar pattern with the coefficient of variation increasing to a peak around band 3 then 

decreasing. 

 Although some texture measures appeared to vary similarly across an individual study 

site, with other textures, patterns did emerge.  For example, in the Virginia study site, 

homogeneity showed noticeable differences in coefficient of variation between the agricultural 

areas in the valleys, and the mountainous forested areas (Figure 2-4 D-F).  The coefficient of 

variation for band 4 was strikingly higher in the agricultural areas.  Homogeneity heavily 

weights the main diagonal of the GLCM, so areas composed of many adjacent pixels with highly 

similar DNs yielded a high value.  In agricultural areas, homogeneity was very high within-field, 

and low between fields, especially in this study site where some images contained vegetatively 

active fields (high NIR/red ratio) adjacent to fields with low activity (nearly even NIR/red ratio).  

In contrast, while the forested mountainous areas varied in band 4 values over the growing 

season, each forested area varied relatively consistently, resulting in a smaller coefficient of 

variation for homogeneity.  This highlights the importance of considering land cover and texture 

characteristics of the setting of interest when considering the effects of vegetation phenology on 

texture measures.  
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Discussion 

 The most significant finding of our study was that all texture measures varied 

substantially with phenology.  This variation can significantly impact analyses utilizing texture 

measures and should be of special concern in studies using multi-temporal imagery or a very 

large spatial extent requiring many images.  Even in single-date, single-image analyses, care 

should be taken in the choice of image date, as the textural measures of specific features will 

vary based on the phenological stage of the image. 

 While overall variation was high, some patterns did emerge.  Among the three study 

sites, first-order measures were consistently ranked in their robustness to phenological variation, 

with mean and entropy being the most robust, followed by variance then skew.  In contrast, no 

clear pattern of robustness emerged in second-order measures, as the Virginia site did not follow 

the patterns observed at the other sites.  Because of this, it is inconclusive if there is a consistent 

ordering of robustness of second-order texture measures, although homogeneity, entropy, and 

dissimilarity appeared to be the most robust. 

 One of our more striking results was that while the boreal forest of Ontario was a 

substantially different ecosystem than the desert scrub of southern New Mexico, both sites 

behaved quite similarly with respect to interseasonal variability in both first- and second-order 

texture measures.  We expected the Virginia site to behave similar to the Ontario site, since both 

are heavily forested, but found substantial differences.   

 One possible explanation is the relatively large areas of agriculture in the Virginia site.  

The Ontario site had no agriculture and the New Mexico site had a limited amount.  Agricultural 
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fields can show substantial spectral variability across the growing season, potentially greatly 

increasing interseasonal variability. 

 To further investigate this, we manually selected several areas of agriculture and forest in 

the Virginia study site and compared their interseasonal variability.  Contrary to our expectation, 

the overall mean level of variability was nearly identical between the two classes, with a mean 

coefficient of variation of 0.98 for agriculture, and 1.09 for forest.  Therefore the higher level of 

agriculture in the Virginia study site did not explain the site’s higher variability. 

 As we expected, interseasonal variability in texture measures was relatively unaffected by 

the window size chosen for the texture calculations.  This allows the flexibility to choose a 

window size based on a spatial scale(s) that is appropriate for a specific research question 

(Coburn and Roberts 2004, Franklin et al. 1996) as long as the window is large enough to avoid 

sparsely populated GLCMs (Vega-Garcia and Chuvieco 2006). 

 In contrast to our predictions, robustness to interseasonal variability was relatively 

consistent across spectral bands, especially for first-order texture measures.  Our findings imply 

that there are not specific spectral bands that are universally more sensitive to phenological 

variation than others. 

 We believe most of the observed variability in the texture measures can be attributed to 

changes in phenology, but other factors may have contributed to the variability.  As with all 

studies using imagery from different points of the year, sun angle varies between images, 

yielding different illumination.  In areas of more complex vertical structure, such as forests, this 

lighting effect will be more pronounced, due to sunlit portions of crowns being brighter, and due 

to shadows cast by taller trees.  These changes in highlight and shadow will yield changes in 
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texture measures.  It is also possible that atmospheric conditions varied among (and within) the 

images, and we did not apply atmospheric correction in this study.  Atmospheric contamination 

can reduce the contrast of an image, which would reduce the values of texture measures 

responding to heterogeneity (e.g. variance), and increase the value of texture measures that 

respond to homogeneity (e.g. angular second moment).  As with all multi-temporal analyses, 

precise co-registration of imagery is very important.  Misregistration between image dates would 

artificially inflate variability because the texture values would be calculated from a slightly 

different area in each image.  Lastly, because the imagery used in our study was not all acquired 

during the same year, in addition to the large seasonal differences in the images, there were 

likely some interannual differences contributing to variability. 

 Remote sensing has been used to explicitly monitor vegetation phenology (Reed et al. 

1994, Zhang et al. 2003, Stockli and Vidale 2004).  Much of the effort has focused on using time 

series to monitor vegetation phenology over very large spatial extents, often continental scale, 

from coarse spatial resolution imagery.  The goal of these analyses is often to track specific 

points in vegetation phenology such as greenup or senescence over many years to monitor 

temporal shifts in phenology.  Thus far, there have been relatively few mentions of the effect of 

phenology on texture measures.  Many studies using measures of texture have relied on single-

date imagery (Coburn and Roberts 2004, Franklin et al. 2001a, Tuttle et al. 2006, Kayitakire et 

al. 2006, Wunderle et al. 2007, Tuominen and Pekkarinen 2005, Johansen et al. 2007, Franklin et 

al. 2001b, Wulder et al. 1998, Peddle and Franklin 1991, Smits and Annoni 1999), and little 

mention was made regarding the choice of date in relation to texture measures.  It is important to 

consider how texture measures may vary over the growing season in relation to the feature of 



30 

 

 

 

interest.  Even within the growing season, there may be specific windows of time during which 

certain texture measures will be most powerful in discerning the feature of interest. 

 It is critical that future studies consider the effects of phenology on texture measures.  

Some existing multi-temporal studies using texture measures (Hudak and Wessman 1998, Vega-

Garcia and Chuvieco 2006, Peroni et al. 2000) have utilized anniversary date imagery, with some 

making explicit references to concern over phenological changes.  However, the specific effect 

of phenology on texture measures was not explored. 

 Thus far, few studies have carried out texture analysis over very large spatial extents.  In 

a study modeling bird species occurrence (Hepinstall and Sader 1997), textures measures were 

calculated from a 2001 Landsat TM mosaic of the state of Maine.  It was unclear if the mosaic 

used same date imagery.  Such large spatial extent studies are likely to increase in number as 

technical capabilities allow.  In these cases the effects of phenology must be carefully 

considered, as cloud cover and other natural variability makes it difficult to create large image 

mosaics with all images on the same date or even within the same month. 

 Several actions can be taken to minimize the effect of phenological variation on texture 

measures.  Foremost, whenever possible, imagery should be selected for the same date or 

phenological stage.  The texture measures chosen should be based on the specific application, but 

if possible, measures that are more robust to phenological variation should be selected, such as 

first-order mean or entropy, or second-order homogeneity, entropy, or dissimilarity.  Special 

attention should be paid to land cover types, such as agriculture, that show high interseasonal or 

interannual variability.  Just as it is advisable to explore different texture measures and parameter 
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settings for a specific application, the effects of seasonality should be explored in small test areas 

when possible.  

 The upside to phenological variation in image texture is that these changes may contain 

important information.  As Figure 2-5 shows, a land cover class (in this case evergreen forest) 

can show a strong change in texture measures with change in phenology.  With higher temporal 

resolution, the behavior of each texture measure could be further teased out to determine a more 

precise pattern.  When these patterns are known for other land cover types or features of interest, 

the variability in texture measure can be exploited by choosing imagery at a specific 

phenological stage or stages to yield the best results. 

  The phenological variation of texture measures can also be exploited in image 

classification.  Multi-temporal classification of spectral data has been shown to improve 

classification accuracy over single-date classifications (Homer et al. 2004).  For example, some 

broadleaf tree species are spectrally similar during the growing season, but green-up and senesce 

at different time points, thus a multi-temporal classification that includes imagery across these 

points can yield higher accuracy than a single date classification (Wolter et al. 1995).  A similar 

approach utilizing texture measures instead of spectral values seems promising and warrants 

further exploration. 

 Before this can be done, more understanding is needed on the trends of specific texture 

measures in different biomes over the growing season, and which parts of the growing season 

yield the best measures to characterize a specific process. 
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Tables 

Table 2-1.  Study imagery. 

Site Image Date (Sensor) 

New Mexico 04/23/2000 (ETM+) 

06/13/2001 (ETM+) 

09/12/1999 (ETM+) 

Ontario 04/29/2000 (ETM+) 

05/21/2002 (ETM+) 

07/05/2001 (ETM+) 

09/12/2000 (TM) 

Virginia 03/31/2000 (ETM+) 

10/15/1999 (TM) 

05/24/2002 (ETM+) 
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Table 2-2.  Image texture measure formulae. 
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Where µx, µy, σx, and σy are the means and standard deviations of px and py, where px and py 

are the marginal probabilities of x and y in the normalized GLCM 
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Figure 2-1.  The three study sites: Landsat path 16 row 33, along the border of New Mexico, USA and Chihuahua, Mexico; path 33 row 38 along the 

border of Ontario, Canada and Minnesota, USA; and path 27 row 26, including parts of Virginia, West Virgina, and Maryland, USA.
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Figure 2-2.  (A-C) Virginia, New Mexico, and Ontario Study sites, respectively, bands 4/3/2 false-color 

composite. (D-F) Second-order 11x11 variance of Virgina, New Mexico, and Ontario study sites, respectively, 

bands 4/3/2 false color composite. (G-I), Second-order 11x11 homogeneity of band 4 (near-infrared) of 

Virginia, New Mexico, and Virginia study sites, respectively. 
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Figure 2-3.  Processing flow example for a subset of Virginia study site. Original images, TM Band 4, 

03/31/2000 (A), 05/24/2002 (B), 10/15/1999 (C). First-order variance TM band 4 3x3 window size 03/31/2000 

(D), 05/24/2002 (E), 10/15/1999 (F). Pixel-wise coefficient of variation across dates (G). 
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Figure 2-4.  A sample of the 468 single-band interseasonal coefficient of variation images. (A-C) Ontario 

study site, first-order variance, 7x7 window size, bands 2, 3, and 4, respectively. (D-F) Virginia study site, 

second-order contrast, 15x15 window size, bands 2, 3, and 4, respectively. (G-I) New Mexico study site, 

second-order homogeneity, 15x15 window size, bands 2, 3, and 4, respectively. 
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Mean Texture of Forested Area Over Growing Season
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Figure 2-5.  Mean values of 11x11 second-order texture measures of TM band 4 across the growing season for 

a small area of primarily coniferous forest in the Ontario site. Little variation occurred between the first two 

dates, which both occurred very early in the growing season. The peak of the growing season showed a 

substantial difference in texture measures. In the final date, which is in the late growing season, texture 

measures reverted close to early growing season levels. Error bars indicate plus and minus one standard 

deviation. 
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Seasonal Variation of 1st-Order Texture Measures

First-Order Texture Measure
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Figure 2-6.  Mean image-wide coefficient of variation of first-order texture measures averaged across bands 

and three window sizes, for the three study sites. Entropy and mean had the lowest coefficient of variation. 

The Ontario and New Mexico study sites behaved similarly. Variation was generally higher in the Virginia 

site with a less distinct ranking of texture measure robustness. 
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Seasonal Variation of 2nd Order Texture Measures
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Figure 2-7.  Mean image-wide coefficient of variation averaged across bands and three window sizes for each 

study site. Homogeneity and entropy were the most robust second-order measures. The Ontario and New 

Mexico sites behaved similarly. The Virginia site had higher variation and less distinction in robustness 

between different texture measures. 
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Variation by Window Size
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Figure 2-8.  Mean coefficient of variation in texture measures summarized for first- and second-order 

measures for each window size. The mean coefficient of variation shows a slight decreasing trend as window 

size increases. 
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Mean Per-Band Variation Across First-Order Texture Measures
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Figure 2-9.  Mean variation in first order measures by band. Most bands behaved similarly with a slightly 

higher level of variation in bands 3 and 4. 
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Mean Per-Band Variation Across Second-Order Texture Measures

Landsat TM Band
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Figure 2-10.  Mean variation in second-order measures by band. Variation was less consistent overall with an 

apparent peak at band 3.  
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Chapter 2  

Modeling broad-scale patterns of avian species richness across the 

Midwestern United States with measures of satellite image texture 

 

Abstract 

Avian biodiversity is threatened, and in order to prioritize limited conservation resources 

and conduct effective conservation planning a better understanding of avian species richness 

patterns is needed.  The use of image texture measures, as a proxy for the spatial structure of land 

cover and vegetation, has proven useful in explaining patterns of avian abundance and species 

richness.  However, prior studies that modeled habitat with texture measures were conducted 

over small geographical extents and typically focused on a single habitat type.  Our goal was to 

evaluate the performance of texture measures over broad spatial extents and across multiple 

habitat types with varying levels of vertical habitat structure.  We calculated a suite of texture 

measures from 114 Landsat images over a study area of 1,498,000 km
2
 in the Midwestern United 

States, which included habitats ranging from grassland to forest.  Avian species richness was 

modeled for several functional guilds as a function of image texture.  We subsequently compared 

the explanatory power of texture-only models with models fitted using landscape composition 

metrics derived from the National Land Cover Dataset, as well as models fitted using both 

texture and composition metrics.  Measures of image texture were effective in modeling spatial 

patterns of avian species richness in multiple habitat types, explaining up to 51% of the 

variability in species richness of permanent resident birds.  In comparison, landscape 
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composition metrics explained up to 56% of the variability in permanent resident species 

richness.  In the most heavily forested ecoregion, texture-measures outperformed landscape 

metrics, and the two types of measurements were complementary in multivariate models.  

However, in two out of three ecoregions examined, landscape composition metrics consistently 

performed slightly better than texture measures, and the variance explained by the two types of 

measures overlapped considerably.  These results show that image texture measures derived 

from satellite imagery can be an important tool for modeling patterns of avian species richness at 

broad spatial extents, and thus assist in conservation planning.  However, texture measures were 

slightly inferior to landscape composition metrics in about three-fourths of our models.  

Therefore texture measures are best considered in conjunction with landscape metrics (if 

available) and are best used when they show explanatory ability that is complementarity to 

landscape metrics. 

 

Introduction 

 Avian biodiversity is under severe threat from human-caused habitat loss and 

fragmentation (Gaston et al., 2003).  The identification of high-value habitat is critical for 

maintaining avian biodiversity, given that the resources available for habitat conservation are 

limited (Turner et al., 2003).  While some broad-scale mapping of biodiversity has been 

conducted (Myers et al., 2000, Buckton & Ormerod, 2002), the spatial resolution of these maps 

is often too coarse to be directly relevant to resource managers and land use planners.  Therefore, 

alternative approaches that can provide maps of avian species richness at a finer spatial 

resolution are needed for land management and biogeography alike.  However, surveying avian 
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species richness exhaustively is not feasible, and it is not clear which approaches can best 

explain and predict broad-scale avian species richness patterns while retaining a high level of 

detail. 

 Modeling and mapping of broad-scale patterns of biodiversity greatly benefits from the 

use of remotely sensed data (Kerr & Ostrovsky, 2003).  A major advantage of remotely sensed 

data over field data is the availability of highspatial and temporal resolution data over very broad 

extents (Roy, 2003, Innes & Koch, 1998).  Remote sensing-based approaches have played a 

major role in many recent studies attempting to understand and map patterns of biodiversity 

(Turner et al., 2003, Nagendra, 2001).  Remote sensing approaches fall into three main 

categories: (1) direct mapping of individuals or assemblages of individuals, (2) indirect mapping 

based on inference derived from models based on habitat maps (such as landcover 

classifications) and observed species distribution patterns, or (3) indirect mapping based on 

relationships between spectral radiance information obtained from unclassified imagery and 

species distribution (Nagendra, 2001). 

In order to infer biodiversity patterns from remotely sensed data, it is important to 

understand which environmental factors drive biodiversity.  Three of the hypothesized primary 

drivers of biodiversity are climatic stability, productivity, and habitat structure (MacArthur, 

1972).  Of these three, remotely-sensed measures of climate and productivity are standardized 

and freely available over broad spatial extents such as PRISM (Daly et al., 2008) temperature 

and precipitation data, MODIS land surface temperature data (Wan et al., 2002), AVHRR NDVI 

and MODIS leaf area index data (Myneni et al., 1997, Myneni et al., 2002), vegetation indices 

(Huete et al., 2002), and net primary productivity (Turner et al., 2006).  In contrast, there are no 
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standardized measures of habitat structure for broad extents.  For the purpose of our study, we 

define habitat structure as both the vertical structure of vegetation (such as the vertical 

configuration of vegetation layers in a forest) as well as horizontal vegetation structure (such as 

the existence of canopy gaps in a forest). 

 Habitat structure influences biodiversity, particularly in birds (MacArthur & MacArthur, 

1961, MacArthur et al., 1966, Willson, 1974, Wiens, 1974, Tews et al., 2004, Luoto et al., 2004, 

Clawges et al., 2008), as greater variety in habitat leads to greater variety in species 

(Rosenzweig, 1995, Tews et al., 2004).  Birds can finely partition foraging areas (MacArthur, 

1958).  Thus, more structure may support a higher number of foraging niches or support a larger 

food supply (such as insects) allowing for more species (Cody, 1981). 

Direct field measurements of habitat structure, while effective in explaining avian 

distribution patterns, are time consuming and impractical to conduct at a state-wide or regional 

scale (Bergen et al., 2009), which are the very scales at which conservation planning and land 

management is conducted.  LiDAR (light detection and ranging) technology has proven very 

effective at remotely measuring vegetation structure, especially in relation to patterns of avian 

abundance and biodiversity (Goetz et al., 2007, Clawges et al., 2008, Bergen et al., 2009, Seavy 

et al., 2009, Lesak et al., In Press).  Unfortunately, operational LiDAR sensors have only recently 

become widespread, and most areas of the United States have not been imaged by LiDAR, or 

areas have been imaged by different types of sensors, complicating analyses.  Therefore, broad-

scale studies involving measurement of habitat structure by LiDAR remain impractical. 

Landscape metrics derived from land cover classifications can also serve as habitat 

structure measures when explaining biodiversity patterns (Farina 1997, Atauri and De Lucio 
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2001, Donovan and Flather 2002, Kondo and Nakagoshi 2002).   However, metrics are based on 

land cover classifications, which remove within-class heterogeneity.  One promising alternative 

for characterizing habitat structure using remotely sensed data are image texture measures 

derived from remotely sensed imagery.  Texture measures can capture both between-habitat and 

within-habitat structure, providing a potential advantage over landscape metrics. 

 Remotely sensed images are composed of both tone (spectral variation) and texture 

(spatial variation) (Haralick, 1979, Baraldi & Parmiggiani, 1995).  Texture measures quantify 

spatial heterogeneity which is valuable for both land cover classification (Franklin et al., 2000, 

Franklin et al., 2001, Coburn & Roberts, 2004) and habitat modeling (Hepinstall & Sader, 1997, 

Tuttle et al., 2006, Estes et al., 2008).  One of the most promising applications of texture 

measures is the characterization of habitat structure, such as forest structure (Kayitakire et al., 

2006, Wunderle et al., 2007), woody plant encroachment of savanna (Hudak & Wessman, 1998), 

and leaf area index (Wulder et al., 1998). 

The most commonly used measures of texture are divided into two groups: first-order 

(occurrence) and second-order (co-occurrence) (Haralick et al., 1973).  First-order measures are 

summary statistics, such as mean and standard deviation, calculated from the spectral values of 

pixels in a defined neighborhood, typically implemented as a moving window.  Second-order 

texture measures take into account the spatial distribution and dependencies of spectral values 

(Coburn & Roberts, 2004).  Second-order measures are derived from a gray-level co-occurrence 

matrix (GLCM) (Haralick et al., 1973).  The GLCM is a symmetric n-by-n matrix, where n is the 

number of possible gray-tone values.  Entries Pij in the matrix, represent the relative frequency of 

pixels with tone levels i and j co-occurring adjacent to one another (Haralick et al., 1973).  The 
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GLCM is also calculated for a neighborhood, typically a moving window.  Haralick (1973) 

originally proposed 14 texture measures derived from the GLCM.  Many of these original 

second-order measures have been found to be highly correlated, and a subset of six measures is 

considered most useful for remote sensing analysis: angular second moment (ASM), contrast, 

correlation, homogeneity, variance, and entropy, with the first three being the least correlated 

(Baraldi & Parmiggiani, 1995, Kayitakire et al., 2006).  

Broadly speaking, most second-order texture measures either measure homogeneity or 

heterogeneity in the digital numbers (DNs) of pixels within a specified neighborhood (Haralick 

et al., 1973, Baraldi & Parmiggiani, 1995).  Measures of homogeneity include homogeneity and 

angular second moment.  Homogeneity is high when adjacent pixels have similar reflectance 

DNs.  Angular second moment measures “uniformity” meaning that certain pairs of DN values 

occur adjacent to one another in the image very frequently.  An image where all pixels have the 

same DN would have high uniformity, but so would a regular checkerboard image as the white-

black adjacency would occur very frequently.  Measures of heterogeneity include entropy, 

contrast, and variance.  Entropy measures disorder.  The highest entropy values occur when the 

GLCM is uniform, indicating a perfectly random arrangement of DNs in the original image.  

Contrast has high values when adjacent pixels have a very large difference in DNs.  Variance 

measures the amount of variability in the GLCM, and is very highly correlated with first-order 

variance.  Correlation measures the correlation in DN of pixel pairs.  For this reason, either a 

very homogenous image or a very heterogenous image could exhibit strong correlation. 

The properties of different texture measures explain how they relate to what is visible in a 

satellite image.  A given landcover class, e.g., a deciduous forest, will exhibit homogeneity if 
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adjacent pixels have similar reflectance values.  A more heterogeneous forest may include tree 

species with different spectral properties, or canopy gaps resulting in shadows which will tend to 

have different reflectance values and texture measures capturing heterogeneity will be higher.  

Textural features of course also depend on heterogeneity and homogeneity among landcover 

classes.  For example, a patchwork of agricultural fields planted to different crops or at different 

stages (e.g., bare soil versus mature crop) would have high within-field homogeneity, but high 

between-field heterogeneity.  Similarly, sharp transitions among different land cover classes, 

such as between forest and pasture, will increase measures of heterogeneity, such as sum of 

squares variance or contrast. 

 Given that image texture measures can characterize habitat structure (Franklin et al., 

2001, Kayitakire et al., 2006), texture measures have been used successfully to map habitat of 

species as varied as the mountain bongo (an endangered antelope species) (Estes et al., 2008, 

Estes et al., 2010), the redtail monkey (Stickler & Southworth, 2008), and avian communities.  In 

Maine, for example, texture measures derived from remotely sensed imagery proved useful in 

bird presence/absence models (Hepinstall & Sader, 1997).  In Argentina, texture measures 

captured meaningful variation within grasslands, improving habitat suitability models for the 

Greater Rhea (Bellis et al., 2008).  In a desert scrub ecosystem of the Chihuahuan Desert of New 

Mexico, texture measures derived from Landsat imagery and 1-m resolution digital aerial 

photographs explained patterns of avian species richness well (St-Louis et al., 2006, St-Louis et 

al., 2009).  Similarly, texture measures derived 0.5-m resolution photographs were successful in 

explaining avian species richness in prairies and savannas in western Wisconsin (Wood et al., 

2007). 
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These studies show the promise of texture measures for mapping patterns of biodiversity 

but also present questions for further research.  The ecosystems where most of these studies took 

place (i.e., Grassland, desert scrub, and prairie savanna) have little vertical structure.  The ability 

to characterize the lower strata of structurally complex, closed-canopy habitats, such as forests, is 

a potential limitation of texture measures derived from passive remote sensing imagery (Estes et 

al., 2008, Gottschalk et al., 2005).  Furthermore, most of the studies investigating the use of 

image texture for biodiversity modeling were conducted at relatively small spatial extents (4782 

km
2
, Bellis et al. 2008; 250 km

2
, Wood et al. 2007; 2800 km

2
, St-Louis et al. 2006, St-Louis et 

al. 2009).  A study modeling avian species occurrence over a much larger study area, i.e., the 

state of Maine (91,600 km
2
) (Hepinstall & Sader, 1997), showed that texture was effective, but 

considered only first-order texture measures.  Thus, it remains unclear whether image texture is 

equally useful in explaining avian species richness at broader spatial extents and in areas with 

more vertically complex habitat structure, such as forests. 

 Our overall goal was to evaluate the ability of satellite image texture measures to explain 

avian species richness.  We were specifically interested in understanding: 1) whether measures of 

image texture can explain patterns of avian species richness across broad regions that include 

vertically complex habitats such as forests, and 2) if measures of image texture compare 

favorably with landscape composition metrics derived from land cover classifications, such as 

the proportion of specific land cover classes, for modeling patterns of avian species richness. 

Our predictions were that: 

1. The ability of image texture to explain patterns of species richness over small extents will 

scale-up to broad extents. 
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2. Measures of image texture will better explain patterns of avian species richness in 

habitats with simple vertical structure, such as grasslands, than in habitats with complex 

vertical structure, such as forests. 

3. Measures of image texture will better explain avian species richness patterns than 

landscape composition metrics, because landscape metrics ignore within-habitat 

variability while texture measures capture both between-habitat and within-habitat 

variability. However, these two groups of measures will be complementary in 

multivariate models. 

4. Because texture measures are associated with landcover and vegetation, which relate to 

habitat type, they will hold higher explanatory power for habitat-based avian guilds than 

migratory guilds. 

 

Methods 

Study Area 

 Our study area encompassed three ecoregions at the province level (hereafter ecoregions) 

totaling 1,498,000 km
2
 of the Midwestern United States: ecoregion 251 (Prairie Parkland, 

Temperate) and most of ecoregions 212 (Laurentian Mixed Forest) and 222 (Eastern Broadleaf 

Forest, Continental) (Bailey, 1995) (Figure 2-1).  The Prairie Parkland ecoregion was historically 

composed of prairie alternating with deciduous trees.  Today, it is dominated by agriculture, with 

remnant patches of prairie and small groves and strips of deciduous forest. The Eastern 

Broadleaf Forest ecoregion is composed primarily of deciduous broadleaf forests, mixed with 



59 

 

 

 

agriculture.  We included the portion of this ecoregion from approximately the state of Michigan 

and westward.  (It should be noted that the Eastern Broadleaf Forest included roughly half of our 

data points, thereby weighting our full-study-area analysis to this ecoregion.)  The Laurentian 

Mixed Forest is in the transition area between broadleaf deciduous forest zones and the boreal 

forest.  The ecoregion is composed of pure stands of deciduous trees, pure stands of conifers, and 

mixed stands.  We included the areas of this ecoregion in Minnesota, Wisconsin, and Michigan, 

while excluding areas east of Michigan in order to maintain a contiguous study area. 

   In order to quantify differences in landcover composition (and inferred vertical habitat 

structure) between ecoregions, we calculated the proportion of forest, agriculture, grassland, and 

shrubland surrounding the Breeding Bird Survey routes included in our analysis (Table 2-1).  

The Laurentian Mixed forest was dominated by forest, indicating the highest level of vertical 

habitat structure.  The Eastern Broadleaf Forest was heavily in agriculture, but with a significant 

component in forest.  The Prairie Parkland was clearly agriculture-dominated, reflecting the 

lowest level of vertical habitat structure. 

 

Bird Data 

 We calculated species richness (our measure of biodiversity) from the North American 

Breeding Bird Survey (BBS), an annual survey of approximately 3,000 routes across the U.S. 

(Figure 2-1).  A typical BBS survey consists of recording all birds observed or heard at 50 

regularly spaced 3-min point counts along a 39.4-km route (USGS Patuxent Wildlife Research 

Center 2008).  We centered our analysis on the year 2000, calculating the mean species richness 

of each BBS route from 1998 to 2002.  We included only BBS routes that fall entirely within one 
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of the three ecoregions of study.  The BBS data were preprocessed to remove route-years 

collected by first year observers, or those carried out in suboptimal weather (e.g., high wind or 

rain).  A total of 586 BBS routes fulfilled our criteria, including 161 in Prairie Parkland, 113 in 

Laurentian Mixed Forest, and 312 in Eastern Broadleaf Forest.  Because we did not expect all 

bird species to respond uniformly to measures of textures, we calculated overall species richness 

as well as richness within three migratory guilds: permanent residents, short-distance migrants 

(i.e., species that spend the non-breeding season primarily in the southern portion of the U.S.), 

and Neotropical migrants (Rappole, 1995, Peterjohn & Sauer, 1999, Pidgeon et al., 2007).  We 

also calculated species richness of avian guilds organized by the structural form of habitat they 

are commonly associated with: forest, shrubland, and grassland (Peterjohn & Sauer, 1999, 

Pidgeon et al., 2007). 

 To adjust for detection probability bias (i.e., the problem that not all bird species are 

uniformly detectable at a given site), it is recommended that a correction be applied to raw count 

data to adjust the species richness estimate (Kéry & Schmid, 2004).  We used the software 

program COMDYN (Hines et al., 1999) to adjust our species richness estimates.  COMDYN 

considers the raw BBS route richness data from a capture-recapture model perspective and uses a 

jackknife estimator to calculate estimated species richness (Nichols et al., 1998). 

 

Image Texture Data 

 We acquired 114 Landsat TM/ETM+ scenes (Figure 2-2 A) from the LEDAPS database 

(Masek et al., 2006), a collection of atmospherically corrected Landsat images based on the 

GeoCover dataset (Tucker et al., 2004).  We selected scenes from approximately the year 2000, 
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to temporally coincide with our species richness data.  All images were acquired during the 

growing season, however due to the extent of study, it was not possible to obtain all images for 

the same phenological stage.  Therefore, some extraneous phenological variability in the texture 

measures was likely present (Culbert et al., 2009).  For each image, a suite of first- and second-

order texture measures were calculated using Matlab® R2010a (The MathWorks, 1984-2010), 

with scripts adapted from St-Louis et al. (2006) (Table 2-2).  First-order mean and standard 

deviation were calculated for TM bands 1, 2, 3, 4, 5, and 7, with 5x5 and 21x21 moving 

windows.  We also calculated second-order angular second moment (ASM), contrast, 

correlation, entropy, homogeneity (Figure 2-2 B), and sum of squares variance (SSVar).  Among 

all second-order texture measures, these six are considered the most useful for remote sensing 

analyses, and angular second moment, contrast, and correlation are the three least correlated 

measures (Baraldi & Parmiggiani, 1995, Kayitakire et al., 2006).  We expected this set of texture 

measures would adequately characterize vegetation structure and therefore be an appropriate set 

with which to relate avian species richness.  We quantized the imagery to 64 values to limit the 

size of the GLCM and avoid matrices that are too sparsely populated to provide robust results.  

To determine minimum and maximum values for the quantization, we calculated the 2.5
th
 and 

97.5
th
 percentiles for each band of each image.  We then calculated the 2.5

th
 and 97.5

th
 percentile 

of these values for each band across all images, and we used these values as our minimum and 

maximum digital numbers (DNs) for the quantization.  Second-order textures were calculated 

using an omni-directional GLCM (calculated as the mean of the four possible directional 

GLCMs).  Preliminary analysis found strong correlation between texture measures derived from 

5x5 and 21x21 window sizes, so due to the substantial computational requirements, second-order 
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texture measures were calculated only with a 5x5 window and only for TM bands 2, 3, 4, and 5.  

Bands 1 and 7 were excluded because we expected band 1 results to be highly correlated with 

band 2, and band 7 was less useful than other bands in prior exploratory analysis.  This resulted 

in a total of 48 texture measures (24 first-order and 24 second-order). 

In order to relate our texture measures to individual BBS routes, we derived 19.7 km-

radius (one-half the length of a BBS route) circular buffers around the centroid of each BBS 

route (Flather & Sauer, 1996, Rittenhouse et al., 2010, Albright et al., 2010, 2011).  We chose 

this radius because it encompasses the entire BBS route, regardless of varying route path, thus 

resulting in a uniform area and shape for each route.  Furthermore, this distance is comparable to 

the median maximum natal dispersal distance (31 km) of 76 avian species (Sutherland et al., 

2000) estimated from body size relationships, and is consistent with the recommendation that 

landscape effects on songbirds should be examined over tens of kilometers to capture dispersal 

effects (Tittler et al., 2009).  For each BBS route, we calculated the within-buffer mean and 

standard deviation of each of the 48 texture measures, yielding 96 explanatory variables total.  

We calculated buffer summary statistics from a single Landsat scene whenever possible.  Of the 

586 BBS route buffers, 164 did not fall entirely within a single Landsat footprint.  In those cases, 

the buffer summary statistics were calculated from mosaics of adjacent Landsat scenes. 

 

Land Cover Data 

 We derived landscape composition metrics for each BBS route for comparison with our 

texture results.  Landscape metrics were calculated from the 2001 National Land-Cover Database 

(NLCD) (Homer et al., 2004).  Within each BBS route buffer, the relative abundance was 
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calculated for 13 land-cover classes: developed (NLCD 2001 classes 21, 22, 23, and 24), barren 

(31), deciduous forest (41), evergreen forest (42), mixed forest (43), shrub-scrub (52), grassland 

(71), pasture (81), cultivated crops (82), woody wetland (90), and herbaceous wetland (95).  

Additionally, the total number of landcover classes present and the Shannon diversity index 

(Shannon, 1948) of class distribution were calculated for each buffer. 

 

Statistical Analysis 

 The Landsat image texture processing generated 96 potential explanatory variables.  

Given our sample sizes (161, 113, 312, and 586), this was an unreasonably large pool of 

explanatory variables.  Furthermore, many texture measures are correlated (Baraldi & 

Parmiggiani, 1995) and we also expected there would be correlation between some of the bands, 

window sizes, and summary statistics (mean or standard deviation).  We therefore analyzed the 

correlation in this variable pool in order to exclude collinear variables (|r| > 0.8) and reduce the 

number of variables.  Additionally, we created a univariate linear model for each combination of 

texture measure variable (96) and avian guild (7) for a total of 672 models.  We ranked the 

individual texture variables based on their R
2
 value for the “all birds” guild (results not shown).  

Rankings of texture measure variables based on performance for other guilds were similar.  

Correlation analysis first focused on within-texture measure correlation.  For each texture 

measure (mean, standard deviation, angular second moment, contrast, correlation, entropy, 

homogeneity, and sum of squares variance), correlations between bands, window sizes, or 

summary statistics were analyzed.  For variable pairs with |r| > 0.8, the variable with the lower 

univariate R
2
 ranking was dropped.  After within-texture correlations were accounted for, the 
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remaining between-texture correlations were then eliminated by dropping the variable with the 

poorer univariate R
2
 rank. 

 The relationships between texture measures and avian species richness were explored 

using multiple linear regression models.  Model selection was implemented with the step 

function in R (R Development Core Team, 2009).  For each guild, a candidate model was 

selected using forward selection, backward selection, and bi-directional selection starting from 

both the full and null models.  Of the four candidate models produced by stepwise selection, we 

selected the model with the lowest Akaike’s information criterion (AIC) value as our best model.  

This analysis was carried out for the entire study area, as well as for each ecoregion separately. 

 In addition to the texture-based models, we modeled avian species richness as a function 

of landscape composition metrics only, in order to have a benchmark with which to compare the 

performance of texture measures.  Lastly, we were interested in whether texture measures were 

complimentary to landscape metrics, so we modeled avian species richness as a function of both 

texture and landcover metrics. 

 

Results 

Correlation analysis of the 96 texture measure variables showed that 441 (9.7%) of the 

4,560 unique combinations of variable pairs exceeded our collinearity threshold (|r| > 0.8).  Once 

all correlations greater than our threshold were addressed, 22 texture variables remained (Table 

2-3).  

 Over the full study area, all but the models for short-distance migrant explained at least 

26% of the variability of species richness with an average adjusted R
2
 value of 0.30 (Table 2-4).  
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The forest bird and permanent resident models were the best (as determined by R
2
), with 

adjusted R
2
 values of 0.42 and 0.40, respectively.  Three of the texture measures, standard 

deviation of 21x21 band 4 mean, standard deviation of 5x5 band 2 correlation, and mean of 5x5 

band 5 homogeneity were included in six of the seven models.   

 Model performance in the Laurentian Mixed Forest showed strong differences compared 

to the full study area models (Table 2-4).  The average model adjusted R
2
 was similar, at 0.24.  

However, the grassland bird model was the strongest model with an adjusted R
2
 value of 0.41, 

while adjusted R
2
 values for the other six models ranged from 0.16 (permanent residents) to 0.25 

(forest birds).  The permanent residents model performed the worst in this ecoregion, though it 

was one of the strongest models for the study area as a whole.  The forest bird model also 

performed more poorly in this ecoregion (adjusted R
2
 = 0.25) than in the full study area (adjusted 

R
2
 = 0.42), even though the Laurentian Mixed Forest ecoregion is the most heavily forested of 

the three ecoregions in our study area.  The three texture measures that were most frequently 

included in the models were mean of 5x5 band 4 homogeneity (all seven models), standard 

deviation of 21x21 band 7 mean (six models), and standard deviation of 5x5 band 2 homogeneity 

(six models). 

 The Eastern Broadleaf Forest had the models with the highest explanatory power, with an 

average adjusted R
2
 value of 0.32 and top model R

2
 values up to 0.46 (permanent residents) and 

0.45 (forest birds) (Table 2-4).  Three texture variables were frequently included in models: 

standard deviation of 5x5 band 5 correlation (all seven models), standard deviation of 5x5 band 2 

correlation (six models), and standard deviation of 21x21 band 4 mean (five models). 
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The Prairie Parkland (Temperate) ecoregion had the strongest-performing single model, 

with texture measures explaining up to 51% of the variation in permanent resident species 

richness (Table 2-4).  The average adjusted R
2
 value of the seven models was 0.27.  The standard 

deviation of 5x5 band 2 correlation (six of seven models), standard deviation of 5x5 band 7 mean 

(five models), and mean of 5x5 band 5 correlation (five models) were frequently included in the 

best models.  

 For each ecoregion, and for the study area as a whole, the model selection process was 

repeated with landscape composition metrics derived from the NLCD as the explanatory 

variables.  Over the entire study area, models using only landscape metrics almost always 

explained more variance than models based on texture measures (Table 2-5).  Only in the case of 

permanent residents did the texture-only model have a higher adjusted R
2
 value than the 

landscape metric-only model.  Models including both texture measures and landscape metrics 

showed consistent but modest increases in adjusted R
2
 over models including landscape metrics 

or texture alone, with absolute gains of around 0.04 to 0.08. 

 In the Laurentian Mixed Forest, species richness models including only texture variables 

were superior to landscape metric-only models for every guild (Table 2-6), with texture-only 

models outperforming landscape metric-only models by, on average, an absolute adjusted R
2
 

difference of 0.09 for a relative improvement of 34%.  This was in sharp contrast to the other 

ecoregions.  When both texture and landscape variables were included in the explanatory 

variable pool, the resulting models showed strong absolute and relative gains in adjusted R
2
 

values. 
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 In the Eastern Broadleaf Forest (Continental), landscape composition metrics were 

superior to texture variables for explaining species richness (Table 2-7), but the differences in 

adjusted R
2
 values were small (average adjusted R

2
 values of 0.36 for landscape metrics-only 

models compared to 0.32 for texture-only models for a 0.03 absolute or 10% relative increase).  

Models including both landscape composition metric and texture variables showed modest gains, 

with an average absolute increase in adjusted R
2
 of 0.07 and an average relative gain of 18%. 

 In the Prairie Parkland (Temperate), landscape metric-only models outperformed texture-

only models for five out of seven guilds (Table 2-8).  On average, texture-only models had an 

adjusted R
2
 of 0.27 versus 0.31 for landscape metric-only models, a difference of 0.04.  Models 

including both texture and landscape composition metric variables showed only marginal gains 

over models that included landscape composition metrics alone, with an average absolute 

adjusted R
2
 improvement of 0.04 or a relative improvement of 11%. 

 Lastly, due to the spatial nature of our study, we expected spatial autocorrelation may 

have been present in the data.  We therefore generated semivariograms of the residuals of all 48 

of the final species richness models.  Inspection of the semivariograms found no evidence of 

spatial autocorrelation, and thus no corrective action was necessary. 

 

Discussion 

 We found strong evidence supporting our first prediction that image texture measures can 

explain the variability in avian species richness over broad areas.  Our results support earlier 

studies modeling avian species richness in savanna (Wood et al., 2007) and desert-scrub 

ecosystems (St-Louis et al., 2006, St-Louis et al., 2009), as well as studies modeling habitat 
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suitability for individual grassland (Bellis et al., 2008) and forest (Hepinstall & Sader, 1997) bird 

species.  However, our study expanded texture analysis to a much broader spatial extent 

(1,498,000 km
2
) than previously attempted, and we showed that image texture derived from 

Landsat satellite imagery can explain variability in avian species richness even in habitats with 

high levels of vertical habitat structure, such as forests. 

 The broad-extent texture-only multivariate models that we developed had similar 

explanatory power to models developed for smaller spatial extents (St-Louis et al., 2006, Wood 

et al., 2007).  Our final multivariate models showed that measures of texture can explain up to 

51% of the variability in avian species richness, with most of our final models explaining 20-

40% of the variability.  In comparison, texture measures derived from orthophotos within a 

single habitat type (savanna) yielded univariate R
2
 values of up to 0.54 (Wood et al., 2007).  This 

was a much stronger relationship than in our univariate models (results not shown), but our 

multivariate models approached this level of explanatory power.  In a 2820 km
2
 Chihuahuan 

Desert landscape, multivariate models explained up to 62% of the variability in avian species 

richness (St-Louis et al., 2006).  This somewhat higher predictive power supports the theory that 

habitat structure (and therefore texture measures) is more effective at explaining bird species 

richness patterns over small to medium extents than at broader extents (Hutto, 1985). 

 Another potential source of the slightly higher explanatory power of these smaller-extent 

studies is the finer spatial resolution of imagery used.  These studies used 1-m (St-Louis et al., 

2006) and 0.5-m resolution imagery (Wood et al., 2007).  At this resolution, individual trees or 

large shrubs that have an extent of several pixels can be captured by the imagery and canopy 

gaps or variability in the spatial distribution of shrubs would thus be well sampled.  In contrast, 
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our 30-m resolution imagery is too coarse for a single-tree canopy gap to be captured in a single 

pixel.  While small features may still be included in the spectral information, their contribution to 

image texture is likely weaker than with fine-resolution imagery.  

Modeling suitable avian habitat and biodiversity with image texture measures has been 

effective in habitats with little vertical structure such as grassland (Bellis et al., 2008), desert 

scrub (St-Louis et al., 2006, St-Louis et al., 2009), and savanna (Wood et al., 2007).  Of the three 

ecoregions that we analyzed, the Prairie Parkland had the least vertical habitat structure while the 

Laurentian Mixed Forest had the most.  Adjusted R
2
 values (Table 2-4) from species richness 

models were higher in the Laurentian Mixed Forest for all birds, grassland birds, and Neotropical 

migrants.  The Prairie Parkland models had superior adjusted R
2
 values for forest birds, 

shrubland birds, permanent residents, and short-distance migrants. 

 These results refute our second prediction that image texture would perform better in 

ecosystems with simple vertical structure.  Models calculated for an ecoregion dominated by 

agriculture and grassland performed similarly to models for a forest-dominated ecoregion.  

While satellite imagery cannot characterize the structure of lower vegetation in forests 

(Gottschalk et al., 2005), if understory structural characteristics are correlated with canopy 

features, then useful information may be derived (Estes et al., 2008).  It is possible that in our 

study area understory vegetation features are either less important in explaining patterns of avian 

species richness than canopy features, or that understory features are sufficiently correlated with 

the canopy.  This is an important finding, as it indicates that, in the context of avian species 

richness modeling, the usefulness of image texture measures is not limited to habitats with low 

vertical habitat structure. 
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 A significant shortcoming of landscape metrics is that the landcover classifications on 

which landscape metrics are based do not retain any information on within-class heterogeneity 

(Turner et al., 2001).  We therefore expected that texture measures would outperform landscape 

metrics in modeling avian species richness.  In addition, we expected some complementarity; 

that both approaches would characterize some unique information useful in explaining species 

richness patterns. 

 Contrary to our third prediction, we found that across our study area (Table 2-5), and also 

in the Eastern Broadleaf Forest (Table 2-7) and the Prairie Parkland (Table 2-8), models of avian 

species richness using landscape composition metrics were generally slightly superior to models 

based on texture measures.  This supports the theory that habitat structure is more effective at 

explaining bird species richness patterns over small to medium extents, and habitat type is more 

important at broader extents (Hutto, 1985).  The notable exception was the Laurentian Mixed 

Forest (Table 2-6), where texture models yielded higher adjusted R
2
 values than landscape metric 

models for all seven guilds.  We speculate that this is due to the predominance of forest in the 

ecoregion (Table 2-1), which may render within-forest structure as particularly important in 

explaining patterns of avian species richness.  

 Because landscape metrics ignore within-habitat heterogeneity, while texture measures 

do not, our third prediction also stated that texture measures and landscape metrics would prove 

complementarity in their ability to explain patterns of avian species richness.  For the overall 

study area and for all three ecoregions, models generated using both NLCD-derived landscape 

composition metrics and texture measures yielded higher adjusted R
2
 values than models derived 

from only landscape composition metrics or only texture measures.  The final joint models 
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included a relatively even mix of texture and landscape variables (results not shown).  This 

indicates some level of complementarity, but we caution that this could potentially result from 

model over-fitting.  For the overall study area (Table 2-5), the Eastern Broadleaf Forest (Table 

2-7), and the Prairie Parkland (Table 2-8), the improvement in adjusted R
2
 was small, and the 

joint models were not very parsimonious (full study region: average of 20.0 variables per model; 

Eastern Broadleaf Forest: 17.4 variables per model; Prairie Parkland: 12.4 variables per model).   

However, in the Laurentian Mixed Forest, four of the seven landscape and texture models 

showed absolute improvement in adjusted R
2
 greater than 0.10, and six of the seven models had 

relative adjusted R
2
 improvement greater than 30% (Table 2-6).  Gains of this magnitude cannot 

be explained by over-fitting alone, and we thus conclude that at least in the Laurentian Mixed 

Forest, measures of image texture and landscape metrics are complementary. 

Because measures of image texture characterize spatial heterogeneity in landcover and 

vegetation, two key components of avian habitat, our fourth prediction was that our texture 

measure models would perform better for guilds based on habitat preference compared with 

guilds based on migratory habit (Figure 2-3).  This prediction held overall with texture models 

explaining, on average, 32% of the variation in species richness of habitat guilds and 26% of 

variation of migratory guilds.  We do note, however, that the strongest model overall was for 

species richness of permanent residents, though it was followed by the three habitat guilds. 

 We were also surprised to see which habitat guilds showed the strongest models in 

certain ecoregions (Figure 2-3).  Texture measure-based models explained the most variation in 

grassland bird species richness in the Laurentian Mixed Forest (adjusted R
2
 = 0.41) followed by 

the Eastern Broadleaf Forest (0.37), and the Prairie Parkland (0.20).  Texture measures explained 
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twice as much of the variation in grassland bird species richness in the most forested region than 

in the region with the most agriculture and grassland.  Similarly, models of forest bird species 

richness were strongest in the Eastern Broadleaf Forest (adjusted R
2
 = 0.45), then the Prairie 

Parkland (0.29), then the Laurentian Mixed Forest (0.25).  Again, models of forest bird species 

richness were strongest in a moderately forested ecoregion and weakest in the most heavily 

forested ecoregion.  This suggests that it is easier to model species richness of certain groups of 

birds in areas where there is less suitable habitat for them.  For example, in a grassland area with 

only a few small “islands” of forest, forest bird richness will be very low in the grassland areas 

and very high in the forest area.  On the other hand, in a completely forested area, it will be 

harder to predict which areas of forest will have the highest forest bird richness since the entire 

area is potentially suitable habitat for forest birds. 

 An important caveat for this study, as mentioned earlier, is that while all our satellite 

images were acquired during the growing season, they were not all from the same phenological 

stage.  In most remote sensing analyses, it is ideal for imagery to have the same acquisition date, 

as image phenological stage may affect analysis, including image texture analysis (Culbert et al., 

2009).  However, when analyzing very large areas, this is not always possible.  This likely 

introduced extraneous variability into our texture measurements, and had all our images been 

acquired at the same phenological stage, the relationships between image texture measures and 

avian species richness would likely have been even stronger. 

The use of image texture measures for habitat and biodiversity analyses has two potential 

drawbacks: significant computational requirements and difficulties in interpreting the ecological 

relevance of specific texture measures.  First, calculations of second-order image texture are 
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computationally much more demanding than other common remote sensing data analyses.  

While this challenge will become less significant as computing power continues to increase, it is 

currently non-trivial to calculate second-order texture measures over a broad extent.  Second, 

interpreting the ecological meaning of specific texture measures is challenging.  Many of the 

texture measures, especially second-order measures, are difficult to conceptualize in terms of 

what they represent “on the ground”.  This means that texture measures provide only limited 

additional insights into the ecology of birds.  However, there are many applications, such as 

conservation planning, for which the variables selected may matter much less than the quality of 

the output map, and texture metrics can be valuable for such tasks. 

In summary, our study showed that image-texture can be an important tool to explain 

avian species richness patterns over broad areas.  Image texture measures were effective in 

modeling species richness for several avian guilds, and over varied habitats, ranging from 

grassland to forest.  In particular, texture measures showed superior performance to landscape 

composition metrics in the most forested ecoregion, and the two types of measures showed 

strong complementarity.  However, in about three-fourths of our models, texture measures had 

slightly less explanatory power than landscape composition metrics.  For this reason the 

simultaneous use of texture measures and landscape metrics should be considered.  The use of 

image texture measures is also highly useful when an accurate landcover map is unavailable for a 

given study area, or when the classes of existing maps do not capture the ecological attributes 

relevant to the study.  The use of image texture is a valuable approach for characterizing 

structure from continuous data sources and should therefore be considered in the spatial 

modeling of species diversity and habitat suitability for conservation planning.  
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Tables 

Table 2-1.  Landcover composition of BBS route buffers by ecoregion. 

Ecoregion 

Laurentian 

Mixed Forest 

Eastern 

Broadleaf 

Forest 

(Continental) 

Prairie 

Parkland 

(Temperate) 

All 3 

Ecoregions 

Combined 

Proportion Forest 0.47 0.29 0.11 0.27 

Proportion 

Agriculture 
0.17 0.52 0.69 0.50 

Proportion Grassland 0.03 0.02 0.08 0.04 

Proportion Shrubland 0.01 0.01 0.00 0.01 

Number of BBS 

Buffers 
113 312 161 586 

 



86 

 

 

 

Table 2-2.  Combinations of texture, window size, and Landsat TM band that were calculated for the study 

area. 

 

Order Texture 
Window 

Size(s) 
TM Bands 

1
st
 Mean 5x5, 21x21 1,2,3,4,5,7 

1
st
 Standard Deviation 5x5, 21x21 1,2,3,4,5,7 

2
nd

 Angular Second Moment (ASM) 5x5 2,3,4,5 

2
nd

 Contrast 5x5 2,3,4,5 

2
nd

 Correlation 5x5 2,3,4,5 

2
nd

 Entropy 5x5 2,3,4,5 

2
nd

 Homogeneity 5x5 2,3,4,5 

2
nd

 Sum of Squares Variance (SSVar) 5x5 2,3,4,5 
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Table 2-3.  Texture variables calculated from Landsat imagery.  Based on correlation analysis, 74 variables 

(marked “-“) were excluded from subsequent analysis, and 22 variables (marked “X”) were retained. 
Texture Landsat TM Band 

 1 2 3 4 5 7 

Mean_5x5_Mean - - - - - - 

Mean_21x21_Mean - X - X - - 

Mean_5x5_SD X - - X - X 

Mean_21x21_SD X - - X - X 

SD_5x5_Mean - - - - - - 

SD_21x21_Mean - - - - - - 

SD_5x5_SD X - - X X - 

SD_21x21_SD - - - - - - 

ASM_5x5_Mean  - - - -  

ASM_5x5_SD  X - - -  

Contrast_5x5_Mean  - - - -  

Contrast_5x5_SD  - - - -  

Correlation_5x5_Mean  - X X X  

Correlation_5x5_SD  X - - X  

Entropy_5x5_Mean  - - - -  

Entropy_5x5_SD  - - - -  

Homogeneity_5x5_Mean  - - X X  

Homogeneity_5x5_SD  X - X -  

SSVariance_5x5_mean  - X - -  

SSVariance_5x5_SD  - - - -  
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Table 2-4.  Final guild species richness models as determined by stepwise selection using AIC. 

Texture Measure All Birds 

Forest 

Birds 

Grassland 

Birds 

Shrubland 

Birds 

Neotropical 

Migrants 

Permanent 

Residents 

Short-

Distance 

Migrants 

Mean_21x21_B2_Mean A   E  A   E   L   P A A   E P A   E  

Mean_21x21_B4_Mean   L A L A A   E   L A L E     E 

Mean_5x5_B1_SD      E  A     E A   L 

Mean_5x5_B4_SD   A   E   L   P     E P A   E P     E P 

Mean_5x5_B7_SD   L   P       P A   E P A L E       P A   E P A L 

Mean_21x21_B1_SD A A    A   E       P   

Mean_21x21_B4_SD A   E A   E A L E       P A   E P A L E P A 

Mean_21x21_B7_SD   L A L A L E P A L E P   L A   E A L   P 

SD_5x5_B1_SD A L E A   E     E P  A   E P   L   

SD_5x5_B4_SD   L E   L A   E     E P   L E P A   E P   

SD_5x5_B5_SD A  A L E     E A A   E P A 

ASM_5x5_B2_SD          P       P      E P 

Corr_5x5_B3_Mean A A A     P     E P A A     P   

Corr_5x5_B4_Mean   L    L E A L E P   L A   E P   L 

Corr_5x5_B5_Mean   L E P       P A     P   L   P   L     E P   L 

Corr_5x5_B2_SD A   E P A   E P   L A   E P A   E P A   E P A   E P 

Corr_5x5_B5_SD A   E A   E     E A   E     E A   E A   E 

Homog_5x5_B4_Mean   L   L E   L   P   L   L E A L A L   P 

Homog_5x5_B5_Mean A     P A   E P A A     P A       P A 

Homog_5x5_B2_SD   L   L  A L E P   L   P   L E   L   P 

Homog_5x5_B4_SD     E        P             P 

SSVar_5x5_B3_Mean       E   L E P A E A     P   L E P 

Model Adjusted R
2
 

 

0.29(A) 

0.23(L) 

0.29(E) 

0.19(P) 

0.42(A) 

0.25(L) 

0.45(E) 

0.29(P) 

0.26(A) 

0.41(L) 

0.37(E) 

0.20(P) 

0.28(A) 

0.25(L) 

0.33(E) 

0.32(P) 

0.35(A) 

0.20(L) 

0.24(E) 

0.15(P) 

0.40(A) 

0.16(L) 

0.46(E) 

0.51(P) 

0.07(A) 

0.19(L) 

0.12(E) 

0.24(P) 

Number of Variables / 

Degrees of Freedom 

 

9/576(A) 

9/103(L) 

8/303(E) 

4/156(P) 

 

10/575(A) 

5/107(L) 

8/303(E) 

4/156(P) 

 

10/575(A) 

7/105(L) 

10/301(E) 

8/152(P) 

 

10/575(A) 

8/104(L) 

11/300(E) 

12/148(P) 

 

9/576(A) 

7/105(L) 

11/300(E) 

9/151(P) 

 

16/569(A) 

5/107(L) 

13/298(E) 

12/148(P) 

 

8/577(A) 

8/104(L) 

6/305(E) 

8/152(P) 

 

A = all three ecoregions together, L = Laurentian Mixed Forest, E = Eastern Broadleaf Forest (Continental), P = 

Prairie Parkland (Temperate)  
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 Table 2-5.  Adjusted R2 and Akaike’s information criterion (AIC) values of best models of avian species 

richness by guild for the models that used texture variables only, NLCD-derived landscape composition 

metrics only, and a combination of both for the entire study area.  Bolded R2 and AIC values indicate the 

superior (texture-only or landscape metric-only) model. 

 Texture-Only Models 

Landscape Metric-

Only Models 

Texture and 

Landscape Metric 

Models 

  

Guild Adj. 

R2 

AIC # of 

Vars 

Adj. 

R2 

AIC # of 

Vars 

Adj. 

R2 

AIC # of 

Vars 

Abs. 

R2 

Gain 

Rel. 

R2 

Gain 

All Birds 0.29 2844.1 9 0.41 2738.0 6 0.45 2710.2 21 0.039 9% 

Forest 

Birds 

0.42 2683.3 10 0.51 2579.7 7 0.55 2536.5 18 0.042 8% 

Grassland 

Birds 

0.26 1018.1 10 0.31 971.1 8 0.39 910.4 20 0.078 25% 

Shrubland 

Birds 

0.28 1001.2 10 0.31 974.0 3 0.39 913.7 19 0.077 25% 

Neotropical 

Migrants 

0.35 2426.8 9 0.46 2324.9 7 0.48 2311.2 24 0.025 6% 

Permanent 

Residents 

0.40 1113.3 16 0.35 1158.9 8 0.46 1058.6 18 0.055 14% 

Short-

Distance 

Migrants 

0.07 1302.9 8 0.17 1241.6 4 0.23 1203.3 20 0.070 42% 

Average 0.30 1770.0 10.3 0.36 1712.6 6.1 0.42 1663.4 20 0.055 15% 
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Table 2-6.  Adjusted R2 and Akaike’s information criterion (AIC) values of best models of avian species 

richness by guild for the models that used texture variables only, NLCD-derived landscape metrics only, and 

a combination of both for the Laurentian Mixed Forest.  Bolded R2 and AIC values indicate the superior 

(texture-only or landscape metric-only) model. 

 Texture-Only Models 

Landscape Metric-

Only Models 

Texture and 

Landscape Metric 

Models 

  

Guild Adj. 

R2 

AIC # of 

Vars 

Adj. 

R2 

AIC # of 

Vars 

Adj. 

R2 

AIC # of 

Vars 

Abs. 

R2 

Gain 

Rel. 

R2 

Gain 

All Birds 0.23 586.7 9 0.15 592.1 3 0.31 576.4 11 0.078 35% 

Forest 

Birds 
0.25 548.8 5 0.21 555.1 5 0.36 536.3 11 0.110 43% 

Grassland 

Birds 
0.41 223.9 7 0.38 227.9 5 0.53 208.9 21 0.125 31% 

Shrubland 

Birds 
0.24 234.3 8 0.15 242.5 4 0.35 220.7 14 0.118 50% 

Neotropical 

Migrants 
0.20 490.8 7 0.18 490.7 4 0.31 480.6 14 0.107 53% 

Permanent 

Residents 
0.16 244.2 5 0.07 253.6 3 0.17 244.0 6 0.008 5% 

Short-

Distance 

Migrants 

0.19 328.3 8 0.11 333.7 3 0.25 322.7 11 0.057 30% 

Average 0.24 379.6 7 0.18 385.1 3.9 0.33 369.9 12.6 0.086 36% 
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Table 2-7.  Adjusted R2 and Akaike’s information criterion (AIC) values of best models of avian species 

richness by guild for the models that used texture variables only, NLCD-derived landscape metrics only, and 

a combination of both for the Eastern Broadleaf Forest (Continental).  Bolded R2 and AIC values indicate the 

superior (texture-only or landscape metric-only) model. 

 Texture-Only Models 

Landscape Metric-

Only Models 

Texture and 

Landscape Metric 

Models 

  

Guild Adj. 

R2 

AIC # of 

Vars 

Adj. 

R2 

AIC # of 

Vars 

Adj. 

R2 

AIC # of 

Vars 

Abs. 

R2 

Gain 

Rel. 

R2 

Gain 

All Birds 0.29 1383.4 8 0.32 1368.3 6 0.37 1351.7 13 0.049 15% 

Forest 

Birds 

0.45 1311.9 8 0.47 1296.1 7 0.53 1265.6 15 0.061 13% 

Grassland 

Birds 

0.37 482.0 10 0.40 465.0 9 0.49 421.1 14 0.086 21% 

Shrubland 

Birds 

0.33 450.4 11 0.39 423.3 10 0.48 383.2 21 0.092 24% 

Neotropical 

Migrants 

0.24 1206.4 11 0.28 1185.2 5 0.32 1174.6 12 0.039 14% 

Permanent 

Residents 

0.46 474.0 13 0.46 468.0 8 0.54 434.2 20 0.072 16% 

Short-

Distance 

Migrants 

0.12 578.7 6 0.19 557.0 8 0.25 539.9 15 0.060 32% 

Average 0.32 841.0 9.6 0.36 823.27 7.6 0.42 795.8 15.7 0.066 18% 
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Table 2-8.  Adjusted R2 and Akaike’s information criterion (AIC) values of best models of avian species 

richness by guild for the models that used texture variables only, NLCD-derived landscape metrics only, and 

a combination of both for the Prairie Parkland (Temperate).  Bolded R2 and AIC values indicate the superior 

(texture-only or landscape metric-only) model. 

 Texture-Only Models 

Landscape Metric-

Only Models 

Texture and 

Landscape Metric 

Models 

 
 

Guild Adj. 

R
2 

AIC # of 

Vars 

Adj. 

R
2 

AIC # of 

Vars 

Adj. 

R
2 

AIC # of 

Vars 

Absolute 

R
2
 Gain 

Percent 

R
2
 

Gain 

All Birds 0.19 728.8 4 0.24 719.0 6 0.27 715.4 9 0.030 12% 

Forest 

Birds 
0.29 688.9 4 0.36 675.5 7 0.40 673.4 17 0.044 12% 

Grassland 

Birds 
0.20 200.8 8 0.28 184.1 8 0.30 186.3 15 0.019 7% 

Shrubland 

Birds 
0.32 255.9 12 0.28 256.4 3 0.36 247.2 13 0.039 12% 

Neotropical 

Migrants 
0.15 603.9 9 0.23 585.6 7 0.27 584.3 14 0.036 16% 

Permanent 

Residents 
0.51 316.9 12 0.56 296.3 8 0.59 286.0 9 0.030 5% 

Short-

Distance 

Migrants 

0.24 254.7 8 0.19 262.0 4 0.29 244.4 8 0.047 20% 

Average 0.27 435.7 8.1 0.31 425.5 6.1 0.35 419.6 12.1 0.035 11% 
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Figure 2-1.  Study area, including ecoregion boundaries and Breeding Bird Survey (BBS) routes. 

 

 

Figure 2-2.  (A) Landsat (band 4) data for the study area.  (B) Second-Order Homogeneity of band 4. 
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Figure 2-3.  Adjusted R
2
 values of best multivariate models of avian species richness based on measures of 

image texture for each avian guild and ecoregion.  Circle diameter is proportional to adjusted R
2
 value. 
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Chapter 3  

The Influence of Vertical and Horizontal Habitat Structure on Nationwide 

Patterns of Avian Biodiversity 

 

Abstract 

 Avian biodiversity is under threat, primarily from human influences.  With limited 

resources for habitat conservation, the accurate identification of high-value bird habitat is crucial.  

One major factor known to influence avian biodiversity is habitat structure, though this is 

generally difficult to quantify over broad extents.  Our goal was to identify which measures of 

vertical and horizontal habitat structure are most strongly related to patterns of avian biodiversity 

across the conterminous United States and to determine whether horizontal and vertical measures 

are complementary or redundant.  We evaluated the performance of metrics derived from the 

National Biomass and Carbon Dataset (NBCD), as measures of vertical habitat structure, and 

metrics derived from the 2001 National Land Cover Database (NLCD), as measures of 

horizontal habitat structure. We calculated estimated vegetation height and biomass from the 

NBCD as well as landcover composition and configuration metrics for different NLCD classes 

for 2,546 North American Breeding Bird Survey routes across the conterminous US.  Avian 

species richness was calculated for each route for all birds as well as for three migratory guilds 

and three habitat guilds.  Analyses were carried out nationwide, as well as individually for three 

ecoregion provinces of varying dominant vegetation type.  Measures derived from both the 
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NBCD and NLCD were significantly related to avian species richness.  For forest bird and 

grassland bird species richness, NBCD mean canopy height yielded R
2
 values of 0.55 and 0.22 

respectively.  The combination of both horizontal and vertical habitat structure measures was 

most powerful, and nationwide multivariate models of forest and grassland bird species richness 

yielded adjusted R
2
 values of 0.70 and 0.48 respectively.  Models developed at the scale of single 

ecoregion provinces had slightly weaker performance but still showed strong relationships 

between species richness and measures of both vertical and horizontal structure.  This suggests 

that measures derived from canopy height estimates and land cover classifications are useful 

methods for characterizing habitat structure.  New measures of vertical structure proved 

complementary to measures of horizontal structure.  These data thus allow the efficient 

prediction of avian diversity with fine spatial resolution, advancing the identification of 

biodiversity hotspots, and thus contributing to better land management and bird conservation. 

 

Introduction 

 Avian biodiversity is under severe threat from human-caused habitat loss and 

fragmentation (Gaston et al. 2003).  With limited resources for habitat conservation, the accurate 

identification of high-value bird habitat is crucial (Turner et al. 2003).  While some broad-extent 

mapping of biodiversity has been carried out (Myers et al. 2000, Buckton and Ormerod 2002), 

the spatial resolution of these maps is too coarse to be of direct relevance for resource managers.  

Therefore, spatially detailed maps of avian species richness are needed for land management and 
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biogeography alike.  However, surveying avian species richness exhaustively is not feasible, and 

it is not clear which variables can predict avian species richness best. 

 Habitat structure has long been recognized as a major factor influencing biodiversity 

(MacArthur and MacArthur 1961, MacArthur et al. 1966, Willson 1974, Wiens 1974, Tews et al. 

2004, Clawges et al. 2008).  However, studies relating biodiversity patterns to habitat structure 

have focused primarily on local scales.  When considering the influence of habitat structure on 

avian biodiversity, it is useful to consider both vertical and horizontal structure.  Vertical habitat 

(or vegetation) structure is defined as the bottom to top configuration of aboveground vegetation 

at a given site (Brokaw and Lent 1999).  We define horizontal habitat structure as the 

composition and configuration of a landscape with regard to land cover class (Turner et al. 

2001).  Due to the logistical challenges of assessing vertical habitat structure (Gottschalk et al. 

2005), broad-extent measurements have been non-existent thus far (Bergen et al. 2009). 

 Vertical habitat structure exhibits a strong relationship with avian species richness.  

Vertical structure directly affects birds through its effect on perching, nesting, and foraging sites 

(Brokaw and Lent 1999), and areas with higher vertical structure thus provide more niches.  

Avian species richness is positively correlated with foliage height diversity (MacArthur and 

MacArthur 1961, MacArthur et al. 1966, Erdelen 1984, Erdelen 1984) as well as canopy height 

(Goetz et al. 2007).   

Horizontal habitat structure strongly affects biodiversity at broad scale.  Landscape 

metrics derived from land-cover classifications that are particularly strong predictors capture, for 

example, habitat fragmentation (Donovan and Flather 2002), proportion of vegetation class 

(Farina 1997), landscape heterogeneity (Atauri and de Lucio 2001), and habitat isolation (Krauss 
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et al. 2003).  In general, there is a positive relationship between high horizontal habitat structure 

(generally defined as habitat heterogeneity) and biodiversity (Tews et al. 2004).  However, the 

relationship varies among species groups, as different groups vary in the threshold at which the 

positive aspects of increased structure (or heterogeneity) are replaced by the negative aspects of 

fragmentation (Tews et al. 2004).   

 Vertical habitat structure measurements have traditionally been limited to local scales 

because fine-scale field measurements are prohibitively costly and time-consuming to acquire 

(Clawges et al. 2008).  The use of LiDAR (light detection and ranging) has greatly improved the 

ability to measure vertical habitat structure at the landscape scale (Bergen et al. 2009, Hyde et al. 

2006) including direct application to avian biodiversity (Clawges et al. 2008, Goetz et al. 2007, 

Seavy et al. 2009, Lesak et al. 2011).  Unfortunately there are currently no LiDAR datasets with 

wall-to-wall national coverage, so the use of LiDAR is not feasible for national-scale projects.  

However, a recently released data set has the potential to capture high-resolution vertical 

vegetation structure at the national scale.  The National Biomass and Carbon Dataset 2000 

(NBCD 2000), derived from multiple datasets including the Shuttle Radar Topography Mission, 

provides high resolution (30-m) nationwide estimates of basal area-weighted canopy height and 

aboveground live dry biomass (Kellndorfer et al. 2004a, Kellndorfer et al. 2006, Walker et al. 

2007, Kellndorfer et al. 2011).  The NBCD appears very promising; however the ability of this 

dataset to characterize ecologically meaningful vertical habitat structure has not yet been tested.  

 Our overall goal was to evaluate the relationship of avian species richness with vertical 

and horizontal habitat structure for different habitat- and migratory habit-based guilds for the 

conterminous United States as a whole, as well as for three individual ecoregion provinces.  A 
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key focus was the effectiveness of the NBCD in characterizing vertical habitat structure in a 

manner sufficient to explain avian species richness patterns, and subsequently, to investigate 

whether measures of vertical and horizontal structure are complementary in this regard.  We 

made several predictions regarding the relationship among our explanatory variables and avian 

species richness by guild (Table 3-1).  We expected a positive relationship between overall bird 

diversity and (1) vegetation height, (2) vegetation height variability, (3) biomass, and (4) 

biomass variability, as an increase in these measures indicates an increase in the number of 

potential habitat niches.  For the three habitat-based guilds, (5, 6, and 7) we anticipated that the 

abundance of that habitat should be the strongest explanatory variable.  In terms of other 

measures of horizontal structure, we expected that (8) higher levels of landscape diversity would 

lead to higher species richness.  Lastly we expected that (9) measures of vertical habitat structure 

from the NBCD would capture new information that was not already present in the measures of 

horizontal structure, and that multivariate models combining measures of both horizontal and 

vertical structure would exhibit the highest explanatory power. 

 

Methods 

 Our study included the entire contiguous United States.  Avian species richness was 

calculated from the North American Breeding Bird Survey (BBS), an annual survey of 

approximately 3,000 routes across the U.S. (Figure 3-1).  Along each 39.4-km route, 50 3-minute 

point counts are conducted, and all birds heard or seen are recorded (USGS Patuxent Wildlife 

Research Center 2008).  Analysis was centered on the year 2000, and we calculated the mean 

species richness of each BBS route over the period 1998-2002.  The BBS data set was 
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preprocessed to remove observations collected by first year observers (Kendall et al. 1996) and 

those conducted in suboptimal weather.  We also excluded poorly sampled species, which we 

defined as species with fewer than 30 route-year observations during the entire history of the 

BBS.  After the removal of these routes as well as routes for which we did not have a full set of 

explanatory variables, we retained 2,546 routes. 

 We expected that relationships between species richness and habitat structure would 

differ among different functional guilds. Therefore in addition to overall species richness, we 

calculated species richness within three guilds, organized by their migratory strategy: permanent 

residents, short-distance migrants (i.e., those that spend the non-breeding season in the southern 

U.S.), and Neotropical migrants.  We also calculated species richness of avian guilds organized 

by the structural form of habitat they require or are associated with: forest, shrubland, and 

grassland.   

Because bird species are not uniformly detectable, the number of species identified on a 

route is almost certainly less than the actual number of species present.  For this reason it is 

recommended that a correction be applied to raw species richness counts (Kéry and Schmid 

2004).  In studies of avian species richness, the software program COMDYN (Hines et al. 1999) 

is frequently used to correct for this problem and derive estimated species richness (Boulinier et 

al. 1998, Hamer et al. 2006).  COMDYN considers the raw BBS route species richness data from 

a capture-recapture model perspective and uses a jackknife estimator to calculate estimated 

species richness (Nichols et al. 1998, Nichols et al. 1998).  We used estimated species richness as 

calculated by COMDYN for all species, and for the six guilds mentioned above, as our measures 

of biodiversity for each route. 
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 In order to relate our explanatory variables to individual BBS routes, we created 19.7 km-

radius (one-half the length of a BBS route) circular buffers around the centroid of each BBS 

route (Flather and Sauer 1996).  This radius was chosen because it encompasses the entire BBS 

route, regardless of route path, and we chose a circular buffer because it provides a uniform area 

and shape around each BBS route.  This distance is also comparable to the median maximum 

natal dispersal distance (31 km) of 76 avian species for which it has been observed (Sutherland et 

al. 2000), indicating that the buffer captures a biologically relevant area.  This approach has been 

used successfully in several studies using BBS data (Flather and Sauer 1996, Rittenhouse et al. 

2010, Rowhani et al. 2008, Pidgeon et al. 2007). 

To characterize vertical habitat structure, we derived measures of vegetation canopy 

height (Figure 3-2) and aboveground live dry biomass from the 30-m resolution NBCD2000.  

These measures are based on an empirical modeling approach combining data from the USDA 

Forest Inventory and Analysis (FIA), the National Elevation Dataset, the 2000 Shuttle Radar 

Topography Mission, and the USGS National Land Cover Dataset 2001 (NLCD) (Kellndorfer et 

al. 2006, Walker et al. 2007, Kellndorfer et al. 2011, Kellndorfer et al. 2004b) .  The NBCD 2000 

estimates of canopy height and biomass provided a unique opportunity to estimate the relative 

importance of horizontal versus vertical vegetation structure on avian species richness patterns at 

a national scale.  From this dataset we calculated mean, standard deviation, and coefficient of 

variation of both basal area-weighted canopy height and aboveground live dry biomass (using 

the NBCD’s FIA-derived biomass model) for each BBS route buffer, yielding six variables in all. 

 Analysis of horizontal habitat structure included landscape metrics calculated from the 

2001 National Land-Cover Database (NLCD) (Homer et al. 2004).  We used measures of both 
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land-cover composition and configuration.  Within each BBS route buffer, we calculated the 

proportion of landscape for 12 land-cover classes: water (NLCD 2001 class 11), developed (21, 

22, 23, and 24), barren (31), deciduous forest (41), evergreen forest (42), mixed forest (43), 

shrub-scrub (52), grassland (71), pasture (81), cultivated crops (82), woody wetland (90), and 

herbaceous wetland (95).  Additionally, we calculated the total number of land cover classes 

present and the Shannon diversity index (Shannon 1948) of land cover class distribution for each 

buffer.  

 To quantify landscape configuration, we used morphological spatial pattern analysis 

(MSPA) (Vogt et al. 2009, Vogt et al. 2007, Vogt et al. 2007).  MSPA can be used to classify 

habitat pixels, based on their context, into ecologically relevant classes.  We used the software 

program GUIDOS and applied it to the 2001 NLCD.  The software program GUIDOS 

(Graphical User Interface for the Description of image Objects and their Shapes) (Vogt 2010) 

uses MSPA to perform a pixel-wise classification on binary habitat/non-habitat raster images, 

assigning each pixel to a context-based class.  The resulting classes are core, islet, loop, bridge, 

perforation, edge, and branch (Soille and Vogt 2009). 

 We calculated context-based classes for three habitat types: forest, shrubland, and 

grassland.  The forest habitat images included all pixels classified as deciduous forest (NLCD 

2001 class 41), evergreen forest (42), or mixed forest (43).  Shrubland habitat images included 

only pixels classified as shrub/scrub (52).  Grassland habitat images included pixels classified as 

grassland/herbaceous (71) or pasture/hay (81).  We ran GUIDOS with an 8-neighbor window, 

and edge distances of 60, 60, and 120 m for grassland, shrubland, and forest, respectively.  To 

limit the number of explanatory variables, we grouped the GUIDOS results into two classes: core 
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habitat (consisting of the core habitat class) and edge habitat (consisting of islet, loop, bridge, 

perforation, edge, and branch).  For each BBS route buffer, we calculated the total area of forest 

core, forest edge, grassland core, grassland edge, shrubland core, and shrubland edge.  

 In addition to our nationwide analysis, we modeled avian species richness using the same 

variables and procedures for three ecoregion provinces: Central Appalachian Broadleaf Forest—

Coniferous Forest—Meadow (province M221), Eastern Broadleaf Forest (Continental) (province 

222), and Great Plains-Palouse Dry Steppe (province 331) (Bailey 1995)).  The Central 

Appalachian Broadleaf forest is composed of open, low mountains and valleys with mixed pine-

oak forest, Appalachian oak forest, northeastern hardwood forest, and spruce-fir forest and 

meadows, following a gradient of low elevation to high elevation.  The Eastern Broadleaf Forest 

Province is dominated by relatively flat, rolling hills covered with broadleaf deciduous forest.  

The Great Plains-Palouse Dry Steppe is defined by rolling plains in the rain-shadow of the 

Cascade and Rocky Mountains with predominantly steppe vegetation.  These provinces are well 

sampled by the BBS, and our analysis included 130 routes in the Central Appalachian Broadleaf 

Forest, 326 routes in the Eastern Broadleaf Forest, and 156 in the Great Plains.  We selected 

these provinces to provide a gradient in land cover type from mostly forested (Central 

Appalachian Broadleaf forest) to agriculture with forest (Eastern Broadleaf Forest) to grassland 

with agriculture (Great Plains).  Within the BBS route buffers, the Central Appalachian 

Broadleaf forest has 66% forest and 22% agriculture, the Eastern Broadleaf Forest has only 29% 

forest, though 52% agriculture, and the Great Plains has 7% forest, 26% agriculture, 52% 

grassland, and 10% shrubland. 
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Statistical analysis 

We carried out our statistical analysis four separate times, once for the entire data set, and 

once for each of the three ecoregion provinces.  Our input data consisted of 14 land-cover 

composition variables, six vertical habitat structure variables, and six land-cover configuration 

variables, for a total of 26 explanatory variables.  As an initial step, a univariate model was 

created for species richness of each avian guild as a function of each explanatory variable, to 

identify those variables with very low explanatory power.  A scatter plot of each model was 

inspected for evidence of non-linear relationships.  Only variables that yielded an R
2
 value > 

0.05 for at least one avian guild were retained for further analysis. 

 Because several of the variables measured properties that were potentially correlated, and 

most statistical analyses require independence between variables, we investigated potential 

collinearity.  The correlation coefficient was calculated for each pair of explanatory variables.  

Correlations greater than 0.8 were investigated, and one variable of each correlated pair was 

dropped from further analysis.  Drop decisions were made based on variable performance in the 

univariate models in an attempt to arrive at the most parsimonious pool of explanatory variables. 

 The explanatory power of the remaining variables was evaluated using best-subsets 

regression (Miller 1990) and hierarchical partitioning (Chevan and Sutherland 1991).  Best-

subsets regression uses an exhaustive approach to find the best models (in this case based on 

adjusted R
2
 value) with a specified number of explanatory variables.  We used the LEAPS 

package (Lumley and Miller 2009) in R (Lumley and Miller 2009, R Development Core Team 

2009) to carry out best-subsets selection to calculate the top 10 and top 20 models for each guild 
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with one, two, three, four, and five explanatory variables.  We then calculated how many times 

each explanatory variable had appeared in one of the top 10 and top 20 models. 

While best-subsets regression gives a good idea of the explanatory power of individual 

variables, especially when there is a large pool of explanatory variables, the analysis parameters 

that are used, such as the number of top models considered and the number of variables per 

model, can affect the outcome, and within a given model there is no ranking of variable 

explanatory contribution.  For these reasons, we relied more heavily on hierarchical partitioning 

because it yields a more objective measure of the contribution of each variable.  

Hierarchical partitioning measures the relative explanatory contribution of each variable 

in the context of others (Chevan and Sutherland 1991).  Like best-subsets, hierarchical 

partitioning is an exhaustive approach.  For each explanatory variable, two linear models are 

created for every combination of the remaining variables, one model including the variable of 

interest, and one excluding it.  The difference in a fitness parameter (adjusted R
2
 in our case) is 

calculated for the models with and without the variable of interest, and reported as that variable’s 

independent contribution to the model.  We performed hierarchical partitioning with the hier.part 

function (Walsh and Mac Nally 2008) in R (R Development Core Team 2009).  Due to 

computational constraints, this function limits the maximum number of explanatory variables to 

12.  We were therefore unable to include all of our explanatory variables, so we dropped the 

variables that ranked beyond 12
th
 place in the best-subsets regression.  In addition, there is a 

known rounding error in the hier.part routine which can significantly influence the results when 

more than 9 explanatory variables are included (Olea et al. 2010).  The error is affected by the 

ordering of the explanatory variables, so to account for this behavior when we used more than 
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nine explanatory variables, we ran the routine 1000 times, randomly permuting the order of our 

explanatory variables each time.  

 

Results 

Nationwide Analysis 

 We fit univariate models for each combination of species richness of the 7 avian guilds 

and the 26 explanatory variables, yielding 182 models (Table 3-2).  The variables mean biomass, 

and standard deviation of biomass showed some evidence of non-linearity in their relationship to 

avian species richness, so these variables were log-transformed.  Variables with the strongest 

relationships to avian species richness were: mean canopy height, standard deviation of canopy 

height, mean biomass, and forest edge area (all with R
2
 values > 0.50 for at least one guild); 

proportion deciduous forest, standard deviation of biomass, and forest core area (all with R
2
 

values > 0.25 for at least one guild); and proportion evergreen forest, proportion scrub-shrub, 

proportion grassland, proportion cultivated crops, number of land cover classes, Shannon 

diversity of land cover classes, shrubland core area, and grassland core area (all with R
2
 values > 

0.15 for at least one guild).  Among these variables, the directions of the relationships were as 

expected (e.g. forest birds were positively associated with canopy height and variability, while 

grassland birds were negatively associated with both). 

 Of the 26 explanatory variables, four failed to meet our criterion of R
2
 > 0.05 for at least 

one guild, and were thus dropped from subsequent analysis (Table 3-3).  Collinearity among the 

predictor variables in our dataset was rare, with only seven of 231 variable pair combinations 
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exceeding our predefined threshold of |r| > 0.8.  To remove the collinearity, five variables were 

excluded from subsequent analysis (Table 3-3). 

Best-subsets regression was carried out with the 17 remaining explanatory variables.  The 

rankings of the most frequently included variables was similar in our analyses of the top 10 

models and the top 20 models, with only a few variables switching position with an adjacent 

variable in the ordered ranking, and two variables changing rank by two places (results not 

shown).  Therefore, for simplicity, we show here only the results from the top 10 models (Table 

304). 

 Standard deviation and mean of canopy height were the most frequently included 

variables, each appearing in at least half of the top 10 models of species richness for three guilds.  

The third most common variable overall was proportion of deciduous forest, which was common 

in models of species richness for all guilds except grassland birds, permanent residents, and 

short-distance migrants.  The remaining common variables were included less often across the 

board, but appeared frequently in models of specific guilds: e.g., grassland core area was 

frequently included in grassland bird species richness models. 

 In addition to determining the top-performing variables we were interested in evaluating 

whether the horizontal and vertical variables contained redundant or complementary information.  

Of the 17 explanatory variables, we considered three representative of vertical structure (mean 

canopy height, standard deviation of canopy height, and coefficient of variation of canopy 

height) and the remaining 14 representative of horizontal structure (Table 3-4).  For the best-

subsets models with two, three, four, and five variables, we examined how many times both a 

horizontal and vertical variable were included in the model.  We observed that 61% (43/70) of 
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the 2-variable models contained both horizontal and vertical variables, as well as 86% (60/70), 

99% (69/70), and 97% (68/70) of the three-, four-, and five- variable models, respectively.  

Because there were 14 horizontal variables and only three vertical variables, if there was equal 

probability that each variable would be included in the models, one would expect (based on 

probability) that both horizontal and vertical variables would be present in 31%, 46%, 58%, and 

68% of the two-, three-, four-, and five-variable models, respectively.  Since the proportion of 

our models with both horizontal and vertical variables was substantially higher than expected, 

this lends support to our view that these two types of variables are in fact complementary. 

 For each model, we derived the relative independent contribution of each variable to that 

model’s total adjusted R
2
 (Table 3-5).  Mean canopy height, standard deviation of canopy height, 

and forest edge area had independent contribution values that were substantially higher than the 

values for the remaining variables.  Interestingly, these top-three variables include both of the 

vertical structure variables included in this analysis, suggesting that vertical habitat structure is at 

least as effective, if not more so, in explaining avian diversity distribution than common 

measures of horizontal structure. 

 

Individual Ecoregion Province Analysis 

 Statistical analysis was conducted individually for the Eastern Broadleaf Forest (EBF), 

Central Appalachian Broadleaf Forest (CABF), and Great Plains – Palouse Dry Steppe (GP). 

 Based on univariate linear models of avian species richness (Table 3-3), variables with 

high maximum univariate R
2
 values among guilds included proportion deciduous forest (0.40), 

forest edge area (0.39), and mean canopy height (0.39) in the EBF; mean canopy height (0.24), 
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mean biomass (0.23), and standard deviation of biomass (0.22) in the CABF, and standard 

deviation of canopy height (0.53), standard deviation of biomass (0.48), and forest edge area 

(0.48) in the GP.  Some variables failed to meet our criterion of R
2
 > 0.05 for at least one guild, 

and thus 10 variables were dropped from EBF, 9 from the CABF, and 2 variables from the GP.  

To reduce explanatory variable correlation, seven, eight, and eight additional variables were 

dropped from the EBF, CABF, and GP, respectively, leaving nine, nine, and 16 variables for 

subsequent analysis.  

Best-subsets regression was carried out for each ecoregion province separately with the 

set of explanatory variables retained for that ecoregion.  Results for top-10 and top-20 model best 

subset analyses were again very similar, so we present only the results from the top 10 models. 

In the EBF (Table 3-6), mean canopy height, proportion developed, and standard deviation 

of canopy height were clearly the strongest performing variables, appearing in over half of the 

models.  In the CABF (Table 3-7), proportion developed was the strongest performing variable, 

appearing in more than half of the models for most guilds.  Grassland core area, mean canopy 

height, and standard deviation of biomass were the next most frequently included variables.  In 

the GP (Table 3-8), results were less uniform among guilds compared to the other two 

ecoregions.  Shannon diversity of land cover class was the strongest overall performer, appearing 

in 180 models; however, this variable was rarely included in models of forest bird or permanent 

resident species richness.  Standard deviation of canopy height was the next most included 

variable, appearing in 161 models, however this variable was rarely included in models of 

shrubland bird or permanent resident species richness.   
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 For the EBF and CABF, only nine variables remained in our explanatory variable pool, 

so we did not need to drop any remaining variables before performing hierarchical partitioning.  

For the GP, 16 variables remained.  We selected the top 12 variables as ranked from the best 

subsets regression to reduce the number of variables to within computational limits.  

In the EBF (Table 3-9), mean canopy height had the highest total (summed across guilds) 

independent contribution (191.9) followed by proportion developed and standard deviation of 

canopy height (155.6 and 141.7, respectively).  The remaining variables had substantially lower 

total independent contribution values (21.5 – 57.9).  Adjusted R
2
 values for guild species 

richness as a function of the nine explanatory variables were calculated for all birds (R
2
 = 0.27), 

forest birds (R
2
 = 0.47), grassland birds (R

2
 = 0.42), shrubland birds (R

2
 = 0.37), Neotropical 

migrants (R
2 
= 0.23), permanent residents (R

2
 = 0.44), and short-distance migrants (R

2
 = 0.11) 

(Figure 3-3).   

For the CABF (Table 3-10), proportion developed had the highest total independent 

contribution across guilds (193.3).  Standard deviation of canopy height, grassland core area, and 

mean canopy height followed at 90.8, 79.4, and 79.2.  The remaining variables had a total 

independent contribution value ranging from 28.7 – 71.8.  Adjusted R
2
 values for guild species 

richness as a function of the nine explanatory variables were calculated for all birds (R
2
 = 0.14), 

forest birds (R
2
 = 0.16), grassland birds (R

2
 = 0.29), shrubland birds (R

2
 = 0.08), Neotropical 

migrants (R
2 
= 0.18), permanent residents (R

2
 = 0.06), and short-distance migrants (R

2
 = 0.27) 

(Figure 3-3). 

 In the GP (Table 3-11), standard deviation of canopy height had the highest total 

independent contribution across guilds (118.8).  Shannon diversity of land cover classes and 
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mean biomass followed with 81.0 and 75.9, respectively.  The remaining variables had total 

independent contribution values ranging from 36.3 – 61.4.  Adjusted R
2
 values for guild species 

richness as a function of the nine explanatory variables were calculated for all birds (R
2
 = 0.48), 

forest birds (R
2
 = 0.57), grassland birds (R

2
 = 0.63), shrubland birds (R

2
 = 0.40), Neotropical 

migrants (R
2 
= 0.44), permanent residents (R

2
 = 0.46), and short-distance migrants (R

2
 = 0.27) 

(Figure 3-3). 

 To further illustrate the relative explanatory contribution of vertical versus horizontal 

measures of habitat structure, for each model we summed the independent contribution of 

horizontal variables and vertical variables.  The difference between these sums was plotted on a 

number line (Figure 3-4).  (When interpreting these plots, it should be noted that the number of 

vertical versus horizontal habitat structure variables was unbalanced in the models, with two 

vertical and six horizontal in the national models, three vertical and six horizontal in the EBF and 

CABF, and 3 vertical and 9 horizontal in the GP.) 

 

Discussion  

 We showed that vertical habitat structure, represented as measures of canopy height and 

biomass from the National Biomass and Carbon Dataset, was important in explaining the 

nationwide and ecoregion province level patterns of overall bird species richness and of the 

species richness of several avian habitat and migratory guilds.  As expected, methods of 

characterizing horizontal habitat structure, such as proportion of land cover class, also 

contributed to explanation of species richness patterns.  While measures of both vertical and 

horizontal structure were individually useful in explaining avian species richness patterns, the 
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combination of both types of variables resulted in the highest predictive power as shown by the 

high proportion of models from the best-subsets regression that included both a horizontal and 

vertical structure variable.  This suggests that our measures of vertical and horizontal habitat 

structure were complementary rather than redundant, each characterizing different components 

of habitat structure that explain avian species richness patterns. 

 

Nationwide analysis 

 We expected that the measures of vertical habitat structure would add information not 

already present in the measures of horizontal structure (Table 3-1, prediction 9).  This was 

conclusively shown to be true and is perhaps the most significant finding of our study.  The 

univariate models showed that variables related to vertical structure were at least as strongly 

associated with avian species richness as variables related to horizontal structure.  For example, 

mean canopy height and mean biomass had the strongest relationship with forest bird richness 

(both had R2 = 0.55).  Forest edge area was the only explanatory variable with R2 values similar 

to measures of canopy height and biomass.  For all guilds, the vertical structure measures were as 

strong as or stronger than horizontal measures.   

We expected positive relationships between overall avian species richness and vegetation 

height, vegetation height variability, biomass, and biomass variability, as increases in these 

measures usually correspond to an increase in potential habitat niches (Table 3-1, predictions 1-

4).  Our univariate models did indeed concur with expectations in all of these cases (Table 3-2).  

The finding of a positive relationship between mean canopy height and forest bird species 
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richness supports previous local-scale LiDAR-based findings (Goetz et al. 2007), however our 

study expands this result to a national scale.   

 Although we excluded measures of biomass from the national analysis due to correlation 

with other variables, mean and standard deviation of biomass were strongly related with avian 

species richness in the univariate models.  This concurs with previous findings that radar-based 

measures of forest biomass improved bird species habitat modeling over vegetation type alone 

(Bergen et al. 2007), and we extend this finding beyond habitat mapping to measures of 

biodiversity. 

 In addition to increasing the number of habitat niches, high canopy height and biomass 

may influence species richness through increased food availability.  Lepidoptera species 

comprise much of the diet of many bird species, especially migrants.  In the mid-Atlantic, 

deciduous trees such as Quercus spp., Prunus spp., Salix spp., Betula spp., and Populus spp. 

support the greatest species diversity of Lepidoptera (Tallamy and Shropshire 2009), and these 

tree species are common throughout the eastern United States.  Food (arthropod) availability has 

been shown to influence bird distribution (Johnson and Sherry 2001).  Since higher canopy 

height and biomass should equate to higher food availability for Lepidoptera, and availability of 

Lepidoptera drives higher avian reproductive success (Holmes et al. 1986), high canopy height 

and biomass should positively influence avian abundance and therefore species richness. 

 Within habitat-based guilds, we predicted that the proportion of area in the associated 

habitat type would be the strongest explanatory variable in species richness models (Table 3-1, 

predictions 5-7).  Contrary to our prediction, the hierarchical partitioning analysis revealed that 

measures of habitat abundance were less effective in explaining variation in species richness than 
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the other habitat structure variables.  Surprisingly, in our final variable ranking based on 

hierarchical partitioning, proportion of deciduous forest was only the fourth strongest predictor 

of forest bird species richness (after mean canopy height, forest edge area, and standard deviation 

of canopy height).  This indicates that measures of horizontal and vertical structure other than 

vegetation type are just as important, at least for forest birds.  We expected that proportion of a 

given land cover class would be strongly related to canopy height (e.g. an area of forest should 

consistently have high canopy height compared to other landcover classes), but the nationwide 

hierarchical partitioning analysis showed that measures of canopy height and proportion 

deciduous forest all made independent contributions to explain richness of forest birds.  This 

indicates that while vegetation type is important, canopy height yields additional information that 

helps explain forest bird species richness. 

 Though the proportion grassland variable was dropped from analysis prior to hierarchical 

partitioning, a similar measure, grassland core area, was the third highest ranked variable for 

explaining grassland bird richness, behind forest edge area and standard deviation of canopy 

height (both negatively related to grassland bird species richness in univariate models).  

Similarly, the proportion of shrub-scrub had to be excluded from the hierarchical partitioning, 

though both shrubland core area and shrubland edge area were included.  Both variables 

contributed relatively little to explaining shrubland bird species richness with shrubland core area 

ranked seventh and shrubland edge tied for 10th.  For shrubland birds, standard deviation of 

canopy height, mean canopy height, and forest edge area were the strongest predictors, with 

positive, positive, and negative relationships with shrubland bird richness, respectively.  These 

results emphasize the importance of measures of habitat structure normally associated with 
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forest, which are still strong predictors (positive or negative) even for species not associated with 

forests. 

 We predicted that higher levels of landscape diversity (as a measure of landscape 

heterogeneity) should lead to increased species richness (Atauri and de Lucio 2001)  (Table 3-1 

prediction 8).  While the number of land-cover classes and the Shannon diversity of land-cover 

classes indeed exhibited positive univariate relationships with species richness of all guilds 

except grassland birds, these relationships were relatively weak for permanent residents, short-

distance migrants, grassland birds, and shrubland birds.  These measures were too general, and 

we found that measures specific to individual land-cover classes were more important than the 

synthetic variables.  However, forest edge area was strongly related to avian species richness 

overall, reflecting both the fact that edge habitat tends to have higher species richness (Conner 

and Adkisson 1975, Kunin 1998), and the dominance of  the forest guild and shrubland guild (of 

which some members use forest edge) in overall species richness.  

 Our all species and Neotropical migrant models compared favorably in explanatory 

power with other nationwide studies of bird species richness.  The adjusted R
2
 values of our 

multivariate models (including all variables considered in the hierarchical partitioning) were 0.46 

for all species as a group, 0.70, 0.48, and 0.27 for forest, grassland, and shrubland birds, and 

0.50, 0.20, and 0.24 for Neotropical migrants, permanent residents, and short-distance migrants, 

respectively (Figure 3-3).  This is comparable to other studies with similar methodology.  

Nationwide avian species richness models based on energy availability and variability yielded 

adjusted R
2
 values of 0.43, 0.36, and 0.27 for all species, Neotropical migrants, and permanent 

residents, respectively (Rowhani et al. 2008).  Avian species richness has also been related to 
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measures of housing and population density, land cover type, and traditional landscape indices 

such as number of patches, mean patch size, and edge density (Pidgeon et al. 2007).  Nationwide 

models including only forested ecoregions resulted in adjusted R
2
 values of 0.35, 0.48, 0.16, and 

0.19 for forest birds, Neotropical migrants, short-distance migrants, and permanent residents, 

respectively.  Our adjusted R
2
 values were slightly higher for the last three guilds, and our 

adjusted R
2
 value for forest birds was twice as big.  This is likely because our study was 

nationwide while Pidgeon et al. (2007) studied only forested ecoregions.  Models for forest bird 

species richness improve when including non-forested areas such as grasslands and deserts, 

because the dynamic range of species richness is greater than when working only in ecoregions 

dominated by forest. 

 

Individual Ecoregion Analysis 

 Our most important prediction, that measures of vertical habitat structure would add new 

information not already present in horizontal measures (Table 3-1 prediction 9), was strongly 

supported by the single-province analyses.  This was most clearly seen in the hierarchical 

partitioning analysis.  Variables representing both vertical and horizontal habitat structure ranked 

in the top five for all 3 ecoregions (Table 3-9 through Table 3-11).  This is an exciting finding, as 

it shows that measures of vertical and horizontal vegetation structure remain complementary at 

the ecoregion scale.  It is also notable that our measures of vertical structure from the NBCD 

showed strong performance at the ecoregion level, even in the GP, which has comparatively low 

vertical vegetation structure. 
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Our other predictions received mixed support from the single-ecoregion analyses.  Predictions 1-

4 (Table 3-1), that relationships between overall species richness and mean canopy height, 

canopy height variability, biomass, and biomass variability (Table 3-1 predictions 1-4) would be 

positive and highly significant (Bergen et al. 2009, Goetz et al. 2007), held in the GP and EBF 

(except biomass, which was non-significant).  None of these univariate relationships showed 

statistical significance in the CABF.  For the habitat-based guilds, our predictions that proportion 

of the preferred habitat type would be the strongest predictor (Table 3-1 predictions 5-7) was 

refuted by the univariate relationships.  Some positive, significant relationships existed (e.g., 

grassland birds in the GP and forest birds in all three ecoregions), however in none of these cases 

was the proportion of preferred habitat type the strongest univariate predictor.   

 Our prediction that higher landscape diversity would lead to increased avian species 

richness (Atauri and de Lucio 2001) (Table 3-1 prediction 8) was strongly supported by the 

univariate relationships.  Of the 22 of 42 univariate models relating guild species richness to the 

number of landcover classes or Shannon diversity of landcover classes were statistically 

significant, with 20 of those showing a positive relationship.  

  The combination of best subsets selection and hierarchical partitioning worked well.  

When relating measures of multiple landscape attributes to species abundance, distribution, or 

species richness, it is highly likely that collinearity will be present among explanatory variables 

(Mac Nally 2000, Heikkinen et al. 2004).  While traditional multivariate analyses, such as 

stepwise-selection, are useful in producing models, it is difficult (and unwise) to interpret the 

influence of individual variables within the model.  The strength of hierarchical partitioning is 

the averaging of variable influence over all possible models, which alleviates multicollinearity 
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issues (Mac Nally 2000).  Though we removed variables in our analyses to limit correlation, we 

expected some level of correlation remained in our dataset.  Hiearchical partitioning has been 

successfully used to gauge the influence of different environmental variables in models of 

invasive exotic plant species richness (Gavier-Pizarro et al. 2010), butterfly distribution 

(Heikkinen et al. 2005), vascular plant species richness (Marini et al. 2008), and bird abundance 

(Heikkinen et al. 2004).  Since the release of the “hier.part” package for R (Walsh and Mac Nally 

2008), the use of hierarchical partitioning in ecological studies has been increasing (Olea et al. 

2010).  We found hierarchical partitioning to be a useful and effective method for evaluating the 

relative contribution of different variables in explaining patterns of avian species richness. 

 Our study showed that measures of vertical structure, as characterized by estimates of 

biomass and canopy height from NBCD2000 capture information not present in measures of 

horizontal structure, and thus improve models of avian species richness on a national scale.  

These findings are especially timely given the cancellation of the NASA DesdynI mission 

(DESDynI Writing Committee 2007), a LiDAR and radar satellite that was expected to provide 

detailed measurement of vertical vegetation structure.  Such a mission is still of critical 

importance, however, the NBCD2000 is a useful data source that fills the gap in knowledge by 

providing data on vegetation structure in the meantime (at least for the United States). 

The horizontal and vertical measures of structure proved to be complementary, rather 

than redundant, in their explanation of species richness patterns.  For this reason, we recommend 

that future studies of broad scale avian biodiversity include measures of both vertical and 

horizontal structure.  



120 

 

 

 

References  

Atauri J. A., J. V. de Lucio. 2001. The role of landscape structure in species richness distribution 

of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landscape 

Ecology 16:147-159. 

Bailey R. G. 1995. Description of the Ecoregions of the United States. United States Department 

of Agriculture. 

Bergen K. M., A. M. Gilboy, and D. G. Brown. 2007. Multi-dimensional vegetation structure in 

modeling avian habitat. Ecological Informatics 2:9-22. 

Bergen K. M., S. J. Goetz, R. O. Dubayah, G. M. Henebry, C. T. Hunsaker, M. L. Imhoff, R. F. 

Nelson, G. G. Parker, and V. C. Radeloff. 2009. Remote sensing of vegetation 3-D structure 

for biodiversity and habitat: Review and implications for lidar and radar spaceborne 

missions. Journal of Geophysical Research-Biogeosciences 114:G00E06. 

Boulinier T., J. D. Nichols, J. E. Hines, J. R. Sauer, C. H. Flather, and K. H. Pollock. 1998. 

Higher temporal variability of forest breeding bird communities in fragmented landscapes. 

Proceedings of the National Academy of Sciences of the United States of America 95:7497-

7501. 

Brokaw N. V., R. A. Lent. 1999. Vertical Structure. Pages 373-373-399 In M. L. Hunter, editor. 

Maintaining Biodiversity in Forest Ecosystems, Cambridge University Press, Cambridge, 

U.K., 1999. 



121 

 

 

 

Buckton S. T., S. J. Ormerod. 2002. Global patterns of diversity among the specialist birds of 

riverine landscapes. Freshwater Biology 47:695-709. 

Chevan A., M. Sutherland. 1991. Hierarchical Partitioning. American Statistician 45:90-96. 

Clawges R., K. Vierling, L. Vierling, and E. Rowell. 2008. The use of airborne lidar to assess 

avian species diversity, density, and occurrence in a pine. Remote Sensing of Environment 

112:2064-2073. 

Conner R. N., C. S. Adkisson. 1975. Effects of Clearcutting on Diversity of Breeding Birds. 

Journal of Forestry 73:781-785. 

DESDynI Writing Committee. Report of the July 17-19, 2007 Orlando, Florida Workshop to 

Assess the National Research Council Decadal Survey Rocommendation for the DESDynI 

Radar/Lidar Space Mission. National Aeronautics and Space Administration, Earth Sciences 

Division; July 17-19, 2007.  

Donovan T. M., C. H. Flather. 2002. Relationships among north American songbird trends, 

habitat fragmentation, and landscape occupancy. Ecological Applications 12:364-374. 

Erdelen M. 1984. Bird communities and vegetation structure. 1. Correlations and comparisons of 

simple and diversity indexes. Oecologia 61:277-284. 

Farina A. 1997. Landscape structure and breeding bird distribution in a sub-Mediterranean agro-

ecosystem. Landscape Ecology 12:365-378. 



122 

 

 

 

Flather C. H., J. R. Sauer. 1996. Using landscape ecology to test hypotheses about large-scale 

abundance patterns in migratory birds. Ecology 77:28-35. 

Gaston K. J., T. M. Blackburn, and K. K. Goldewijk. 2003. Habitat conversion and global avian 

biodiversity loss. Proceedings of the Royal Society B: Biological Sciences 270:1293-1300. 

Gavier-Pizarro G., V. C. Radeloff, S. I. Stewart, C. D. Huebner, and N. S. Keuler. 2010. Housing 

is positively associated with invasive exotic plant species richness in New England, USA. 

Ecological Applications 20:1913-1925. 

Goetz S., D. Steinberg, R. Dubayah, and B. Blair. 2007. Laser remote sensing of canopy habitat 

heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. 

Remote Sensing of Environment 108:254-263. 

Gottschalk T. K., F. Huettmann, and M. Ehlers. 2005. Thirty years of analysing and modelling 

avian habitat relationships using satellite imagery data: a review. International Journal of 

Remote Sensing 26:2631-2656. 

Hamer T. L., C. H. Flather, and B. R. Noon. 2006. Factors associated with grassland bird species 

richness: The relative roles of grassland area, landscape structure, and prey. Landscape 

Ecology 21:569-583. 

Heikkinen R. K., M. Luoto, M. Kuussaari, and J. Poyry. 2005. New insights into butterfly-

environment relationships using partitioning methods. Proceedings of the Royal Society B-

Biological Sciences 272:2203-2210. 



123 

 

 

 

Heikkinen R. K., M. Luoto, R. Virkkala, and K. Rainio. 2004. Effects of habitat cover, landscape 

structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. 

Journal of Applied Ecology 41:824-835. 

Hines J. E., T. Boulinier, J. D. Nichols, J. R. Sauer, and K. H. Pollock. 1999. COMDYN: 

software to study the dynamics of animal communities using a capture-recapture approach. 

Bird Study 46:209-217. 

Holmes R. T., T. W. Sherry, and F. W. Sturges. 1986. Bird Community Dynamics in a 

Temperate Deciduous Forest - Long-Term Trends at Hubbard Brook. Ecological 

Monographs 56:201-220. 

Homer C., C. Q. Huang, L. M. Yang, B. Wylie, and M. Coan. 2004. Development of a 2001 

National Land-Cover Database for the United States. Photogrammetric Engineering and 

Remote Sensing 70:829-840. 

Hyde P., R. Dubayah, W. Walker, J. B. Blair, M. Hofton, and C. Hunsaker. 2006. Mapping forest 

structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR). Remote Sensing of 

Environment 102:63-73. 

Johnson M., T. Sherry. 2001. Effects of food availability on the distribution of migratory 

warblers among habitats in Jamaica. Journal of Animal Ecology 70:546-560. 

Kellndorfer, J.M., Walker, W.S., LaPointe, E., Hoppus, M., & Westfall, J. 2006.  Modeling 

Height, Biomass, and Carbon in U.S. Forests from FIA, SRTM, and Ancillary National 



124 

 

 

 

Scale Data Sets. IEEE International Geoscience and Remote Sensing Symposium 2006. 

IGARSS'06 (pp. 3591-3594). Denver, Co. 

Kellndorfer J., W. Walker, L. LaPoint, J. Bishop, T. Cormier, G. Fiske, and K. Kirsch. 2011. The 

National Biomass and Carbon Dataset - A hectare-scale dataset of vegetation height, 

aboveground biomass and carbon stock of the conterminous United States. Data Published 

by the Woods Hole Research Center. http://whrc.org/nbcd. 

Kellndorfer J., W. Walker, L. Pierce, C. Dobson, J. A. Fites, C. Hunsaker, J. Vona, and M. 

Clutter. 2004a. Vegetation height estimation from shuttle radar topography mission and 

national elevation datasets. Remote Sensing of Environment 93:339-358. 

Kellndorfer J., W. Walker, L. Pierce, C. Dobson, J. Fites, C. Hunsaker, J. Vona, and M. Clutter. 

2004b. Vegetation height estimation from shuttle radar topography mission and national 

elevation datasets. Remote Sensing of Environment 93:339-358. 

Kendall W. L., B. G. Peterjohn, and J. R. Sauer. 1996. First-Time Observer Effects in the North 

American Breeding Bird Survey. The Auk 113:823-829. 

Kéry M., H. Schmid. 2004. Monitoring programs need to take into account imperfect species 

detectability. Basic and Applied Ecology 5:65-73. 

Krauss J., I. Steffan-Dewenter, and T. Tscharntke. 2003. How does landscape context contribute 

to effects of habitat fragmentation on diversity and population density of butterflies? Journal 

of Biogeography 30:889-900. 



125 

 

 

 

Kunin W. E. 1998. Biodiversity at the edge: A test, of the importance of spatial "mass effects" in 

the Rothamsted Park Grass experiments. Proceedings of the National Academy of Sciences 

of the United States of America 95:207-212. 

Lesak A. A., V. C. Radeloff, T. J. Hawbaker, A. M. Pidgeon, T. Gobakken, and K. Contrucci. 

2011. Modeling forest songbird species richness using LiDAR-derived measures of forest 

structure. Remote Sensing of Environment 115:2823-2835. 

Lumley T., L. Miller. 2009. Leaps: Regression Subset Selection. R package version 2.9. 

Mac Nally R. 2000. Regression and model-building in conservation biology, biogeography and 

ecology: The distinction between and reconciliation of 'predictive' and 'explanatory' models. 

Biodiversity and Conservation 9:655-671. 

MacArthur R., H. Recher, and M. Cody. 1966. On the relation between habitat selection and 

species diversity. The American Naturalist 100:319-332. 

MacArthur R. H., J. W. MacArthur. 1961. On bird species diversity. Ecology 42:594-598. 

Marini L., F. Prosser, S. Klimek, and R. H. Marrs. 2008. Water-energy, land-cover and 

heterogeneity drivers of the distribution of plant species richness in a mountain region of the 

European Alps. Journal of Biogeography 35:1826-1839. 

Miller A. J. 1990. Subset Selection in Regression. Chapman and Hall, London. 



126 

 

 

 

Myers N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. 

Biodiversity hotspots for conservation priorities. Nature 403:858. 

Nichols J. D., T. Boulinier, J. E. Hines, K. H. Pollock, and J. R. Sauer. 1998. Inference methods 

for spatial variation in species richness and community composition when not all species are 

detected. Conservation Biology 12:1390-1398. 

Olea P. P., P. Mateo-Tomas, and A. de Frutos. 2010. Estimating and modelling bias of the 

hierarchical partitioning public-domain software: implications in environmental 

management and conservation. Plos One 5:e11698. 

Pidgeon A. M., V. C. Radeloff, C. H. Flather, C. A. Lepczyk, M. K. Clayton, T. J. Hawbaker, 

and R. B. Hammer. 2007. Associations of forest bird species richness with housing and 

landscape patterns across the USA. Ecological Applications 17:1989-2010. 

R Development Core Team. 2009. R: A language and environment for statistical computing. :. 

Rittenhouse C. D., A. M. Pidgeon, T. P. Albright, P. D. Culbert, M. K. Clayton, C. H. Flather, C. 

Huang, J. G. Masek, and V. C. Radelof. 2010. Avifauna response to hurricanes: regional 

changes in community similarity. Global Change Biology 16:905-917. 

Rowhani P., C. A. Lepczyk, M. A. Linderman, A. M. Pidgeon, V. C. Radeloff, P. D. Culbert, and 

E. F. Lambin. 2008. Variability in energy influences avian distribution patterns across the 

USA. Ecosystems 11:854-867. 



127 

 

 

 

Seavy N. E., J. H. Viers, and J. K. Wood. 2009. Riparian bird response to vegetation structure: a 

multiscale analysis using LiDAR measurements of canopy height. Ecological Applications 

19:1848-1857. 

Shannon C. E. 1948. A mathematical theory of communication. Bell System Technical Journal 

27:379-423 and 623-656. 

Soille P., P. Vogt. 2009. Morphological segmentation of binary patterns. Pattern Recognition 

Letters 30:456-459. 

Tallamy D. W., K. J. Shropshire. 2009. Ranking lepidopteran use of native versus introduced 

plants. Conservation Biology 23:941-947. 

Tews J., U. Brose, V. Grimm, K. Tielborger, M. C. Wichmann, M. Schwager, and F. Jeltsch. 

2004. Animal species diversity driven by habitat heterogeneity. Journal of Biogeography 

31:79-92. 

Turner M. G., R. H. Gardner, and R. V. O'Neill. 2001. Landscape ecology in theory and practice. 

Springer, New York. 

Turner W., S. Spector, N. Gardiner, M. Fladeland, E. Sterling, and M. Steininger. 2003. Remote 

sensing for biodiversity science and conservation. Trends in Ecology & Evolution 18:306-

314. 

Vogt P. 2010. GUIDOS. 1.3. 



128 

 

 

 

Vogt P., K. H. Riitters, C. Estreguil, J. Kozak, and T. G. Wade. 2007. Mapping spatial patterns 

with morphological image processing. Landscape Ecology 22:171-177. 

Vogt P., J. R. Ferrari, T. R. Lookingbill, R. H. Gardner, K. H. Riitters, and K. Ostapowicz. 2009. 

Mapping functional connectivity. Ecological Indicators 9:64-71. 

Vogt P., K. H. Riitters, M. Iwanowski, C. Estreguil, J. Kozak, and P. Soille. 2007. Mapping 

landscape corridors. Ecological Indicators 7:481-488. 

Walker W. S., J. M. Kellndorfer, E. LaPoint, M. Hoppus, and J. Westfall. 2007. An empirical 

InSAR-optical fusion approach to mapping vegetation canopy height. Remote Sensing of 

Environment 109:482-499. 

Walsh C., R. Mac Nally. 2008. hier.part: Hierarchical Partitioning. R package version 1.0-3. 

Wiens J. A. 1974. Habitat heterogeneity and avian community structure in North-American 

grasslands. American Midland Naturalist 91:195-213. 

Willson M. F. 1974. Avian community organization and habitat structure. Ecology 55:1017-

1029. 

 



129 

 

 

 

Tables 

Table 3-1.  Predicted relationships between avian species richness and explanatory variables. 

 Guild Variable Hypothesized Relationship 

1. All Birds Vegetation height Positive 

2. All Birds Vegetation height variability Positive 

3. All Birds Biomass Positive 

4. All Birds Biomass variability Positive 

5. Grassland birds Grassland Positive, strongest univariate relationship 

6. Shrubland birds Shrubland Positive, strongest univariate relationship 

7. Forest birds Forest Positive, strongest univariate relationship 

8. All Guilds Landscape diversity Positive 

9. All Guilds 
Vertical and Horizontal 

measures of habitat structure 

Complementary in ability to explain 

avian species richness 
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Table 3-2.  Univariate R
2
 values for nationwide models of avian species richness. 

  Habitat Association Migratory Habit 

  
All Species Forest Birds 

Grassland 
Birds 

Shrubland 
Birds 

Neotropical 
Migrants 

Permanent 
Residents 

Short-Distance 
Migrants 

Proportion Water 0.00(+)* 0.01(+)*** 0.01(-)*** 0.00(-) 0.00(+)** 0.00(-) 0.00(+) 

Proportion Developed 0.00(-)* 0.02(-)*** 0.02(-)*** 0.00(-)*** 0.00(-)* 0.01(-)*** 0.00(-)* 

Proportion Barren 0.05(+)*** 0.05(+)*** 0.00(-)** 0.01(+)*** 0.04(+)*** 0.02(+)*** 0.03(+)*** 

Proportion Deciduous Forest 0.25(+)*** 0.34(+)*** 0.06(-)*** 0.10(+)*** 0.34(+)*** 0.02(+)*** 0.05(+)*** 

Proportion Evergreen Forest 0.03(+)*** 0.06(+)*** 0.15(-)*** 0.00(+) 0.01(+)*** 0.03(+)*** 0.02(+)*** 

Proportion Mixed Forest 0.08(+)*** 0.13(+)*** 0.08(-)*** 0.00(+)*** 0.12(+)*** 0.00(+)** 0.01(+)*** 

Proportion Scrub-Shrub 0.12(-)*** 0.25(-)*** 0.00(+)*** 0.00(+)*** 0.16(-)*** 0.00(-)*** 0.07(-)*** 

Proportion Grassland 0.09(-)*** 0.16(-)*** 0.20(+) 0.09(-) 0.09(-)*** 0.05(-) 0.03(-)*** 

Proportion Pasture 0.03(+)*** 0.05(+)*** 0.00(-)*** 0.02(+)*** 0.03(+)*** 0.03(+)*** 0.02(+)*** 

Proportion Cultivated Crops 0.02(-)*** 0.03(-)*** 0.18(+) 0.03(-)*** 0.02(-)*** 0.06(-)*** 0.00(+)*** 

Proportion Woody Wetland 0.00(+)*** 0.03(+)*** 0.05(-)*** 0.00(-)*** 0.00(+)*** 0.02(+)*** 0.00(-)* 

Proportion Herbaceous Wetland 0.01(-)** 0.01(-)*** 0.00(+)*** 0.02(-)** 0.01(-)*** 0.00(-)*** 0.01(-)** 

Number of Land Cover Classes 0.12(+)*** 0.15(+)*** 0.01(-) 0.01(+)*** 0.13(+)*** 0.01(+)* 0.05(+)*** 

Shannon Diversity of Land Cover Classes 0.13(+)*** 0.23(+)*** 0.06(-)*** 0.02(+)*** 0.13(+)*** 0.05(+)*** 0.05(+)*** 

Mean Canopy Height 0.35(+)*** 0.55(+)*** 0.22(-)*** 0.11(+)*** 0.32(+)*** 0.10(+)*** 0.16(+)*** 

Standard Deviation Of Canopy Height 0.32(+)*** 0.53(+)*** 0.25(-)*** 0.12(+)*** 0.25(+)*** 0.13(+)*** 0.17(+)*** 

Coefficient of Variation of Canopy Height 0.07(-)*** 0.09(-)*** 0.03(+)*** 0.03(-)*** 0.06(-)*** 0.02(-)*** 0.04(-)*** 

Log of Mean Biomass 0.36(+)*** 0.55(+)*** 0.23(-)*** 0.12(+)*** 0.32(+)*** 0.10(+)*** 0.16(+)*** 

Log of Standard Deviation of Biomass 0.23(+)*** 0.35(+)*** 0.14(-)*** 0.07(+)*** 0.19(+)*** 0.06(+)*** 0.13(+)*** 

Coefficient of Variation of Biomass 0.07(-)*** 0.10(-)*** 0.03(+)*** 0.03(-)*** 0.06(-)*** 0.02(-)*** 0.04(-)*** 

Forest Core Area 0.17(+)*** 0.26(+)*** 0.18(-)*** 0.03(+)*** 0.20(+)*** 0.02(+)*** 0.04(+)*** 



 

 

 

 

1
3
1
 

Forest Edge Area 0.35(+)*** 0.54(+)*** 0.28(-)*** 0.12(+)*** 0.34(+)*** 0.10(+)*** 0.10(+)*** 

Shrubland Core Area 0.12(-)*** 0.22(-)*** 0.00(+)*** 0.00(+)*** 0.13(-)*** 0.00(-)*** 0.07(-)*** 

Shrubland Edge Area 0.05(-)*** 0.12(-)*** 0.00(+) 0.00(+)' 0.10(-)*** 0.00(+)*** 0.02(-)*** 

Grassland Core Area 0.07(-)*** 0.11(-)*** 0.20(+) 0.08(-) 0.06(-)*** 0.05(-)** 0.02(-)*** 

Grassland Edge Area 0.01(-)*** 0.00(-)*** 0.04(+)*** 0.00(+)*** 0.00(-)*** 0.00(+)*** 0.00(+)*** 

Sign indicates direction of relationship. *** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05.  Values > 0.15 bolded for emphasis. 
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Table 3-3.  Maximum univariate R
2
 value among 7 avian guilds, by ecoregion.  Struck-through entries denote variables excluded from further analysis 

(for that ecoregion) due to low R
2
 value (R) or high correlation with other explanatory variables (C). 

 Contiguous United States 

Eastern Broadleaf Forest 

(Continental) 

Central Appalachian 

Broadleaf Forest 

Great Plains - Palouse 

Dry Steppe 

Proportion Water 0.01 (R) 0.04 (R) 0.02 (R) 0.12 

Proportion Developed 0.02 (R) 0.13 0.13 0.11 

Proportion Barren 0.05 0.02 (R) 0.03 (R) 0.02 (R) 

Proportion Deciduous Forest 0.34 0.40 (C) 0.18 (C) 0.16 

Proportion Evergreen Forest 0.15 0.15 0.02 (R) 0.42 (C) 

Proportion Mixed Forest 0.13 0.06 0.03 (R) 0.13 

Proportion Scrub-Shrub 0.25 (C) 0.03 (R) 0.09 0.13 

Proportion Grassland 0.20 (C) 0.02 (R) 0.04 (R) 0.10 (C) 

Proportion Pasture 0.05 0.08 0.13 (C) 0.16 

Proportion Cultivated Crops 0.18 0.26 (C) 0.19 0.11 

Proportion Woody Wetland 0.05 0.02 (R) 0.01 (R) 0.13 

Proportion Herbaceous Wetland 0.02 (R) 0.12 0.04 (R) 0.11 

Number of Land Cover Classes 0.15 0.05 (R) 0.08 0.19 

Shannon Diversity of Land Cover Classes 0.23 0.03 (R) 0.20 0.26 

Mean Canopy Height 0.55 0.39 0.24 0.38 (C) 

Standard Deviation Of Canopy Height 0.53 0.28 0.11 0.53 

Coefficient of Variation of Canopy Height 0.09 0.32 (C) 0.16 (C) 0.14 (C) 

Log of Mean Biomass 0.55 (C) 0.04 (R) 0.23 (C) 0.36 

Log of Standard Deviation of Biomass 0.35 (C) 0.02 (R) 0.22 0.48 (C) 

Coefficient of Variation of Biomass 0.10 (C) 0.17 0.18 (C) 0.14 
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Forest Core 0.26 0.25 (C) 0.18 (C) 0.35 (C) 

Forest Edge 0.54 0.39 (C) 0.04 (R) 0.48 (C) 

Shrubland Core 0.22 0.01 (R) 0.03 (R) 0.03 (R) 

Shrubland Edge 0.12 0.03 (R) 0.09 (C) 0.14 (C) 

Grassland Core 0.20 0.06 (C) 0.06 0.11 

Grassland Edge 0.04 (R) 0.06 (C) 0.15 (C) 0.09 
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Table 3-4.  Number of times explanatory variables appeared in top 10 models of nationwide species richness for models with 1, 2, 3, 4, and 5 

explanatory variables.  Variables are marked as measures of vertical (V) or horizontal (H) habitat structure. 

  Habitat Association Migratory Habit   

TOP10 
All Species 

Forest 

Birds 

Grassland 

Birds 

Shrubland 

Birds 

Neotropical 

Migrants 

Permanent 

Residents 

Short-Distance 

Migrants 
Sum 

Standard Deviation of Canopy Height (V) 11 29 24 21 6 41 37 169

Mean Canopy Height (V) 35 31 5 21 26 2 22 142

Proportion Deciduous Forest (H) 30 27 2 26 35 1 3 124

Forest Edge Area (H) 25 22 6 8 17 5 4 87

Proportion Cultivated Crops (H) 3 4 35 2 7 13 22 86

Proportion Barren (H) 19 4 1 2 4 19 10 59

Shrubland Core Area (H) 2 7 3 31 4 4 6 57

Shrubland Edge Area (H) 1 5 8 11 4 26 1 56

Grassland Core Area (H) 1 0 35 5 0 8 1 50

Proportion Woody Wetland (H) 1 0 8 5 0 5 29 48

Proportion Mixed Forest (H) 7 9 5 0 19 0 0 40

Number of Land Cover Classes (H) 4 1 3 0 14 6 6 34

Forest Core Area (H) 3 5 5 7 5 1 3 29

Proportion Evergreen Forest (H) 5 4 7 5 6 1 0 28

Proportion Pasture (H) 0 0 0 2 0 15 1 18

Shannon Diversity of Land Cover Classes (H) 3 2 3 1 3 2 2 16

Coefficient of Variation of Canopy Height (V) 0 0 0 3 0 1 3 7
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Table 3-5.  Independent contribution values for nationwide avian species richness models as determined by hierarchical partitioning.  Variables are 

marked as measures of vertical (V) or horizontal (H) habitat structure. 

  Habitat Association Migratory Habit  

  All Species Forest Birds 
Grassland 

Birds 

Shrubland 

Birds 

Neotropical 

Migrants 

Permanent 

Residents 

Short-Distance 

Migrants 
Sum 

Standard Deviation of Canopy Height (V) 15.1*** 16.3*** 14.6*** 14.7*** 11.1 19.7*** 20.2*** 111.6 

Mean Canopy Height (V) 17.1*** 16.7*** 13.1** 14.4*** 14.3*** 15.1* 18.4*** 109.2 

Forest Edge Area (H) 16.7*** 16.5*** 15.8 14.2* 15.7*** 14.7 12.0* 105.7 

Proportion Deciduous Forest (H) 12.7*** 11.0*** 5.4*** 13.4*** 17.0*** 5.1 6.8 71.3 

Grassland Core Area (H) 5.2** 5.3 13.2*** 11.4* 4.6** 8.5* 4.6*** 52.8 

Shrubland Core Area (H) 6.7** 7.7* 3.8 5.4*** 7.0* 4.0 9.3 43.9 

Proportion Cultivated Crops (H) 3.6*** 3.5** 12.3*** 5.8*** 3.4*** 10.2*** 4.0*** 42.8 

Number of Land Cover Classes (H) 6.6** 5.7 3.5*** 4.0 7.2*** 3.7*** 7.4* 38.2 

Proportion Mixed Forest (H) 5.1*** 5.3*** 6.3*** 3.6 6.9*** 3.4** 3.2 33.8 

Shrubland Edge Area (H) 4.1*** 5.3 3.2*** 4.0*** 6.1 4.9*** 4.5*** 32.2 

Proportion Barren (H) 4.5*** 3.7*** 3.3** 4.8*** 4.2*** 5.8*** 5.4*** 31.7 

Proportion Woody Wetland (H) 2.6 3.0** 5.3** 4.4 2.7 4.8** 4.1*** 26.8 

Sum 100.0 100.0 100.0 100.0 100.0 100.0 100.0   

Adjusted R2 (full model) 0.46 0.70 0.48 0.27 0.50 0.20 0.24  
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Table 3-6.  Number of times explanatory variables appeared in top 10 models of species richness in the Eastern Broadleaf Forest (Continental) 

ecoregion, for models with 1, 2, 3, 4, and 5 explanatory variables.  Variables are marked as measures of vertical (V) or horizontal (H) habitat structure, 

and bold typeface indicates the most frequently included variable for each guild. 

   Habitat Association Migratory Habit  

  
All 

Species 
Forest Birds 

Grassland 

Birds 

Shrubland 

Birds 

Neotropical 

Migrants 

Permanent 

Residents 

Short-

Distance 

Migrants 

Sum 

Mean Canopy Height (V) 30 38 39 21 39 35 22 224 

Proportion Developed (H) 34 31 29 31 29 30 39 223 

Standard Deviation of Canopy Height (V) 29 24 12 35 16 25 27 168 

Coefficient of Variation of Biomass (V) 8 14 16 21 6 17 7 89 

Proportion Herbaceous Wetland (H) 14 7 21 7 24 7 8 88 

Number of Land Cover Classes (H) 6 10 12 12 10 13 9 72 

Proportion Mixed Forest (H) 12 8 5 6 8 6 20 65 

Proportion Pasture (H) 7 8 10 6 10 8 11 60 

Proportion Evergreen Forest (H) 9 9 5 10 7 8 6 54 
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Table 3-7.  Number of times explanatory variables appeared in top 10 models of species richness in Ecoregion province Central Appalachian Broadleaf 

Forest, for models with 1, 2, 3, 4, and 5 explanatory variables.  Variables are marked as measures of vertical (V) or horizontal (H) habitat structure, and 

bold typeface indicates the most frequently included variable for each guild. 

   Habitat Association Migratory Habit  

  
All 

Species 
Forest Birds 

Grassland 

Birds 

Shrubland 

Birds 

Neotropical 

Migrants 

Permanent 

Residents 

Short-

Distance 

Migrants 

Sum 

Proportion Developed (H) 39 39 17 28 39 29 27 218 

Grassland Core Area (H) 16 15 19 21 23 27 16 137 

Mean Canopy Height (V) 10 12 30 14 11 20 33 130 

Log of Standard Deviation of Biomass (V) 27 23 32 7 22 9 7 127 

Proportion Cultivated Crops (H) 14 9 13 17 11 28 10 102 

Standard Deviation of Canopy Height (V) 8 13 6 39 10 15 5 96 

Proportion Scrub-Shrub (H) 13 11 17 9 15 7 14 86 

Number of Land Cover Classes (H) 14 22 11 6 14 6 10 83 

Shannon Diversity of Land Cover Classes (H) 8 5 4 8 4 8 27 64 
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Table 3-8.  Number of times explanatory variables appeared in top 10 models of species richness in the Great Plains – Palouse Dry Steppe Ecoregion, 

for models with 1, 2, 3, 4, and 5 explanatory variables.  Variables are marked as measures of vertical (V) or horizontal (H) habitat structure, and bold 

typeface indicates the most frequently included variable for each guild. 

   Habitat Association Migratory Habit  

  
All 

Species 
Forest Birds 

Grassland 

Birds 

Shrubland 

Birds 

Neotropical 

Migrants 

Permanent 

Residents 

Short-

Distance 

Migrants 

Sum 

Shannon Diversity of Land Cover Classes (H) 32 9 24 41 36 4 34 180 

Standard Deviation of Canopy Height (V) 39 41 18 4 22 5 32 161 

Proportion Cultivated Crops (H) 14 12 11 27 10 23 30 127 

Proportion Deciduous Forest (H) 13 32 9 15 10 19 3 101 

Number of Land Cover Classes (H) 13 16 1 6 32 5 5 78 

Grassland Core Area (H) 12 7 22 0 9 22 3 75 

Proportion Open Water (H) 5 7 8 8 14 4 3 49 

Log of  Mean Biomass (V) 3 1 18 1 2 19 5 49 

Coefficient of Variation of Biomass (V) 5 5 0 23 1 1 13 48 

Grassland Edge Area (H) 2 1 7 3 2 22 3 40 

Proportion Scrub-Shrub (H) 3 3 12 2 2 6 4 32 

Proportion Developed (H) 1 5 2 10 4 3 2 27 

Proportion Mixed Forest (H) 5 2 2 4 4 5 3 25 

Proportion Herbaceous Wetland (H) 1 4 7 1 1 7 1 22 

Proportion Pasture (H) 1 3 9 0 0 1 0 14 

Proportion Woody Wetland (H) 1 2 0 5 1 2 2 13 
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Table 3-9.  Independent contribution values for avian species richness models for the Eastern Broadleaf Forest (Continental), as determined by 

hierarchical partitioning.  Variables are marked as measures of vertical (V) or horizontal (H) habitat structure. 

  Habitat Association Migratory Habit  

  

All Species Forest Birds 
Grassland 

Birds 

Shrubland 

Birds 

Neotropical 

Migrants 

Permanent 

Residents 

Short-

Distance 

Migrants 

Sum 

Mean Canopy Height (V) 26.6** 35.3*** 34.9*** 23.2* 35.5*** 27.5*** 8.9** 191.9 

Proportion Developed (H) 30.3*** 15.0*** 8.6*** 12.0*** 17.4*** 13.0*** 59.4*** 155.6 

Standard Deviation of Canopy Height (V) 21.3** 22.4*** 16.9 27.4*** 17.9 22.0*** 13.9*** 141.7 

Coefficient of Variation of Biomass(V) 3.5 9.3* 12.1** 16.0** 2.4 13.8** 0.7 57.9 

Proportion Evergreen Forest (H) 6.8 8.8 6.1 8.6 7.1 8.8 1.2 47.3 

Proportion Herbaceous Wetland (H) 2.9* 1.1 10.4* 2.9 7.8** 4.1 2.5 31.7 

Proportion Pasture (H) 3.9 3.7 4.2** 4.9 4.1 5.5* 3.1 29.3 

Proportion Mixed Forest (H) 1.9 2.6 4.4 2.0 2.7 2.2 7.4 23.1 

Number of Land Cover Classes (H) 2.8 1.9* 2.5** 3.1** 5.3 3.1*** 3.0 21.5 

Model Adjusted R2 0.27 0.47 0.42 0.37 0.23 0.44 0.11  
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Table 3-10.  Independent contribution values for avian species richness models for the Central Appalachian Broadleaf Forest, as determined by 

hierarchical partitioning. Variables are marked as measures of vertical (V) or horizontal (H) habitat structure. 

  Habitat Association Migratory Habit  

  

All Species Forest Birds 
Grassland 

Birds 

Shrubland 

Birds 

Neotropical 

Migrants 

Permanent 

Residents 

Short-

Distance 

Migrants 

Sum 

Proportion Developed (H) 48.4*** 53.2*** 5.1* 11.6 49.6*** 18.9 6.5* 193.3 

Standard Deviation of Canopy Height (V) 4.0* 5.0 3.2 50.5 4.8* 14.0 9.3 90.8 

Grassland Core Area (H) 8.7 6.5 5.8 16.5 9.9 26.7 5.2 79.4 

Mean Canopy Height (H) 5.7 9.6 18.2 7.4 7.8 8.9 21.5 79.2 

Proportion Cultivated Crops (H) 9.5 5.5 15.0 5.2 5.7 16.5 14.4 71.8 

Log of Mean Biomass (V) 3.0 3.8 23.6 4.1 3.6 9.6 15.8 63.5 

Proportion Scrub-Shrub (H) 13.6 6.9 12.7 1.4*** 11.6 1.8 3.5 51.7 

Shannon Diversity of Land Cover Classes (H) 2.6 2.7 7.9 2.7 3.4 2.2 20.2 41.7 

Number of Land Cover Classes (H) 4.5 6.7 8.5 0.6 3.5 1.4 3.5 28.7 

Model Adjusted R2 0.14 0.16 0.29 0.08 0.18 0.06 0.27  
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Table 3-11.  Independent contribution values for avian species richness models for the Great Plains - Palouse Dry Steppe, as determined by hierarchical 

partitioning.  Variables are marked as measures of vertical (V) or horizontal (H) habitat structure. 

  Habitat Association Migratory Habit  

  

All Species Forest Birds 
Grassland 

Birds 

Shrubland 

Birds 

Neotropical 

Migrants 

Permanent 

Residents 

Short-

Distance 

Migrants 

Sum 

Standard Deviation of Canopy Height (V) 18.6** 26.2*** 14.6* 10.8 13.7* 18.0 17.0 118.8 

Shannon Diversity of Land Cover Classes (H) 13.7** 7.3 7.4*** 19.2** 16.5** 4.6 12.3 81.0 

Log of Mean Biomass (V) 7.1 14.0 19.1 4.1 4.9 20.4 6.5 75.9 

Proportion Deciduous Forest (H) 10.2 9.4* 4.9** 10.1 10.9 9.2** 6.6 61.4 

Proportion Cultivated Crops (H) 8.5 7.4 5.6** 7.3 5.9 7.7*** 12.0* 54.4 

Number of Land Cover Classes (H) 10.2 8.2 3.7 6.6 13.9** 4.0** 7.5 54.1 

Coefficient of Variation of Biomass (V) 8.6 6.5 3.7 10.7* 8.1 4.7 10.6 52.8 

Proportion Scrub-Shrub (H) 4.5 4.3 9.6 6.6 3.7 7.6 6.0 42.3 

Grassland Edge Area (H) 5.2 3.4 5.7*** 7.7 6.2 6.4*** 7.0 41.6 

Grassland Core Area (H) 4.5 5.7 9.5*** 4.9 4.2 8.1* 4.5 41.4 

Proportion Open Water (H) 4.5 3.0 8.6** 7.3* 8.1** 4.8** 3.8 40.1 

Proportion Developed (H) 4.5 4.7 7.7 4.7 3.9 4.6* 6.2 36.3 

Model Adjusted R2 0.48 0.57 0.63 0.40 0.44 0.46 0.27  
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Figures 

 

Figure 3-1.  Study area, including Breeding Bird Survey (BBS) routes and ecoregion provinces used in analysis.



143 

 

 

 

 

Figure 3-2.  Data layers corresponding to a single BBS route in the study area.  (A) Basal area-weighted 

canopy height from the National Biomass and Carbon Dataset (NBCD).  (B) Land cover from 2001 National 

Land Cover Dataset (NLCD).  (C) Grassland edge and grassland core, as calculated from 2001 NLCD.  (D) 

Forest edge and forest core, as calculated from 2001 NLCD.



144 

 

 

 

 

Figure 3-3.  Adjusted R
2
 values of final models of avian species richness as a function of vertical and 

horizontal measures of habitat structure, by avian guild and ecoregion.  Circle diameter is proportional to 

adjusted R
2
 value. 
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Figure 3-4.  For each model of avian species richness, the difference was calculated between the sum of 

independent contributions (as determined by hierarchical partitioning) of variables representing horizontal 

structure and variables representing vertical structure.  The nationwide model included 2 vertical variables 

and 10 horizontal variables, the Eastern Broadleaf forest model, 3 vertical, 6 horizontal, the Central 

Appalachian Broadleaf Forest model, 3 vertical, 6 horizontal, and the Great Plains, 3 vertical, 9 horizontal. 
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Chapter 4  

The Influence of Productivity, Climatic Stability, and Habitat Structure on 

Nationwide Patterns of Avian Species Richness  

 

Abstract 

Understanding the drivers of geographic patterns in species richness is an important aim 

in ecology.  Biodiversity has been hypothesized to be a function of productivity, climatic 

stability, and habitat structure.  These factors have been rarely studied in conjunction with one 

another.  We used remotely sensed measures of productivity, climatic stability, and habitat 

structure to model nationwide patterns of species richness for seven avian guilds.  Our aims were 

to determine which groups of measures had the most predictive power and to evaluate 

complementarity between these groups.  Avian species richness was derived from the Breeding 

Bird Survey.  Measures of productivity included annual sum and annual minimum fraction of 

photosynthetically active radiation (fPAR), a measure strongly related to vegetative productivity.  

Seasonal variation of fPAR, and ecoregion province were used as measures of climatic stability.  

Image texture measures, canopy height, biomass, and landcover composition metrics were used 

to represent habitat structure.  We used best subset selection and hierarchical partitioning to 

evaluate the relative explanatory contribution of individual variables as well as the broader 

groups they represented.  All three categories made some contribution to explaining avian 

species richness patterns, with habitat structure measures the strongest overall.  For five of seven 
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guilds (all birds, forest birds, shrubland birds, Neotropical migrants, and short-distance 

migrants), measures of habitat structure contributed the bulk of explanatory power followed by a 

moderate contribution from productivity measures and a small contribution from measures of 

climatic stability.  For grassland birds, habitat structure was still the strongest predictor, though 

to a lesser extent, and productivity and climatic stability had a larger influence then in the 

previously mentioned guilds.  For permanent residents, the contribution of different variable 

groups was roughly split three ways, with productivity explaining the most, followed by climatic 

stability, then habitat structure.  Though habitat structure measures were dominant on the whole, 

the top-performing individual variables included measures from all three categories.  In fact, the 

strongest performing variable overall was mean annual sum of fPAR (productivity).  

 

Introduction 

Understanding the causes of spatial heterogeneity in biodiversity is still one of the most 

pressing challenges for ecologists (Gaston 2000).  One shortcoming of the current pool of 

biodiversity studies is that most explore only one or two factors in isolation.  A broader 

perspective of the drivers of biodiversity is needed.  MacArthur (1972) hypothesized that 

biodiversity is a function of productivity, climatic stability, and habitat structure (Figure 4-1).  

Because this hypothesis encompasses many of the recognized patterns of biodiversity, and these 

three factors are amenable to measurement by remote sensing, this is an ideal framework for 

studying patterns of biodiversity over a broad extent.  Even though MacArthur’s framework has 

existed for 40 years, few studies have considered these three factors jointly.  This is a critical 
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step to determine the relative importance of the factors, as well as whether complementarity truly 

exists among them as expected.  

 Geographic patterns in biodiversity exhibit strong variability.  Numerous patterns have 

been identified, including a positive relationship between biodiversity and area (Williams 1943, 

Preston 1962, MacArthur and Wilson 1967), decreasing biodiversity with increasing latitude 

(Wallace 1878, Pianka 1966, Fischer 1960, Klopfer 1959), a positive relationship between 

biodiversity and habitat structure (MacArthur and MacArthur 1961, MacArthur 1972), highest 

biodiversity at intermediate scales of disturbance (Connell 1978, Sousa 1979, Sousa 1984), 

decreasing biodiversity with increasing trophic level (Lindeman 1942, Schoener 1989), 

monotonically or unimodally increasing biodiversity with increasing available energy or 

productivity (Wright 1983, Currie 1991), higher biodiversity in areas of high environmental or 

climatic stability (Fischer 1960, Fjeldsa and Lovett 1997), and decreasing biodiversity with 

increasing elevation (Stevens 1992).  Many of these trends fall under MacArthur’s framework as 

relationships between biodiversity and productivity, climatic stability, and habitat structure. 

 Productivity is a measure of environmental energy available to organisms.  Productivity 

is generally recognized to have an important influence on biodiversity (Gaston 2000) though 

there is no consensus on the underlying mechanisms of this relationship.  One of the most 

common hypotheses states that an increase in productivity allows an increase in overall 

abundance, resulting in higher biodiversity (Wright 1983, Evans et al. 2005, Rosenzweig 1995, 

Currie et al. 2004).  A study in Kenya showed a strong positive monotonic relationship between 

normalized difference vegetation index (NDVI) and species richness, with the relationship 

especially strong in arid to semi-arid zones (Oindo et al. 2000).  In an analysis of avian diversity 
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patterns across North America (Hurlbert and Haskell 2003), a positive monotonic relationship 

was found between species richness and NDVI.  In contrast, avian biodiversity showed a 

unimodal response to primary productivity across the United States (Currie 1991).  When 

partitioned by ecoregion at the province level, avian richness responded negatively to 

productivity in some provinces, and positively in others (Rowhani et al. 2008).  

 Climatic stability influences levels of biodiversity (Fischer 1960, Klopfer 1959, 

MacArthur 1972, Sanders 1968).  The primary hypothesis is that stable environments allow more 

niches and therefore higher faunal diversity (Klopfer 1959), since resources with high 

seasonality cannot be subdivided into as many niches as constant resources, thus limiting the 

number of coexisting species (MacArthur 1969).  In Kenya, large herbivore richness is 

negatively correlated with the standard deviation of maximum average NDVI (Oindo 2002a).  

Biodiversity hot spots show higher ecoclimatic stability than similar areas with lower 

biodiversity (Fjeldsa et al. 1997).  Studies of avian biodiversity also reflect this pattern.  Avian 

species richness is negatively correlated with standard deviation of maximum average NDVI in 

Kenya (Oindo et al. 2000).  Across the United States, increasing variability in energy, measured 

as EVI, is associated with decreasing species richness, explaining 30% of the variability 

(Rowhani et al. 2008).  In some ecoregions, interannual variability in energy explains more than 

half of variation in avian richness (Rowhani et al. 2008).  Seasonal variation in vegetative 

productivity also strongly affects avian species richness at the regional level in the United States 

(Coops et al. 2009). 

 It is hypothesized that a more complex structural arrangement within a habitat or a 

heterogeneous arrangement of habitats contains a larger number of potential niches, which can 
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therefore be exploited by more species, thus supporting higher biodiversity.  While the terms 

habitat structure and habitat heterogeneity have been used somewhat interchangeably, we take a 

broad approach, and use the term habitat structure to refer to the composition and configuration 

of vegetation and habitat types.  Habitat structure has been studied across a range of spatial 

scales.  Measurements such as foliage height diversity and vegetation cover exhibit a positive 

relationship to species richness (MacArthur and MacArthur 1961, MacArthur et al. 1966, 

Willson 1974, Erdelen 1984, Rotenberry and Wiens 1980).  Studies considering context and 

landscape structure in addition to, or in place of fine scale vegetation measurements (Atauri and 

de Lucio 2001, Donovan and Flather 2002, Farina 1997, Kondo and Nakagoshi 2002, Krauss et 

al. 2003, Mcgarigal and Mccomb 1995) also show positive relationships between level of habitat 

structure and biodiversity (Tews et al. 2004). 

Our overall goal was to determine the relative importance and complementarity of 

measures of productivity, climatic stability, and habitat structure, in explaining nationwide 

patterns of avian species richness.  Prior to analysis, we made several predictions.   

1. When combined, variables representing productivity, climatic stability, and 

habitat structure will all retain some level of importance, showing 

complementarity between these categories.   

2. Because we are predicting species richness at a relatively fine scale (at the level of 

Breeding Bird Survey routes), measures of habitat structure will be the most 

important variables, as measures of productivity and climatic stability have 

stronger influence at a regional level (Mackey and Lindenmayer 2001, Pearson 

and Dawson 2003). 
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3. Among variables quantifying habitat structure, proportion of habitat type will be 

an important factor influencing habitat guild species richness (e.g. proportion 

grassland and grassland birds).  Proportion deciduous forest and canopy height 

measures will have strong positive relationships with species richness for all 

birds, forest birds, and Neotropical migrants (as found in Chapter 3).   

4. Among migratory guilds, permanent resident species richness will have a strong 

negative relationship with seasonal variability and a strong positive relationship 

with annual minimum productivity, as these species remain in the same location 

year-round.  In contrast, Neotropical migrant and short-distance migrant species 

richness will be relatively unaffected by these measures, since these species are 

only present in their breeding areas during the most productive seasons.   

5. Total productivity will be strongly and positively associated with species richness 

of all guilds, except shrubland birds, as shrubland habitat generally has low 

productivity (Coops et al. 2009). 

 

Methods 

 Our study included the entire contiguous United States.  Avian species richness was 

calculated from the North American Breeding Bird Survey (BBS) (USGS Patuxent Wildlife 

Research Center 2008).  Analysis was centered on the year 2000, and we calculated the mean 

species richness of each BBS route over the period 1998-2002.  The BBS data set was 

preprocessed to remove observations collected by first year observers or in suboptimal weather, 

and poorly sampled species were excluded.  After the removal of these routes as well as routes 
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for which we did not have a full set of explanatory variables, we retained 2,555 routes.  We 

expected that relationships between species richness and productivity, climatic stability and 

habitat structure would differ among different functional guilds. Therefore in addition to overall 

species richness, we calculated species richness within three migratory guilds: permanent 

residents, short-distance migrants, and Neotropical migrants, and three habitat guilds: forest, 

shrubland, and grassland.  Because bird species detectability likely leads to undercounting of 

species, we used the software program COMDYN (Hines et al. 1999) to calculate estimated 

species richness, which was used as our measure of biodiversity for each BBS route.  

 In order to relate our explanatory variables to individual BBS routes, we created 19.7 km-

radius (one-half the length of a BBS route) circular buffers around the centroid of each BBS 

route (Flather and Sauer 1996).  This radius encompasses the entire BBS route, regardless of 

route path, and a circular buffer provides a uniform area and shape.  This distance is comparable 

to the median maximum natal dispersal distance (31 km) of 76 avian species (Sutherland et al. 

2000) and is consistent with the recommended scale for considering landscape effects on 

songbirds (Tittler et al. 2009).  This approach has been used successfully in several studies using 

BBS data (Flather and Sauer 1996, Rittenhouse et al. 2010, Albright et al. 2010, Albright et al. 

2011, Pidgeon et al. 2007). 

 

Explanatory Variables 

 Remotely sensed data have been increasingly utilized in a variety of ecological 

applications (Kerr and Ostrovsky 2003).  A major advantage of remotely sensed data over field 

acquired data is the ease of quickly acquiring high-spatial and -temporal resolution data over 
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very broad extents (Innes and Koch 1998, Roy 2003).  Methods of measuring biodiversity from 

remotely sensed data can be roughly divided into three categories (Nagendra 2001): 1 – direct 

mapping of individuals or assemblages that are visible from remotely sensed imagery (Innes and 

Koch 1998, Guinet et al. 1995), 2 – generating habitat maps for individual species (Pearlstine et 

al. 2002), and 3 - directly relating species distribution patterns to spectral reflectance or indices 

(Oindo et al. 2000, Oindo 2002b, Laurent et al. 2005).   

 Because we were studying patterns of biodiversity for many species over a broad extent, 

we opted for the third approach by directly relating avian species richness to remotely sensed 

measures of productivity, climatic stability, and habitat structure.  Of these three factors, climate 

and productivity can be measured by relatively mature remote sensing techniques.  Multiple 

indices of weather, vegetation, and productivity are widely available (e.g. DAYMET temperature 

and precipitation, MODIS land surface temperature, MODIS fraction of photosynthetically 

active radiation, MODIS net primary productivity, etc.)  In contrast, there are no standardized 

measures of habitat structure for broad areas.  Over small extents, lidar (light detection and 

ranging) has been effective (Clawges et al. 2008), but it is not currently feasible to acquire lidar 

data over broad extents.  Approaches that have shown success applicable to broad extent 

analyses include landscape composition and configuration metrics (Atauri and de Lucio 2001, 

Donovan and Flather 2002, Farina 1997, Kondo and Nakagoshi 2002), measures of image 

texture (St-Louis et al. 2006, St-Louis et al. 2009, Culbert et al. 2012, Wood et al. 2012), and 

measures of canopy height (see Chapter 3).  

To quantify productivity, our primary measures were of fraction of photosynthetically 

active radiation (fPAR).  This measure, captured by the MODIS sensor, quantifies the proportion 
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of the available solar radiation (in the photosynthetically active wavelengths) that is absorbed by 

vegetation.   This is therefore a good measure of vegetative productivity (Sellers et al. 1997).  

We used two measures of fPAR from a nationwide 1-km resolution dataset including data from 

2000-2006 (Coops et al. 2009) to quantify productivity, average annual sum of fPAR and the 

average annual minimum fPAR.  Annual minimum fPAR is a measure of productivity during 

most severe annual conditions (winter in most regions of the country).  This measure is therefore 

a potential limiting factor for permanent residents (Coops et al. 2009).  We also included 

elevation, as measured by the Shuttle Radar Topography Mission (SRTM) (Rabus et al. 2003) as 

a proxy for productivity, as productivity and elevation are related over a broad elevational scale.  

For each of these mentioned measures, we calculated the mean and standard deviation within 

each BBS route buffer, for a total of six variables.   

To quantify climatic stability, we again used a measure of fPAR.  Variability in fPAR is 

also a good measure of climatic stability, as vegetative productivity is strongly influenced by 

climate.  We included average intra-annual seasonality of fPAR over the period 2000-2006 

(Coops et al. 2009).  We calculated the mean and standard deviation of this measure within each 

BBS route buffer, for a total of two variables.  Lastly, ecoregion at the province level (Bailey 

1995) was added to capture other regional scale patterns in stability not already accounted for, 

adding one additional explanatory variable. 

Because we expected habitat structure to be the strongest factor influencing species 

richness patterns at fine scales, we included several different measures of vertical and horizontal 

habitat structure.  First, we used measures of land-cover composition and configuration 

calculated from the 2001 National Land-Cover Database (Homer et al. 2004).  To quantify 
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composition, we calculated proportion of 12 different landcover classes, total number of 

landcover classes, and Shannon diversity index (Shannon 1948) of landcover classes within each 

BBS route buffer.  To quantify landscape configuration, we used the software program GUIDOS 

(Vogt 2010) to calculate the area of core and edge forest, grassland, and shrubland for each BBS 

route buffer.  Together this yielded 20 explanatory variables. 

To characterize vertical habitat structure, we derived measures of vegetation canopy 

height and aboveground live dry biomass from the 30-m resolution National Biomass and 

Carbon Dataset 2000 (NBCD2000) (Kellndorfer et al. 2011).  From this dataset we calculated 

mean, standard deviation, and coefficient of variation of both basal area-weighted canopy height 

and aboveground live dry biomass (using the NBCD’s FIA-derived biomass model) for each 

BBS route buffer, yielding six variables in all. 

We calculated image texture measures from satellite imagery to further characterize 

within-landcover class heterogeneity. Texture measures were calculated from 114 Landsat 

TM/ETM+ scenes acquired from the LEDAPS database (Masek et al. 2006), a collection of 

atmospherically corrected Landsat images based on the GeoCover dataset (Tucker et al. 2004).  

We selected scenes from approximately the year 2000, to temporally coincide with our species 

richness data.  All images were acquired during the growing season, however, due to the extent 

of study, it was not possible to obtain all images for the same phenological stage.  Therefore, 

some extraneous phenological variability (and therefore noise) in the texture measures was likely 

present (Culbert et al. 2009).  For each image, a suite of first- and second-order texture measures 

were calculated using Matlab® R2010a (The MathWorks 1984-2010), with scripts adapted from 

(St-Louis et al. 2006).  First-order mean and standard deviation were calculated for TM bands 2, 
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3, 4, and 5, with 5x5 and 21x21 moving windows.  We also calculated second-order angular 

second moment (ASM), contrast, correlation, entropy, homogeneity, and sum of squares variance 

(SSVar).  Among all second-order texture measures, these six are considered the most useful for 

remote sensing analyses (Baraldi and Parmiggiani 1995, Kayitakire et al. 2006).  We expected 

this set of texture measures would adequately characterize vegetation structure and therefore be 

an appropriate set with which to relate avian species richness.  We quantized the imagery to 64 

values to limit the size of the GLCM and avoid matrices that are too sparsely populated to 

provide robust results (Vega-Garcia and Chuvieco 2006).  Second-order textures were calculated 

using an omni-directional GLCM (calculated as the mean of the four possible directional 

GLCMs).  Preliminary analysis found strong correlation between texture measures derived from 

5x5 and 21x21 window sizes, so, due to the substantial computational requirements, second-

order texture measures were calculated only with a 5x5 window and only for TM bands 2, 3, 4, 

and 5.  Bands 1 and 7 were excluded because we expected band 1 results to be highly correlated 

with band 2, and band 7 was less useful than other bands in prior exploratory analysis.  This 

resulted in a total of 40 texture measures (16 first-order and 24 second-order).  For each BBS 

route, we calculated the within-buffer mean and standard deviation of each of the 40 texture 

measures, yielding 80 variables total. 

 

Statistical analysis 

 Our explanatory variable pool included 115 candidate variables.  Though we had a large 

sample size, this was still a large number of variables, and we expected there would be a high 

level of correlation, particularly among the texture variables (Baraldi and Parmiggiani 1995).  
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We used a multi-step process to reduce the variable pool.  First, we created univariate models for 

species richness of each guild as a function of each explanatory variable in order to identify those 

variables with very low explanatory power, and we inspected a scatter plot of each model for 

evidence of non-linear relationships.  Only variables that yielded an R
2
 value > 0.05 for at least 

one avian guild were retained for further analysis.  We then analyzed the correlation of the 

remaining variables in order to exclude correlated variables and further reduce the number of 

explanatory variables.  We ranked the individual explanatory variables based on their R
2
 value 

for the all birds guild univariate models (results not shown).  Rankings of variables based on 

performance for other guilds were similar.  For each explanatory variable pair with correlation 

coefficient |r| > 0.6, the variable with the lower univariate rank was dropped from subsequent 

analysis.  This was carried out in stages, first examining correlation within a texture measure 

(e.g. correlation among different window sizes and bands of the same texture), then examining 

correlation between remaining texture measures, and finally considering correlation among the 

remaining texture measures and the rest of the candidate explanatory variables. 

 Once correlated variables were removed from the pool, variable contribution was 

evaluated in two stages.  First, best subset regression (Miller 1990) was used to determine the 

models with the highest adjusted-R
2
.  For each avian guild, the 10 best models with 1 though 10 

variables were determined (100 models total), and the number of times each variable was 

included in a model was counted.  For each guild, the top 12 variables were selected.  As in 

Chapter 3, we first used best subset regression.  The advantages of best subset regression are that 

it is an exhaustive procedure and can handle a large pool of candidate explanatory variables, as 
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was the case in this study.  The disadvantage is that the choices of the number of top models and 

the number of variables per model are relatively arbitrary and can affect the results. 

 For this reason we relied on hierarchical partitioning (Chevan and Sutherland 1991) as 

the method for determining our final variable contribution (as in Chapter 3).  Like best subset 

regression, hierarchical partitioning is also an exhaustive approach. The advantages of 

hierarchical partitioning are that this method calculates the contribution of each variable in the 

context of other explanatory variables, and there are no arbitrary parameters to set.  The 

disadvantage is that, due to computational limitations, the maximum number of variables that 

can be considered is twelve.  We used the variable ranking from best subset regression to 

determine the top 12 variables (for each guild species richness model) to be considered in the 

hierarchical partitioning.  The calculation was carried out in R (R Development Core Team 

2012) using the hier.part library (Walsh and Mac Nally 2008).  Because we included more than 

9 variables, the hierarchical partitioning was carried out 1000 times, randomly permuting the 

variable order each time, in order to compensate for a known rounding error in the computation 

(Olea et al. 2010).  

 

Results 

Correlation 

As expected, there was substantial correlation among the variables in the candidate 

explanatory variable pool.  After ranking the texture measures by univariate R
2
 (results not 

shown) and removing lower ranking variables from all variable pairs with correlation coefficient 
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|r| > 0.6, 8 of 80 texture measures were retained for further analysis (Table 4-1).  The retained 

variables included two first-order and six second-order measures.   

 We then fitted univariate models for species richness of each guild as a function of each 

of the retained texture variables and the other candidate explanatory variables (Table 4-2).  These 

models revealed many strong relationships.  Mean of fPAR annual sum, mean canopy height, 

standard deviation of canopy height, and mean of 5x5 band 3 mean each had an R
2
 value > 0.50 

for one of the seven guilds.  Mean of fPAR annual minimum, mean of fPAR annual seasonality, 

mean biomass, standard deviation of biomass, and proportion deciduous forest had an R
2
 value > 

0.30 for at least one guild.  A correlation matrix was calculated for these 37 variables (not 

shown), and for variable pairs with a correlation coefficient |r| > 0.6 the variable with the lowest 

univariate R
2
 values was dropped from further analysis.  This yielded 23 remaining variables 

(Table 4-3), including 3 productivity variables, 3 climatic stability variables, and 17 habitat 

structure variables.  The retained variables included 9 of 14 landcover composition metrics, 0 of 

6 landcover configuration metrics, ecoregion province, 4 of 6 fPAR measures, 1 of 32 first-order 

texture measures, 6 of 48 second-order texture measures, 1 of 6 canopy height/biomass variables, 

and 1 of 2 elevation variables.  

 

Best Subset Analysis 

The results of the best subset regression analysis (Figure 4-3) showed that some variables 

were included in the best models with much higher frequency than others.  Of the productivity 

variables, mean fPAR sum and standard deviation of fPAR minimum were frequently included 
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in models for nearly all guilds.  Mean elevation was a top 12 variable for 4 of the seven guilds, 

but it was much less frequently included than other variables.  Of climatic stability measures, 

mean of fPAR seasonality ranked in the top 12 variables for all guilds and was very frequently 

included in those models.  Standard deviation of fPAR seasonality and ecoregion province 

ranked in the top 12 variables in only 4 and 2 guilds, respectively, and were much less frequently 

included.  Of the measures of habitat structure, landcover composition metrics performed well, 

with proportion deciduous forest, proportion evergreen forest, and proportion grassland 

frequently included in models of most guilds.  Among the texture measures, standard deviation 

of band 2 ASM and mean of band 5 homogeneity ranked in the top 12 for 7 and 5 guilds, 

respectively, although the number of times these variables were included was less than the top 

variables in other categories.  Of the five other texture measures, four ranked in the top 12 

variables of at least one guild, but overall these variables were infrequently included in models. 

When considering the results by guild, a few patterns were noticeable.  The models for all 

birds, forest birds, and Neotropical migrants are quite similar, with the most-frequently included 

variables nearly identical for the three guilds.  Proportion deciduous forest was the most 

frequently included variable for all birds and Neotropical migrants, and the second-most 

included guild for forest birds.  This was expected, as these guilds are dominated by forest-

associated birds.  Grassland bird models frequently included proportion grassland, proportion 

pasture, and proportion cultivated crops.  Short-distance migrants showed a slightly different 

pattern than the other guilds, with measures of productivity and climatic stability the three most 

frequently included variables.  Seasonality was key for permanent residents, with mean fPAR 

seasonality included in 91 of 100 models.   
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Overall the models showed some balance between measures of productivity, climatic 

stability, and habitat structure.  All guilds except for shrubland birds had at least one variable 

from each of the three groups included in 50 (out of 100) or more models.  Shrubland birds had a 

comparatively weaker response to measures of productivity and climatic stability.  Among 

highly-included variables, productivity variables were included in at least 70 of 100 models for a 

given guild 3 times, climatic stability 4 times, and habitat structure 5 times. 

 

Hierarchical Partitioning Analysis 

 Hierarchical partitioning analysis (Figure 4-4) showed similar results to best-subsets 

selection overall, but there were some noticeable differences.  Measures of productivity were 

again shown be important in models of species richness across all guilds, this was especially 

apparent for mean fPAR sum and standard deviation of fPAR Minimum.  The contribution of 

measures of climatic stability was much lower than expected based on the best subset results.  In 

the best subsets regression, mean fPAR seasonality was the strongest measure of climatic 

stability, and was included in models with frequency similar to productivity measures.  In 

hierarchical partitioning, mean fPAR seasonality still had some contribution across all guilds, but 

the magnitude was much lower than measures of productivity.  The notable exception was the 

independent contribution for the permanent residents model, which remained very high.  Among 

habitat structure measures, proportion deciduous forest remained a key variable, outranking all 

other habitat structure variables in independent contribution for all birds, forest birds, shrubland 

birds, and Neotropical migrants.  Proportion grassland remained important as the habitat 

structure variable with the highest and second-highest independent contribution for grassland 
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bird and shrubland bird models, respectively.  Assorted texture variables had moderate 

independent contribution values for different guild models, but none performed exceptionally.   

 To gain insight into overall variable explanatory contribution, the independent 

contribution of each variable was summed across the seven models (Table 4-4).  Mean fPAR 

sum was clearly the most dominant variable with a total independent contribution of 98.1.  

Proportion deciduous forest, standard deviation of fPAR minimum, and mean fPAR seasonality 

were the next strongest variables with total independent contributions in the range 66.7-69.8.  

When these independent contribution values are summed by variable category (Table 4-5), habit 

structure measures have the highest total independent contribution with 417.5, followed by 

productivity with 190.6, and climatic stability with 91.9, though it is important to note that there 

were substantially more habitat structure variables (17) than productivity (3) or climatic stability 

(3). 

 Total independent contribution by variable category and guild (Figure 4-5), also showed 

habitat structure to be dominant over productivity and climatic stability.  In all birds, forest birds, 

Neotropical migrants, and short-distance migrants, habitat structure accounted for 60-70% of the 

total independent contribution, productivity 20-35%, and climatic stability less than 10%.  In 

shrubland birds, habitat structure was even more dominant, with 80% of the independent 

contribution, compared to roughly 10% each for productivity and climatic stability.  The 

contribution of different variable categories was more balanced for grassland birds, with habitat 

structure still the highest at 51%, but productivity and climatic stability contributing 28% and 

22% respectively.  Permanent residents had the most balanced contribution across variable 

categories, as the only guild where habitat structure was not the highest-contributing category.  
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For this guild, productivity variables contributed 36%, climatic stability 32% and habitat 

structure 32%. 

 The adjusted R
2
 values of the final models for each guild (including the 12 top-

performing explanatory variables) varied widely by guild.  The model for forest birds was the 

strongest with an adjusted R
2
 of 0.67.  The grassland birds and Neotropical migrant models had 

the next highest adjusted R
2
 values of 0.59 and 0.53, respectively.  The models for all species 

and permanent residents each had an adjusted R
2
 value of 0.45.  The shrubland birds and short-

distance migrant models were the weakest, with adjusted R
2
 values of 0.29 and 0.21, 

respectively. 

 

Discussion 

 We found that measures of productivity, climatic stability, and habitat structure, when 

considered jointly, all played a role in explaining nationwide avian species richness patterns for 

all birds, three habitat guilds, and three migratory habit guilds.  Of the five variables with the 

highest independent contribution to models of avian species richness, two were measures of 

productivity, one was a measure of climatic stability, and two were measures of habitat structure.  

Though all three of these measures contributed explanatory power, our analysis found measures 

of habitat structure to be most important overall, followed by productivity, then climatic stability.  

This ranking held in models of all guilds except permanent residents, where productivity 

variables had the largest independent contribution, followed by climatic stability and then habitat 

structure.   
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 There was mixed support for our first hypothesis: that even when combined, variables 

representing productivity, climatic stability and habitat structure would all make a contribution to 

the explanation of avian species richness.  Considering all variables, habitat structure was clearly 

a dominant factor in our results (Figure 4-5), but measures of productivity, and, to a lesser extent, 

climatic stability also made contributions.  Climatic stability measures were particularly 

important in species richness models of grassland birds and permanent residents.  When 

considering individual variables, the fact that variables from all three categories ranked in the top 

five (Table 4-4) supports our prediction of complementarity, especially considering that there 

were substantially more variables representing habitat structure than productivity or climatic 

stability. 

On the other hand, comparison of coefficients of determination between these models and 

those in Chapter 3 tells a somewhat different story.  In Chapter 3, we followed a similar 

statistical approach, but included only measures of habitat structure.   The final habitat structure-

based models of species richness from Chapter 3 for all birds, forest birds, shrubland birds, 

Neotropical migrants, and short-distance migrants yielded adjusted R
2
 values within 0.03 of the 

corresponding models from this analysis.  The grassland bird species richness model showed 

improvement over the habitat structure-only model, increasing in adjusted R
2
 from 0.48 to 0.59.  

The standout model was that for permanent resident species richness, where adjusted R
2
 more 

than doubled from the habitat structure- only model (0.45 versus 0.20).  The strong improvement 

in models of grassland bird and permanent resident richness with the addition of measures of 

productivity and climatic stability indicate complementarity in these cases.  In contrast, the lack 

of improvement for the other guilds indicates that measures of productivity and climatic stability 
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failed to introduce additional explanatory power.  One possible explanation for this is the 

relationship between mean canopy height and mean fPAR sum.  In Chapter 3, standard deviation 

of canopy height and mean canopy height were the explanatory variables with the highest and 

second-highest independent contribution of habitat structure variables.  In this Chapter (Chapter 

4), mean canopy height and standard deviation of canopy height were excluded from analysis 

because they were highly correlated with mean fPAR sum (r = 0.78 and r = 0.75, respectively), 

our primary measure of productivity.  This indicates that the reduction in explanatory power 

from removing the canopy height variables was offset by the explanatory power of mean fPAR 

sum with little net change, thus these variables appear to be redundant.  It is clear these variables 

are confounded, as areas with high canopy height have high productivity (and conversely, areas 

with high productivity are capable of supporting high canopy height).  It is difficult to determine 

if the birds are responding more to the increased structural complexity with the higher canopy 

height, the high level of productivity, or both.  

 We predicted that because we were modeling avian species richness at a fine scale (that 

of a BBS route), habitat structure variables would be the most important (prediction 2), since 

measures of habitat structure have been shown to be more influential at a local scale, while 

productivity and climatic stability are stronger drivers at a regional scale (Mackey and 

Lindenmayer 2001, Pearson and Dawson 2003).  We found this to be the case, with habitat 

structure variables making the strongest contribution to models for six of seven guilds (Figure 

4-5).  It is important to note though, that the magnitude of this difference may be inflated since 

we had many more variables representing habitat structure than productivity or climatic stability.  

Though productivity and climatic stability appeared less influential at this scale, it was important 
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to include them because models of species richness and species distribution that include 

environmental predictors for various scales have higher accuracy, even if the scale of different 

predictors is not explicitly considered (Meyer and Thuiller 2006). 

  Our third prediction was that habitat-based guild models would be strongly influenced by 

the proportion of the relevant habitat type, and that proportion deciduous forest and measures of 

canopy height would have strong positive relationships to species richness for all birds, forest 

birds, and Neotropical migrants.  Proportion forest and proportion grassland did have a strongly 

positive relationship to forest bird and grassland bird species richness, respectively, but 

shrubland bird species richness was not significantly related to proportion scrub shrub (Table 

4-2).  Proportion deciduous forest, mean canopy height, and standard deviation of canopy height 

had very strong, positive univariate relationships with species richness of all birds, Neotropical 

migrants, and forest birds, however, as previously mentioned, the two canopy height measures 

were highly correlated with mean sum of fPAR, and were thus excluded from multivariate 

analysis.  These findings concur with our findings from Chapter 3. 

 Prediction four stated that permanent residents would have a strong negative relationship 

with seasonality and a positive relationship with annual minimum productivity, while 

Neotropical and short-distance migrants would have a weak relationship with these variables.  

Univariate models (Table 4-2) showed this to be conclusively true, with permanent residents 

species richness showing a significant positive relationship to mean of fPAR annual minimum 

(R
2
 = 0.34) and a significant negative relationship with mean of fPAR annual seasonality (R

2
 = 

0.30), while relationships with the other two migratory guilds were negligible (R
2
 values from 

0.00 to 0.05).  In the multivariate models (Figure 4-4), mean of fPAR seasonality had a much 
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higher independent contribution to permanent resident richness (23.5) than Neotropical (5.8) or 

short-distance migrant richness (8.2).  Mean of fPAR annual minimum was excluded from 

multivariate analysis due to correlation with mean of fPAR sum, but the independent 

contribution of standard deviation of fPAR annual minimum was higher for permanent residents 

(14.0) than Neotropical (5.4) or short-distance migrants (8.4).  Our findings concur with both the 

expectations and findings of Coops (2009), which was expected since we used the same 

measures of fPAR in our study.  The distinction is that we modeled species richness at the BBS 

route level as compared to regional species richness. 

 Our final prediction was that total productivity would be strongly and positively 

associated with species richness of all guilds except shrubland birds, as shrublands are areas of 

relatively low vegetative productivity.  Our results were mostly in support of this prediction.  

Species richness in all seven guilds was significantly related to mean of fPAR annual sum with 

strong, positive relationships for all birds, Neotropical migrants, permanent residents, and forest 

birds (R
2
 from 0.21 to 0.54), weak positive relationships for short-distance migrants and 

shrubland birds (R
2
 of 0.07 and 0.09 respectively, and surprisingly, a strong negative relationship 

with grassland birds (R
2
 = 0.28).  The relationship with shrubland birds was as expected, but the 

response of grassland birds was a surprise.  It is likely that the negative relationship is due to 

grasslands having lower productivity than forested areas, with grassland birds obviously being 

more associated with the former.  In our multivariate models (Figure 4-4), mean of fPAR sum 

was the variable with the highest overall contribution, and as expected, it was strongly related to 

all guilds except shrubland birds, where it had been previously excluded for not ranking in the 

top 12 variables in the best subsets analysis.  This finding stands in contrast to Coops (2009) who 
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found that, at the regional level, seasonal variability was as stronger driver of species richness 

than annual fPAR sum.  We did find that seasonality was more important than productivity for 

permanent residents, and the two measures had similar contributions for grassland birds, but for 

the other guilds, productivity (mean fPAR sum) had a substantially higher independent 

contribution than mean fPAR seasonality.  It is not clear what would cause this difference 

between a regional and local scale analysis. 

  Among the seven guilds, contribution of variables for models of grassland bird and 

permanent resident species richness stood out as dissimilar from the other guilds.  As already 

discussed in relation to our fourth prediction, in the permanent resident species richness model, 

measures of productivity and climatic stability had higher independent contributions than 

measures of habitat structure, in contrast to all other guilds.  This is logical as permanent 

residents are more influenced by extreme conditions since they are present in their breeding area 

year-round, in contrast to Neotropical and short-distance migrants.  Grassland bird richness 

models also had high independent contribution from measures of climatic stability, primarily 

mean fPAR seasonality (which showed a strong, positive univariate relationship with grassland 

bird species richness).  This is somewhat puzzling, as one might expect grassland bird species 

richness to be negatively associated with seasonality, as grasslands provide little buffer against 

weather conditions (e.g., as opposed to forests). 

 We modeled patterns of avian species richness for multiple guilds at a fine-scale across 

the contiguous United States as a function of productivity, climatic stability, and productivity.  

We showed that measures of all three factors were important, though at our scale of analysis 

(BBS route level), habitat structure was clearly dominant for all guilds (except permanent 
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residents), followed by productivity, then climatic stability.  For models of permanent resident 

species richness, measures of productivity had the highest independent contribution, followed by 

climatic stability, then habitat structure.  Future studies of spatial patterns of biodiversity will 

benefit from the inclusion of environmental variables representing productivity, climatic 

stability, and habitat structure. 



170 

 

 

 

References  

Albright T. P., A. M. Pidgeon, C. D. Rittenhouse, M. K. Clayton, C. H. Flather, P. D. Culbert, 

and V. C. Radeloff. 2011. Heat waves measured with MODIS land surface temperature data 

predict changes in avian community structure. Remote Sensing of Environment 115:245-

254. 

Albright T. P., A. M. Pidgeon, C. D. Rittenhouse, M. K. Clayton, C. H. Flather, P. D. Culbert, B. 

D. Wardlow, and V. C. Radeloff. 2010. Effects of drought on avian community structure. 

Global Change Biology 16:2158-2170. 

Atauri J. A., J. V. de Lucio. 2001. The role of landscape structure in species richness distribution 

of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landscape 

Ecology 16:147-159. 

Bailey R. G. 1995. Description of the Ecoregions of the United States. United States Department 

of Agriculture. 

Baraldi A., F. Parmiggiani. 1995. An investigation of the textural characteristics associated with 

gray-level cooccurrence matrix statistical parameters. IEEE Transactions on Geoscience and 

Remote Sensing 33:293-304. 

Chevan A., M. Sutherland. 1991. Hierarchical partitioning. American Statistician 45:90-96. 



171 

 

 

 

Clawges R., K. Vierling, L. Vierling, and E. Rowell. 2008. The use of airborne lidar to assess 

avian species diversity, density, and occurrence in a pine. Remote Sensing of Environment 

112:2064-2073. 

Connell J. H. 1978. Diversity in tropical rain forests and coral reefs - high diversity of trees and 

corals is maintained only in a non-equilibrium state. Science 199:1302-1310. 

Coops N. C., R. H. Waring, M. A. Wulder, A. M. Pidgeon, and V. C. Radeloff. 2009. Bird 

diversity: a predictable function of satellite-derived estimates of seasonal variation in 

canopy light absorbance across the United States. Journal of Biogeography 36:905-918. 

Culbert P. D., A. M. Pidgeon, V. St-Louis, D. Bash, and V. C. Radeloff. 2009. The impact of 

phenological variation on texture measures of remotely sensed imagery. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing 2:299-309. 

Culbert P. D., V. C. Radeloff, V. St-Louis, C. H. Flather, C. D. Rittenhouse, T. P. Albright, and 

A. M. Pidgeon. 2012. Modeling broad-scale patterns of avian species richness across the 

Midwestern United States with measures of satellite image texture. Remote Sensing of 

Environment 118:140-150. 

Currie D. J. 1991. Energy and large-scale patterns of animal-species and plant-species richness. 

American Naturalist 137:27-49. 

Currie D. J., G. G. Mittelbach, H. V. Cornell, R. Field, J. F. Guegan, B. A. Hawkins, D. M. 

Kaufman, J. T. Kerr, T. Oberdorff, E. O'Brien, and J. R. G. Turner. 2004. Predictions and 



172 

 

 

 

tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology 

Letters 7:1121-1134. 

Donovan T. M., C. H. Flather. 2002. Relationships among North American songbird trends, 

habitat fragmentation, and landscape occupancy. Ecological Applications 12:364-374. 

Erdelen M. 1984. Bird Communities and Vegetation Structure .1. Correlations and comparisons 

of simple and diversity indexes. Oecologia 61:277-284. 

Evans K. L., P. H. Warren, and K. J. Gaston. 2005. Species-energy relationships at the 

macroecological scale: a review of the mechanisms. Biological Reviews 80:1-25. 

Farina A. 1997. Landscape structure and breeding bird distribution in a sub-Mediterranean agro-

ecosystem. Landscape Ecology 12:365-378. 

Fischer A. G. 1960. Latitudinal variations in organic diversity. Evolution 14:64-81. 

Fjeldsa J., J. C. Lovett. 1997. Biodiversity and environmental stability. Biodiversity and 

Conservation 6:315-323. 

Fjeldsa J., D. Ehrlich, E. Lambin, and E. Prins. 1997. Are biodiversity 'hotspots' correlated with 

current ecoclimatic stability? A pilot study using the NOAA-AVHRR remote sensing data. 

Biodiversity and Conservation 6:401-422. 

Flather C. H., J. R. Sauer. 1996. Using landscape ecology to test hypotheses about large-scale 

abundance patterns in migratory birds. Ecology 77:28-35. 



173 

 

 

 

Gaston K. J. 2000. Global patterns in biodiversity. Nature 405:220-227. 

Guinet C., P. Jouventin, and J. Malacamp. 1995. Satellite remote-sensing in monitoring change 

of seabirds - use of spot image in king penguin population increase at Ile-Aux-Cochons, 

Crozet Archipelago. Polar Biology 15:511-515. 

Hines J. E., T. Boulinier, J. D. Nichols, J. R. Sauer, and K. H. Pollock. 1999. COMDYN: 

software to study the dynamics of animal communities using a capture-recapture approach. 

Bird Study 46:209-217. 

Homer C., C. Q. Huang, L. M. Yang, B. Wylie, and M. Coan. 2004. Development of a 2001 

Nnational land-cover database for the United States. Photogrammetric Engineering and 

Remote Sensing 70:829-840. 

Hurlbert A. H., J. P. Haskell. 2003. The effect of energy and seasonality on avian species 

richness and community composition. American Naturalist 161:83-97. 

Innes J. L., B. Koch. 1998. Forest biodiversity and its assessment by remote sensing. Global 

Ecology and Biogeography 7:397-419. 

Kayitakire F., C. Hamel, and P. Defourny. 2006. Retrieving forest structure variables based on 

image texture analysis and IKONOS-2 imagery. Remote Sensing of Environment, 102:390-

401. 

Kellndorfer J., W. Walker, L. LaPoint, J. Bishop, T. Cormier, G. Fiske, and K. Kirsch. 2011. The 

National Biomass and Carbon Dataset - A hectare-scale dataset of vegetation height, 



174 

 

 

 

aboveground biomass and carbon stock of the conterminous United States. Data Published 

by the Woods Hole Research Center http://whrc.org/nbcd. 

Kerr J. T., M. Ostrovsky. 2003. From space to species: ecological applications for remote 

sensing. Trends in Ecology & Evolution 18:299-305. 

Klopfer P. H. 1959. Environmental determinants of faunal diversity. The American Naturalist 

93:337-342. 

Kondo T., N. Nakagoshi. 2002. Effect of forest structure and connectivity on bird distribution in 

a riparian landscape. Phytocoenologia 32:665-676. 

Krauss J., I. Steffan-Dewenter, and T. Tscharntke. 2003. How does landscape context contribute 

to effects of habitat fragmentation on diversity and population density of butterflies? Journal 

of Biogeography 30:889-900. 

Laurent E. J., H. Shi, D. Gatziolis, J. P. LeBouton, M. B. Walters, and J. Liu. 2005. Using the 

spatial and spectral precision of satellite imagery to predict wildlife occurrence patterns. 

Remote Sensing of Environment 97:249-262. 

Lindeman R. L. 1942. The trophic-dynamic aspect of ecology. Ecology 23:399-418. 

MacArthur R., H. Recher, and M. Cody. 1966. On the relation between habitat selection and 

species diversity. The American Naturalist 100:319-332. 



175 

 

 

 

MacArthur R. H. 1972. Geographical Ecology: Patterns in the Distribution of Species. Harper & 

Row. 

MacArthur R. H. 1969. Species packing, and what interspecies competition minimizes. 

Proceedings of the National Academy of Sciences of the United States of America 64:1369. 

MacArthur R. H., E. O. Wilson. 1967. The Theory of Island Biogeography. Princeton University 

Press, Princeton, NJ. 

MacArthur R. H., J. W. MacArthur. 1961. On bird species diversity. Ecology 42:594-598. 

Mackey B., D. Lindenmayer. 2001. Towards a hierarchical framework for modelling the spatial 

distribution of animals. Journal of Biogeography 28:1147-1166. 

Masek J. G., E. F. Vermote, N. E. Saleous, R. Wolfe, F. G. Hall, K. F. Huemmrich, F. Gao, J. 

Kutler, and T. K. Lim. 2006. A Landsat surface reflectance dataset for North America, 

1990-2000. IEEE Geoscience and Remote Sensing Letters 3:68-72. 

Mcgarigal K., W. C. Mccomb. 1995. Relationships between landscape structure and breeding 

birds in the Oregon coast range. Ecological Monographs 65:235-260. 

Meyer C., W. Thuiller. 2006. Accuracy of resource selection functions across spatial scales. 

Diversity and Distributions 12:288-297. 

Miller A. J. 1990. Subset Selection in Regression. Chapman and Hall, London. 



176 

 

 

 

Nagendra H. 2001. Using remote sensing to assess biodiversity. International Journal of Remote 

Sensing 22:2377-2400. 

Oindo B. O. 2002a. Patterns of herbivore species richness in Kenya and current ecoclimatic 

stability. Biodiversity and Conservation 11:1205-1221. 

Oindo B. O. 2002b. Predicting mammal species richness and abundance using multi-temporal 

NDVI. Photogrammetric Engineering and Remote Sensing 68:623-629. 

Oindo B. O., R. A. de By, and A. K. Skidmore. 2000. Interannual variability of NDVI and bird 

species diversity in Kenya. International Journal of Applied Earth Observation and 

Geoinformation, 2:172-180. 

Olea P. P., P. Mateo-Tomas, and A. de Frutos. 2010. Estimating and modelling bias of the 

hierarchical partitioning public-domain software: implications in environmental 

management and conservation. Plos One 5:e11698. 

Pearlstine L. G., S. E. Smith, L. A. Brandt, C. R. Allen, W. M. Kitchens, and J. Stenberg. 2002. 

Assessing state-wide biodiversity in the Florida Gap analysis project. Journal of 

environmental management 66:127-144. 

Pearson R., T. Dawson. 2003. Predicting the impacts of climate change on the distribution of 

species: are bioclimate envelope models useful? Global Ecology and Biogeography 12:361-

371. 



177 

 

 

 

Pianka E. R. 1966. Latitudinal gradients in species diversity - a review of concepts. American 

Naturalist 100:33-46. 

Pidgeon A. M., V. C. Radeloff, C. H. Flather, C. A. Lepczyk, M. K. Clayton, T. J. Hawbaker, 

and R. B. Hammer. 2007. Associations of forest bird species richness with housing and 

landscape patterns across the USA. Ecological Applications 17:1989-2010. 

Preston F. W. 1962. The canonical distribution of commonness and rarity: part I. Ecology 

43:185-215. 

R Development Core Team. 2012. R: A language and environment for statistical computing.  

V. 2.15. 

Rabus B., M. Eineder, A. Roth, and R. Bamler. 2003. The shuttle radar topography mission - a 

new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of 

Photogrammetry and Remote Sensing 57:241-262. 

Rittenhouse C. D., A. M. Pidgeon, T. P. Albright, P. D. Culbert, M. K. Clayton, C. H. Flather, C. 

Huang, J. G. Masek, and V. C. Radelof. 2010. Avifauna response to hurricanes: regional 

changes in community similarity. Global Change Biology 16:905-917. 

Rosenzweig M. L. 1995. Species Diversity in Space and Time. Cambridge University Press. 

Rotenberry J. T., J. A. Wiens. 1980. Habitat structure, patchiness, and avian communities in 

North-American steppe Vvegetation - a multivariate-analysis. Ecology 61:1228-1250. 



178 

 

 

 

Rowhani P., C. A. Lepczyk, M. A. Linderman, A. M. Pidgeon, V. C. Radeloff, P. D. Culbert, and 

E. F. Lambin. 2008. Variability in energy influences avian distribution patterns across the 

USA. Ecosystems 11:854-867. 

Roy P. S. 2003. Biodiversity conservation - perspective from space. National Academy Science 

Letters-India 26:169-184. 

Sanders H. L. 1968. Marine benthic diversity - a comparative study. American Naturalist 

102:243-282. 

Schoener T. W. 1989. Food webs from the small to the large. Ecology 70:1559-1589. 

Sellers P. J., R. E. Dickinson, D. A. Randall, A. K. Betts, F. G. Hall, J. A. Berry, G. J. Collatz, A. 

S. Denning, H. A. Mooney, C. A. Nobre, N. Sato, C. B. Field, and A. Henderson-Sellers. 

1997. Modeling the exchanges of energy, water, and carbon between continents and the 

atmosphere. Science 275:pp. 502-509. 

Shannon C. E. 1948. A mathematical theory of communication. Bell System Technical Journal 

27:379-423 and 623-656. 

Sousa W. P. 1984. The role of disturbance in natural communities. Annual Review of Ecology 

and Systematics 15:353-391. 

Sousa W. P. 1979. Disturbance in marine inter-tidal boulder fields - the non-equilibrium 

maintenance of species-diversity. Ecology 60:1225-1239. 



179 

 

 

 

Stevens G. C. 1992. The Elevational Gradient in Altitudinal Range: An Extension of Rapoport's 

Latitudinal Rule to Altitude. The American Naturalist 140:893. 

St-Louis V., A. M. Pidgeon, V. C. Radeloff, T. J. Hawbaker, and M. K. Clayton. 2006. High-

resolution image texture as a predictor of bird species richness. Remote Sensing of 

Environment 105:299-312. 

St-Louis V., A. M. Pidgeon, M. K. Clayton, B. A. Locke, D. Bash, and V. C. Radeloff. 2009. 

Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan 

Desert of New Mexico. Ecography 32:468-480. 

Sutherland G. D., A. S. Harestad, K. Price, and K. P. Lertzman. 2000. Scaling of natal dispersal 

distances in terrestrial birds and mammals. Conservation Ecology 4:16. 

Tews J., U. Brose, V. Grimm, K. Tielborger, M. C. Wichmann, M. Schwager, and F. Jeltsch. 

2004. Animal species diversity driven by habitat heterogeneity. Journal of Biogeography 

31:79-92. 

The MathWorks I. 1984-2010. Matlab. R2010a:. 

Tittler R., M. Villard, and L. Fahrig. 2009. How far do songbirds disperse? Ecography 32:1051-

1061. 

Tucker C. J., D. M. Grant, and J. D. Dykstra. 2004. NASA's global orthorectified landsat data 

set. Photogrammetric Engineering and Remote Sensing 70:313-322. 



180 

 

 

 

USGS Patuxent Wildlife Research Center. 2008. North American Breeding Bird Survey ftp data 

set, version 2008.0. 

Vega-Garcia C., E. Chuvieco. 2006. Applying local measures of spatial heterogeneity to 

Landsat-TM images for predicting wildfire occurrence in mediterranean landscapes. 

Landscape Ecology 21:595-605. 

Vogt P. 2010. GUIDOS. 1.3. 

Wallace A. R. 1878. Tropical Nature and Other Essays. MacMillan, London. 

Walsh C., R. Mac Nally. 2008. hier.part: Hierarchical Partitioning. R package version 1.0-3:. 

Williams C. B. 1943. Area and the number of species. Nature 152:264-267. 

Willson M. F. 1974. Avian community organization and habitat structure. Ecology 55:1017-

1029. 

Wood E. M., A. M. Pidgeon, V. C. Radeloff, and N. S. Keuler. 2012. Image texture as a 

remotely sensed measure of vegetation structure. Remote Sensing of Environment 121:516-

526. 

Wright D. H. 1983. Species-energy theory - an extension of species-area theory. Oikos 41:496-

506. 

 

 



181 

 

 

 

Tables 

Table 4-1. Texture variables calculated from Landsat imagery.  Based on correlation analysis, 72 variables 

(marked "-") were excluded from subsequent analysis, and 8 variables (marked "X") were retained. 

Texture Landsat Band 

 2 3 4 5 

Mean of 5x5 Mean - X - - 

Mean of 21x21 Mean - - - - 

Standard Deviation of 5x5 Mean - X - - 

Standard Deviation of 21x21 Mean - - - - 

Mean of 5x5 Standard Deviation - - - - 

Mean of 21x21 Standard Deviation - - - - 

Standard Deviation of 5x5 Standard Deviation - - - - 

Standard Deviation of 21x21 Standard Deviation - - - - 

Mean of 5x5 Angular Second Moment - - X - 

Standard Deviation of 5x5 Angular Second Moment X - - - 

Mean of 5x5 Contrast - - - - 

Standard Deviation of 5x5 Contrast - - - - 

Mean of 5x5 Correlation - X X - 

Standard Deviation of 5x5 Correlation - X - - 

Mean of 5x5 Entropy - - - - 

Standard Deviation of 5x5 Entropy - - - - 

Mean of 5x5 Homogeneity - - - X 

Standard Deviation of 5x5 Homogeneity - - - - 

Mean of 5x5 Sum of Squares Variance - - - - 

Standard Deviation of 5x5 Sum of Squares Variance - - - - 
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Table 4-2.  R
2
 values for univariate models of species richness.  Sign indicates direction of relationship. *** p-value < 0.001, ** p-value < 0.01, * p-value 

< 0.05.  Values > 0.15 bolded for emphasis.  Struck-through variable names indicate variables dropped from subsequent analysis due to low R
2
 values or 

correlation with other variables. 

  

All Species 
Neotropical 

Migrants 

Permanent 

Residents 

Short-

Distance 

Migrants 

Forest Birds 
Grassland 

Birds 

Shrubland 

Birds 

Proportion Water 0.00(+)* 0.00(+)** 0.00(+) 0.00(+) 0.01(+)*** 0.01(-)*** 0.00(-) 

Proportion Ice 0.00(+) 0.00(+) 0.00(-) 0.00(+) 0.00(+) 0.00(-)** 0.00(-) 

Proportion Developed 0.00(+)* 0.00(+)* 0.01(+)*** 0.00(+)* 0.02(+)*** 0.02(-)*** 0.00(+)*** 

Proportion Barren 0.05(-)*** 0.04(-)*** 0.02(-)*** 0.03(-)*** 0.05(-)*** 0.00(-)** 0.01(-)*** 

Proportion Deciduous Forest 0.25(+)*** 0.34(+)*** 0.02(+)*** 0.05(+)*** 0.34(+)*** 0.06(-)*** 0.10(+)*** 

Proportion Evergreen Forest 0.03(+)*** 0.01(+)*** 0.03(+)*** 0.02(+)*** 0.06(+)*** 0.15(-)*** 0.00(+) 

Proportion Mixed Forest 0.08(+)*** 0.12(+)*** 0.00(+)** 0.01(+)*** 0.13(+)*** 0.08(-)*** 0.00(+)*** 

Proportion Scrub Shrub 0.12(-)*** 0.16(-)*** 0.00(-) 0.07(-)*** 0.25(-)*** 0.00(+) 0.00(+)' 

Proportion Grassland 0.09(-)*** 0.09(-)*** 0.05(-)*** 0.03(-)*** 0.16(-)*** 0.20(+)*** 0.09(-)*** 

Proportion Pasture 0.03(+)*** 0.03(+)*** 0.03(+)*** 0.02(+)*** 0.05(+)*** 0.00(-) 0.02(+)*** 

Proportion Cultivated Crops 0.02(-)*** 0.02(-)*** 0.06(-)*** 0.00(+)* 0.03(-)*** 0.18(+)*** 0.03(-)*** 

Proportion Woody Wetland 0.00(+)** 0.00(+)*** 0.02(+)*** 0.00(-)** 0.03(+)*** 0.05(-)*** 0.00(-)** 

Proportion Herbaceous Wetland 0.01(-)*** 0.01(-)*** 0.00(-)* 0.01(-)*** 0.01(-)*** 0.00(+) 0.02(-)*** 

Number of Classes 0.12(+)*** 0.13(+)*** 0.01(+)*** 0.05(+)*** 0.15(+)*** 0.01(-)*** 0.01(+)*** 

Shannon Diversity of Landcover Classes 0.13(+)*** 0.13(+)*** 0.05(+)*** 0.05(+)*** 0.22(+)*** 0.06(-)*** 0.02(+)*** 

Mean Canopy Height 0.29(+)*** 0.31(+)*** 0.07(+)*** 0.07(+)*** 0.51(+)*** 0.34(-)*** 0.06(+)*** 

Standard Deviation of Canopy Height 0.32(+)*** 0.25(+)*** 0.13(+)*** 0.17(+)*** 0.53(+)*** 0.25(-)*** 0.12(+)*** 
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Coefficient of Variation of Canopy Height 0.07(-)*** 0.06(-)*** 0.02(-)*** 0.04(-)*** 0.09(-)*** 0.03(+)*** 0.03(-)*** 

Mean Biomass 0.23(+)*** 0.25(+)*** 0.04(+)*** 0.07(+)*** 0.40(+)*** 0.22(-)*** 0.07(+)*** 

Standard Deviation of Biomass 0.18(+)*** 0.12(+)*** 0.08(+)*** 0.10(+)*** 0.32(+)*** 0.23(-)*** 0.06(+)*** 

Coefficient of Variation of Biomass 0.07(-)*** 0.06(-)*** 0.02(-)*** 0.04(-)*** 0.10(-)*** 0.03(+)*** 0.03(-)*** 

Mean of 5x5 Band 3 Mean 0.33(-)*** 0.34(-)*** 0.05(-)*** 0.15(-)*** 0.52(-)*** 0.09(+)*** 0.05(-)*** 

Standard Deviation of 5x5 Band 3 Mean 0.14(-)*** 0.19(-)*** 0.01(-)*** 0.05(-)*** 0.21(-)*** 0.01(+)*** 0.02(-)*** 

Mean of 5x5 Band 4 Angular Second Moment 0.12(-)*** 0.13(-)*** 0.02(-)*** 0.04(-)*** 0.16(-)*** 0.03(+)*** 0.07(-)*** 

Standard Deviation of 5x5 Band 2 Angular Second 

Moment 
0.10(-)*** 0.08(-)*** 0.03(-)*** 0.07(-)*** 0.11(-)*** 0.00(-)** 0.02(-)*** 

Mean of 5x5 Band 3 Correlation 0.06(-)*** 0.12(-)*** 0.00(-) 0.00(-)* 0.14(-)*** 0.11(+)*** 0.00(-)* 

Mean of 5x5 Band 4 Correlation 0.00(-) 0.00(+) 0.03(-)*** 0.00(+)' 0.02(-)*** 0.08(+)*** 0.00(+) 

Standard Deviation of 5x5 Band 3 Correlation 0.02(+)*** 0.03(+)*** 0.00(+)* 0.02(+)*** 0.06(+)*** 0.00(-)* 0.00(+) 

Mean of 5x5 Band 5 Homogeneity 0.05(-)*** 0.02(-)*** 0.10(-)*** 0.02(-)*** 0.06(-)*** 0.05(+)*** 0.07(-)*** 

Mean of fPAR Annual Sum 0.28(+)*** 0.24(+)*** 0.21(+)*** 0.07(+)*** 0.54(+)*** 0.28(-)*** 0.09(+)*** 

Standard Deviation of fPAR Annual Sum 0.02(+)*** 0.00(+) 0.05(+)*** 0.02(+)*** 0.03(+)*** 0.09(-)*** 0.01(+)*** 

Mean of fPAR Annual Minimum 0.05(+)*** 0.01(+)*** 0.34(+)*** 0.00(+)* 0.17(+)*** 0.27(-)*** 0.07(+)*** 

Standard Deviation of fPAR Annual Minimum 0.11(+)*** 0.05(+)*** 0.18(+)*** 0.03(+)*** 0.21(+)*** 0.28(-)*** 0.06(+)*** 

Mean of fPAR Annual Seasonality 0.00(-) 0.02(+)*** 0.30(-)*** 0.02(+)*** 0.01(-)*** 0.22(+)*** 0.05(-)*** 

Standard Deviation of fPAR Annual Seasonality 0.00(+)*** 0.01(+)*** 0.03(-)*** 0.01(+)*** 0.00(+)* 0.01(-)*** 0.00(-)*** 

Mean of SRTM Elevation 0.04(-)*** 0.04(-)*** 0.07(-)*** 0.00(-)*** 0.11(-)*** 0.11(-)*** 0.02(-)*** 

Standard Deviation of SRTM Elevation 0.00(+) 0.00(-) 0.00(-) 0.00(+)* 0.00(-)' 0.00(-)' 0.01(+)*** 
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Table 4-3.  Explanatory variables retained after correlation analysis. 

Factor Variable Type Variable 

Productivity fPAR Mean fPAR Sum 

  Standard Deviation of fPAR Minimum 

 Elevation Mean Elevation 

   

Climatic Stability fPAR Mean fPAR Seasonality 

  Standard Deviation of fPAR Seasonality 

 Ecoregion Ecoregion Province 

   

Habitat Structure Landcover Composition Proportion Barren 

  Proportion Deciduous Forest 

  Proportion Evergreen Forest 

  Proportion Mixed Forest 

  Proportion Grassland 

  Proportion Pasture 

  Proportion Cultivated Crops 

  Proportion Woody Wetland 

  Number of Landcover Classes 

 1
st
-Order Texture Standard Deviation of Band 3 Mean 

 2
nd

-Order Texture Standard Deviation of Band 2 ASM 

  Mean Band 4 ASM 

  Mean Band 3 Correlation 

  Standard Deviation of Band 3 

Correlation 

  Mean Band 4 Correlation 

  Mean of Band 5 Homogeneity 

 Canopy Height / Biomass CV Canopy Height 
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Table 4-4.  The sum of the independent contribution of each variable from hierarchical partition.  

Independent contribution is summed across the models for all birds, forest birds, grassland birds, shrubland 

birds, Neotropical migrants, short-distance migrants, and permanent residents. 

Rank Variable Category Sum of Independent Contribution 

1 Mean fPAR Sum Productivity 98.1 

2 Prop. Deciduous Forest Habitat Structure 69.8 

3 SD fPAR Minimum Productivity 69.0 

4 Mean fPAR Seasonality Climatic Stability 66.7 

5 Prop. Grassland Habitat Structure 54.2 

6 SD Band 2 ASM Habitat Structure 50.6 

7 Mean Band 4 ASM Habitat Structure 37.7 

8 Mean Band 5 Homogeneity Habitat Structure 36.6 

9 Num. Landcover Classes Habitat Structure 36.1 

10 Prop. Evergreen Forest Habitat Structure 26.5 

11 Mean Elevation Productivity 23.5 

12 Prop. Mixed Forest Habitat Structure 20.0 

13 SD fPAR Seasonality Climatic Stability 16.7 

14 Prop. Woody Wetland Habitat Structure 16.7 

15 Prop. Cultivated Crops Habitat Structure 16.5 

16 CV Canopy Height Habitat Structure 14.0 

17 Mean Band 3 Correlation Habitat Structure 11.7 

18 SD Band 3 Correlation Habitat Structure 9.5 

19 SD Band 3 Mean Habitat Structure 9.1 

20 Prop. Pasture Habitat Structure 8.5 

21 Ecoregion Province Climatic Stability 8.5 

22 Prop. Barren Habitat Structure 0.0 

23 Mean Band 4 Correlation Habitat Structure 0.0 
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Table 4-5.  Sum of independent contribution of explanatory variables by variable category. 

Variable Category Number of Variables Sum of Independent Contribution 

Habitat Structure 17 417.5 

Productivity 3 190.6 

Climatic Stability 3 91.9 
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Table 4-6.  Adjusted R
2
 values of models of avian species richness, by guild, for models including the 12 

explanatory variables considered in the hierarchical partitioning analysis. 

Guild Adjusted R
2
 Value 

All Species 0.45 

Forest Birds 0.67 

Grassland Birds 0.59 

Shrubland Birds 0.29 

Neotropical Migrants 0.53 

Permanent Residents 0.45 

Short-Distance Migrants 0.21 
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Figure 4-1.  Three primary factors influencing 

biodiversity.  Adapted from MacArthur 1972. 
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Figure 4-2.  Breeding Bird Survey (BBS) routes (2,555) in the contiguous United States used to develop explanatory species richness models. 
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Figure 4-3.  Best subsets regression was used to determine the 10 best models for each guild with 1, 2, 3, ...., 10 

variables  (100 models total).  The number of times a variable was included in that guilds models is displayed, 

with a maximum value of 100.  The circle diameter is proportional to the value.  Asterisks (“*”) indicate the 

variable ranked in the top 12 for that guild and was retained for further analysis. 
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Figure 4-4.  Independent contribution of each variable for the given avian guild model, as determined by 

hierarchical partitioning.  Values within each guild sum to 100.  Variables not considered in the hierarchical 

partitioning analysis for a given guild are marked “NA”. 
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Figure 4-5.  Sum of independent contribution of variables in each category (productivity, climatic stability, 

and habitat structure) by guild. 
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Chapter 5  

Predicted Nationwide Avian Species Richness Maps for the United States 

 

Abstract 

 Avian biodiversity is threatened, and in order for resource managers to informed 

conservation decisions, accurate, detailed maps of species richness must be available.  We 

produced fine-scale resolution maps of predicted richness over the contiguous United States for 

seven avian guilds: all birds, forest birds, grassland birds, shrubland birds, Neotropical migrants, 

short-distance migrants, and permanent residents.  We derived measures of species richness from 

the Breeding Bird Survey, and modeled richness as a function of remotely sensed measures of 

productivity, climatic stability, and productivity.  We used two machine learning techniques, 

random forests and support vector regression to derive our predictive models.  The random forest 

models were superior, and were used to create 1-km resolution nationwide maps of species 

richness, with each 1-km pixel representing the predicted species richness of a hypothetical 

Breeding Bird Survey centered at that location.  Pseudo R
2
 values for the predictive models were 

0.36 for short-distance migrants, 0.50 for shrubland birds, 0.55 for all birds, 0.60 for Neotropical 

migrants, 0.66 for permanent residents, 0.68 for grassland birds, and 0.73 for forest birds.   
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Introduction 

Avian biodiversity is under great threat from human-caused habitat conversion (Gaston et 

al. 2003).  With limited resources for habitat conservation, the accurate identification of high-

value bird habitat is crucial (Turner et al. 2003).  While some mapping of biodiversity has been 

carried out (Myers et al. 2000, Buckton and Ormerod 2002), the spatial resolution of these maps 

is too coarse to be of great direct use to resource managers, and available fine-scale maps are 

based solely on one data source, such as land cover class (Scott et al. 1993, Pearlstine et al. 

2002).  Additionally, few nationwide maps of biodiversity exist, and those that do employ very 

coarse resolution (e.g., Dobson et al. 1997).   Therefore, a spatially-detailed, nationwide map of 

avian species richness is needed.  

It is also important that research results are shared in a form that is useful in making 

management decisions.  One useful way of conveying information on biodiversity patterns is 

through maps of expected biodiversity.  Issues of scale are of importance in producing maps that 

are useful for land use and management decisions.  On one hand, it is helpful if the same 

methodology is used over a broad extent so that comparisons may be made at a state or national 

level.  On the other hand, land use planners, resource managers, and land trusts typically work at 

a local or county scale, so the grain of predicted maps must also be fine enough to inform 

decisions at these scales.  Ideal maps will therefore have broad extent and fine grain. 

While different drivers of biodiversity have been heavily studied, these theoretical studies 

often fail to provide actionable information to land use planners and resource managers.  One 

approach to this issue has been the identification of biodiversity “hot spots”, or areas with a high 

level of endemism as well as habitat loss (Myers et al. 2000, Dobson et al. 1997).  While the 
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identification of these hotspots is important, many of these analyses are carried out at a coarse 

spatial scale.  It is also important to recognize all areas of high biodiversity, not only areas where 

biodiversity is currently threatened.  Another approach is the GAP analysis project in which 

statewide land cover classifications and known species-habitat relationships are used to map 

species distributions (Scott et al. 1993, Pearlstine et al. 2002).   GAP analysis is an important and 

useful approach to this problem. However, since it is based primarily on land cover 

classifications, which ignore the continuous nature of habitat characteristics, the ability to predict 

species occurrence is limited (Laurent et al. 2005). 

Another important consideration in biodiversity modeling is the issue of explanation 

versus prediction.  In explanation, the primary aim is to gain insight into the relationships 

between an observed pattern and its putative causal factors, while in prediction, understanding 

the relationship between predictors and the response is of low priority compared to making 

accurate predictions of the response given a set of predictors (Elith and Leathwick 2009).  When 

explanation is the aim, statistical techniques, such as those employing linear regression, may be 

used to develop models which are highly amenable to interpretation.  These approaches also 

yield measures of significance for specific models or variables, as well as confidence intervals 

for estimated model coefficients.  These advantages are offset by potential reduction in 

predictive performance, and a requirement of stronger assumptions (e.g. linear relationships 

between explanatory and response variables, normality, and independence of data).  On the other 

hand, if prediction is the sole aim, machine learning techniques, such as neural networks, 

maximum entropy, random forests, or support vector regression may be used.  These techniques 

produce highly accurate predictions and allow relaxed data requirements (e.g. no requirement of 

normality).   The downside of these approaches is the limited interpretability of the models. 
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In modeling (and mapping) spatial distributions of individual species, there has been 

recent movement toward machine learning techniques.  In a study comparing the species 

distribution modeling performance of 16 techniques (including 11 distinct methods and 5 

additional variations on those methods), machine learning techniques (boosted regression trees 

and two variations of maximum entropy) ranked as three of the top four techniques (Elith et al. 

2006).  Other machine learning approaches have recently been employed in ecological contexts 

with promising results, including random forests (Prasad et al. 2006) and support vector 

machines (Drake et al. 2006). 

When used to model species richness, these new approaches are frequently used to model 

distributions of individual species, and the resulting range maps are composited to calculate the 

species richness at any given point (Ferrier and Guisan 2006) (see for example Graham and 

Hijmans 2006).  In community modeling, an alternative approach, environmental data are 

directly used to model richness of a group of similar species at once (Ferrier and Guisan 2006).  

The advantage of combining multiple species distribution models is that information about 

individual species is retained.  Community level modeling gives up species-level detail in 

exchange for several advantages (Ferrier and Guisan 2006).  If many species are involved, the 

complexity of analysis may be dramatically reduced versus computing distribution models for 

each species.  In instances with groups of rare or sparsely-sampled species, patterns of similar 

response to environmental conditions may be detected.  Lastly, and perhaps most importantly for 

our study, community level modeling has the power to synthesize complex data (e.g., 

distribution patterns of hundreds of species of birds) into a format that is much simpler and more 

readily understandable to scientists, decision-makers, and resource managers (e.g., maps of 

species richness for specific avian guilds).  Though some of the information about individual 
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species is lost, this may not be a disadvantage if the unit of management interest is a group of 

species, such as cavity-nesting birds or Neotropical migrants.  In a comparison of these two 

approaches modeling plant species richness in relation to environmental variables (Dubuis et al. 

2011), the community modeling approach produced an unbiased estimator of species richness 

and captured the observed hump-shaped pattern of species richness over an elevation gradient.  

The approach of directly mapping individual species had the advantage of retaining relatively 

accurate predictions of distribution of individual species, but the aggregation of these maps failed 

to capture the richness-elevation pattern. 

Because our study aim was prediction and we were directly modeling species richness, 

we explored two machine learning approaches: random forests and support vector regression.  A 

random forest is an ensemble classifier composed of many decision trees (Breiman 2001).  

Ensemble tree models solve a noted deficiency of single-tree models, poor predictive accuracy 

(Elith et al. 2008).  A bootstrapped subsample of the data is drawn for the generation of each tree 

(i.e. bootstrap aggregating, or bagging), and only a random subset of variables are considered at 

each node.  This process is repeated until the specified number of trees has been generated.  

Because the trees are each trained with slightly different data sets and are allowed to select from 

only some of the explanatory variables at each node, it is unlikely the trees will converge at 

identical solutions, and thus the risk of overfitting may be reduced.  Once the model is trained, 

predictions are generated by feeding the explanatory variables to each of the trees, and averaging 

the output.  While a random forest does not lend itself well to model interpretation and 

hypothesis testing, a measure of “relative importance” of each variable may be obtained.  A 

comparison of random forests and several other statistical classifiers using three different 
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ecological datasets found random forests to have very high classification accuracy compared to 

the other methods (Cutler et al. 2007).   

Support vector machines (SVM) are a machine learning classification technique where a 

kernel function non-linearly maps input data into a higher-dimensional feature space where the 

classes may be separated by a hyperplane (Cortes and Vapnik 1995).  SVMs have been widely 

used in many fields including medicine (Guyon et al. 2002), finance (Kim 2003), and satellite 

image classification (Foody and Mathur 2004).  Support vector machines have only recently 

appeared in an ecological context, but have shown promising results in species distribution 

modeling (Drake et al. 2006, Guo et al. 2005) and modeling fish species richness (Knudby et al. 

2010).  While primarily used in classification, support vector machines may also be used in a 

regression context, known as Support Vector Regression (SVR) (Drucker et al. 1996, Smola and 

Scholkopf 2004).   

 Our goal was to produce fine-scale resolution maps of avian species richness, for multiple 

guilds, for the contiguous United States.  In Chapter 4, our goal was to explain nationwide 

patterns of avian biodiversity and evaluate the relative contribution of factors driving those 

patterns.  In this chapter, our aim was to produce highly accurate predictive maps, rather than 

draw inference about different drivers of biodiversity.  We therefore took a machine learning 

statistical approach with the sole objective of high predictive accuracy. 

 

Methods 
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Study Area and Avian Data 

 Our study included the entire contiguous United States.  Avian species richness was 

calculated from the North American Breeding Bird Survey (BBS), an annual survey of 

approximately 3,000 routes across the contiguous U.S.  Along each 39.4-km route, 50 3-minute 

point counts are conducted, and all birds heard or seen are recorded (USGS Patuxent Wildlife 

Research Center 2008).  Analysis was centered on the year 2000, and we calculated the mean 

species richness of each BBS route over the period 1998-2002.  The BBS data were preprocessed 

to remove observations collected by first year observers (Kendall et al. 1996) and those 

conducted in suboptimal weather.  We also excluded poorly sampled species, which we defined 

as species with fewer than 30 route-year observations during the entire history of the BBS.  After 

the removal of these routes as well as routes for which we did not have a full set of explanatory 

variables, we retained 2,555 routes (Figure 5-1). 

 As in Chapter 4, we calculated species richness by avian guild (all birds, forest birds, 

grassland birds, shrubland birds, Neotropical migrants, short-distance migrants, and permanent 

residents).  However, our reasoning for doing this was not exactly the same here.  First, since we 

are taking a community modeling approach to our predictive mapping, it is important to group 

species into meaningful assemblages that are expected to respond similarly to environmental 

data.  From a more practical angle, much of habitat management is based on managing for 

specific groups of species, such as grassland birds or Neotropical migrants.  We therefore expect 

that maps of species richness by avian guild will be most useful to resource managers. 

Because bird species are not uniformly detectable, the number of species identified on a 

route is almost certainly less than the actual number of species present, and a correction should 

be applied to raw species richness counts (Kéry and Schmid 2004).  In studies of avian species 
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richness, the software program COMDYN (Hines et al. 1999) is frequently used to correct for 

this problem and derive estimated species richness (Boulinier et al. 1998, Hamer et al. 2006).  

COMDYN considers the raw BBS route species richness data from a capture-recapture model 

perspective and uses a jackknife estimator to calculate estimated species richness (Nichols et al. 

1998, Nichols et al. 1998).  As our measure of biodiversity for each BBS route, we used 

estimated species richness as calculated by COMDYN for all species as well as the six guilds 

mentioned above. 

In order to relate our explanatory variables to individual BBS routes, we created 19.7 km-

radius (one-half the length of a BBS route) circular buffers around the centroid of each BBS 

route (Flather and Sauer 1996) (Figure 5-2).  This buffer size and shape was chosen because it 

encompasses the entire BBS route and provides a uniform area and shape around each BBS 

route, regardless of route shape.  Furthermore, this distance is comparable to the median 

maximum natal dispersal distance (31 km) of 76 avian species (Sutherland et al. 2000) estimated 

from body size relationships, and is consistent with the recommendation that landscape effects 

on songbirds should be examined over tens of kilometers to capture dispersal effects (Tittler et 

al. 2009).  This approach has been used in several studies using BBS data (Flather and Sauer 

1996, Rittenhouse et al. 2010, Albright et al. 2010, Albright et al. 2011, Pidgeon et al. 2007). 

Environmental Data 

As discussed in Chapter 4, remotely sensed measures exist for each of MacArthur’s three 

primary drivers of biodiversity.  Of the three, productivity and climatic stability are expected to 

affect species richness patterns at regional scales, while habitat structure factors such as 

landcover type and vegetation structure have stronger influence at a local scale (Hutto 1985, 

Mackey and Lindenmayer 2001, Pearson and Dawson 2003).  Including environmental measures 
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with influence at different hierarchical scales improves predictive accuracy in species 

distribution modeling, even if scale is not considered explicitly (Meyer and Thuiller 2006).  We 

used the same explanatory data sets as in Chapter 4 but we dropped the measures of landscape 

configuration derived from morphological spatial pattern analysis, since they were found to be 

highly correlated with other habitat structure measures and added little additional explanatory 

power.   Our explanatory variables included measures of fPAR (Coops et al. 2009), ecoregion 

province (Bailey 1995), elevation (Rabus et al. 2003), landcover (Homer et al. 2004), canopy 

height and biomass (Kellndorfer et al. 2011), and image texture (Culbert et al. 2012).  (See 

Chapter 4 for a detailed description of these data). 

 

Model Development 

We had an initial candidate pool of 107 explanatory variables.  As in Chapter 4, we 

carried out a multi-step process to remove correlated variables and those with very little 

explanatory power.  We followed the same process here, with one exception.  Instead of using a 

threshold of |r| > 0.6 to determine correlated variables, we relaxed our definition of correlation to 

|r| > 0.8.  Random forests and support vector machines have limited sensitivity to variable 

collinearity, and a study using support vector machines to model ecological niches found that 

removing poorly performing or correlated variables prior to analysis did not improve results 

(Drake et al. 2006).  However, we chose to go ahead with variable removal for logistical reasons 

related to the challenges calculating and summarizing these variables for the contiguous United 

States. 
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 The relationships between texture measures and avian species richness were explored 

using both random forests and support vector regression with the software program R (R 

Development Core Team 2012).  Random forest models were generated with the 

“randomForest” library (Liaw and Wiener 2002), with 500 trees generated per model and one-

third of the explanatory variables considered as candidates at each node.   Support vector 

regression models were generated with the “e1071” library (Dimitriadou et al. 2011) using 

epsilon-regression and default parameters.  For both approaches, species richness models were 

generated for all birds, the three habitat guilds, and the three migratory habit guilds.   

To compare the performance of the random forest and support vector regression 

approaches, we generated 500 random forest and 500 support vector regression models for each 

guild, each from a randomly-selected training set consisting of 80% of the BBS routes.  The 

remaining 20% of the data points were used as a test set to calculate error.  To evaluate the 

relative performance of the two model types, we calculated mean squared error (MSE) for the 

training set and test set for the random forest and support vector regression models. 

Prior to generating the predictive maps with the models, the explanatory variables needed 

to be summarized nationwide to allow for the calculation of predicted avian species richness at a 

1 km resolution.  The 19.7 km radius BBS route buffers have an area of 1,219 km
2
, roughly 

corresponding in size to a 35 km by 35 km square (1,225 km
2
).  We therefore summarized the 

explanatory variables using a 35km moving window.  This resulted in a nationwide, 1-km 

resolution raster, where, for each pixel, the explanatory variables were summarized for the 

surrounding 35 km by 35 km area.  For each pixel in the nationwide 1-km resolution map, the 

random forest and support vector regression models were used to predict species richness for all 

birds, the three migratory guilds, and the three habitat guilds. 
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Results 

 As a result of correlation analysis of the texture measure variables, 68 of the 80 texture 

measure variables were excluded from subsequent analyses, with 12 variables retained (Table 

5-1).  The remaining texture measures and the other explanatory variables were then used to 

generate univariate models explaining species richness for each guild (Table 5-2).  The variables 

mean biomass and standard deviation of biomass showed some evidence of non-linearity in their 

relationship to avian species richness, so these variables were log-transformed.  The variables 

with the strongest univariate relationships to avian species richness were: mean of fPAR annual 

sum, standard deviation of canopy height, mean of 5x5 band 3 mean, and mean canopy height 

(all with R
2
 values > 0.5 for at least one guild).  A final correlation analysis led to the removal of 

9 more explanatory variables (Table 5-2).  After the addition of ecoregion province, the 

explanatory variable pool contained 33 variables. 

 Predictive models of avian species richness were developed for all birds and each of the 

six guilds, as a function of the 33 explanatory environmental variables using 2,555 BBS routes.  

We first compared the performance of the 500 random forest and 500 support vector regression 

models generated for each guild, each with a randomly selected training and testing set 

consisting of 80% and 20% of the data respectively.  For each model, mean squared error (MSE) 

was calculated for the training set and the test set (Figure 5-3).  For the training data, random 

forest models had substantially lower MSE than support vector regression models for every 

guild.  For the test data, random forest models again had lower MSE than support vector 

regression models, but the difference was quite small (though statistically significant at p < 

0.05). 
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 Single random forest and support vector regression models were then produced for each 

guild, using all of the BBS data.  We produced nationwide predicted avian species richness maps 

using both the random forest and support vector regression models created for each guild.  A 

visual inspection of these maps showed strong discontinuities in the southwestern United States 

for the support vector regression-generated maps (Figure 5-4).   For this reason, and because the 

random forest models had consistently lower MSE, we elected to use only the maps generated by 

the random forest models.  The random forest model used for prediction had pseudo-R
2
 values of 

0.55 for all birds, 0.73, 0.68, and 0.50 for forest birds, grassland birds, and shrubland birds, and 

0.60, 0.66, and 0.36 for Neotropical migrants, short-distance migrants, and permanent residents, 

respectively (Table 5-3). 

When considering our maps of predicted species richness, it is import to remember the 

scale of our analysis and how it affects interpretation of the maps.  Our predictive models were 

derived from the species richness of a BBS route considering the surrounding landscape.  

Therefore, while we produced predicted species richness maps at 1-km resolution, the value of a 

given pixel does not indicate the number of species expected within that pixel; rather it is the 

number of species that could be expected to be present along a hypothetical 39.4 km BBS route 

centered at that point. 

Our predictive map for species richness of all birds (Figure 5-5) showed the highest 

predicted richness in the forested areas of the country.  This primarily includes the eastern half of 

the country, with predicted richness highest in the Northeast, Minnesota, Wisconsin, and 

Michigan.  The Great Plains and low elevation areas of the western United States had lower 

overall predicted richness. 
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The map of forest bird predicted species richness (Figure 5-6) showed a similar pattern to 

the map for all birds, as many of the bird species in the all birds guild are forest birds.  As 

expected, predicted richness was highest in heavily forested areas.  In the Eastern United States, 

this includes most areas except for heavily agricultural regions in southeastern Wisconsin, 

northern Illinois, northern Indiana, northwestern Ohio, and along the Mississippi River south of 

Illinois.  In the western United States, predicted forest bird species richness was highest along 

the Pacific coast and in higher elevation areas such as the Rocky, Sierra Nevada, and Cascade 

Mountains. 

Predicted grassland bird species richness (Figure 5-7) was highest in the Great Plains, 

stretching from Montana and North Dakota to Northern Texas.  Areas of high richness also 

extend through Iowa, southern Minnesota, southern Wisconsin, northern Illinois, northern 

Indiana, and northwestern Ohio.  West of the Rocky Mountains, species richness was highest in 

the Palouse of eastern Washington as well as southeastern Oregon, northern Nevada, and 

southern Idaho. 

Shrubland bird species richness (Figure 5-8) was predicted to be highest in western 

Texas, the Transition zone (between the Colorado Plateau and Basin and Range region) of 

Arizona, and the chaparral regions of California.  In the eastern United States, species richness 

for shrubland birds was predicted to be relatively uniform. 

  Neotropical migrants are strongly associated with forests, and thus predicted species 

richness for this guild (Figure 5-9) was highest in forested areas.  However, in contrast to the 

forest birds predictive map, predicted richness appeared to be more strongly concentrated in 

northern Wisconsin, Northern Minnesota, the Upper Peninsula and northern Lower Peninsula of 

Michigan, and the northern Appalachian Mountains.  In the western United States, predictions of 
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high species richness were concentrated along the pacific coast and in higher-elevation forested 

areas.   

 Predicted species richness of short-distance migrants (Figure 5-10) in the eastern United 

States was concentrated in the Midwest, east of the Great Plains, with high species richness 

extending into Kentucky, Tennessee, Pennsylvania, and New York.  In the western United 

States, species richness was higher in forested, mountainous areas, including strong 

concentrations in the Sierra Nevada, San Gabriel, San Bernardino, and San Jacinto Mountains in 

California, the Transition zone and Madrean Sky Islands in Arizona, and the Sacramento, Sangre 

de Cristo, and Jemez mountains in New Mexico. 

 Predicted species richness of permanent residents (Figure 5-11) was relatively uniform in 

the eastern United States, with a gradient of increasing richness going north to south.  Species 

richness was lowest in the northern Great Plains and low elevation desert areas.  Southern Texas, 

the Transition in Arizona, and coastal and high elevation areas in California had the highest 

predicted species richness. 

 A few patterns stood out from the nationwide maps.  Grassland birds appeared to have 

relatively little “middle-ground” in their species richness distribution, with very high species 

richness concentrated in the Great Plains, and very low richness elsewhere.  This is in contrast to 

shrubland birds, which, while concentrated in the southwest, had a moderate level of richness 

through most of the country.  Distributions of predicted species richness between the eastern and 

western United States were notably, though not surprisingly, different.  In the eastern United 

States, areas capable of supporting high species richness in all birds, forest birds and Neotropical 

migrants were distributed relatively uniformly and continuously.  In contrast, areas supporting 

high species richness for these guilds in the western United States included primarily coastal and 
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high elevation forests.  This leads to a substantially patchier pattern with species richness 

concentrated in relatively small and often geographically isolated areas.  Predicted species 

richness for short-distance migrants followed a similar spatial pattern, with relatively low 

variability and high uniformity in the eastern United States, and a very patchy distribution in the 

western United States, with much of the high predicted species richness located in small, 

relatively isolated patches in California, Arizona, and New Mexico. 

 In order to evaluate the predicted species richness maps at a finer scale, we examined the 

state of Wisconsin.  Predicted species richness of all birds (Figure 5-12) was highest in forested 

areas in the northern third of the state, with the lowest richness in southeastern Wisconsin, 

including a noticeable low-species richness pocket in an agriculture-dominated area in Dodge, 

Fond du Lac, and Winnebago Counties.  As was the case at the national level, forest bird species 

richness (Figure 5-13) was, unsurprisingly, highest in forested areas.  This primarily includes the 

northern third of the state, as well as an area centered at Black River State forest and extending 

into Chippewa, Eau Claire, Clark, Jackson, Wood, Monroe, Juneau, and Adams counties.  The 

area of lowest predicted forest species richness was a swath of agricultural land starting in 

Winnebago county and running south-southwest through Fond du Lac, Dodge, Jefferson, and 

Dane Counties.  Predicted grassland bird species richness (Figure 5-14) was essentially the 

inverse of the forest bird map, with low species richness in forested areas, and higher species 

richness in agricultural areas.  Another noticeable pocket of low predicted species richness was 

in the Milwaukee metropolitan area in Milwaukee and Waukesha counties.  Predicted shrubland 

bird species richness (Figure 5-15) was generally higher in areas with high predicted forest bird 

species richness, although richness was lower in Iron, Vilas, and Oneida Counties in northern 

Wisconsin, and in contrast to forest birds, shrubland species richness was uniformly high in 
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forested areas across the state, rather than just in northern forests.  Predicted Neotropical migrant 

species richness (Figure 5-16), was uniformly high in forested areas of the northern third of the 

state, with moderate species richness in forests in the rest of the state.  Predicted species richness 

of short-distance migrants (Figure 5-17) was very uniform across the state with a few small, 

isolated pockets of higher predicted species richness.  Permanent resident predicted species 

richness (Figure 5-18) showed the most unique pattern.  Species richness was low in northern 

forests except for a small hotspot in southern Sawyer County.  Predicted species richness was 

higher overall in forested areas in the southern two-thirds of the state with a very strong hotspot 

in Jackson, Juneau, and Adams Counties, and a slightly less pronounced concentration in Vernon 

and Richland Counties. 

 A few are points of interest appeared in the Wisconsin maps.  First, an oval area running 

roughly from Lake Winnebago south-southwest through Winnebago, Fond du Lac, and Dodge 

counties has noticeably low predicted species richness for all guilds except grassland birds.  This 

was an area of intense agricultural production, interspersed with infrequent, small forest patches.  

Another point of interest was the boundary between the Laurentian Mixed Forest and Eastern 

Broadleaf Forest ecoregion provinces (to the north and south, respectively).  This crisp boundary 

was clearly apparent in the map for all birds, and slightly less noticeable in the Neotropical 

migrant map, while it was not discernible in the maps for other guilds.  This would seem to 

indicate that in the all bird and Neotropical migrant models, ecoregion province was an 

important variable representing information not present in other variables, while in the other 

guilds, it was unimportant and likely contained information redundant to the other explanatory 

variables.  Lastly, an artifact of our methodology was noticeable along the shore of Lake 

Superior in Douglas, Bayfield, Ashland, and Iron Counties, and, to a lesser extent, along the 
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shore of Lake Michigan (from Oconto County south).  This artifact was manifested as a faint but 

discernible line along the Lake Michigan coast, and a drop in species richness (most noticeable 

in all birds, forest birds, and shrubland birds) along the Lake Superior coast.  This was a result of 

our 35 km by 35 km moving window analysis, and therefore, was noticeable with roughly 10-15 

km of the coast.  Within this distance, much of the moving window was over open water, 

affecting measures of many of the explanatory variables, and apparently causing the species 

richness models to break down.    

 

Discussion 

 We produced nationwide, fine-scale resolution maps of predicted avian biodiversity for 

all birds, three habitat guilds, and three migratory guilds.  These maps provide an important aid 

to resource managers.  Previous nationwide biodiversity maps are of coarse resolution (Buckton 

and Ormerod 2002), or only considered landcover data (Pearlstine et al. 2002, Scott and Jennings 

1998), while our maps were produced with models including data on climatic stability, 

productivity, and numerous measures of habitat structure.   

The predictive models used to create our maps explain a high level of the variability in 

the observed species richness from BBS routes, with pseudo-R
2
 values ranging from 0.50 to 0.73 

for six of the seven models (Table 5-3).  These results compare favorably to previous studies 

(although those studies were more limited in scope).  In a study modeling species richness of 

BBS routes as a function of energy availability and variability, models of all species, Neotropical 

migrant, and permanent resident richness yielded adjusted-R
2
 values of 0.43, 0.36, and 0.27, 

respectively (Rowhani et al. 2008).  This compares to our pseudo-R
2
 measures of 0.55, 0.60, and 
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0.66.   A similar study of avian species richness patterns in the forested ecoregions of the United 

States as a function of land cover, landscape configuration indices, and housing density yielded 

adjusted-R
2
 values of 0.35, 0.48, 0.16, and 0.19 for forest birds, Neotropical Migrants, short-

distance migrants, and permanent residents, respectively (Pidgeon et al. 2007).  Our comparable 

pseudo-R
2
 values were 0.73, 0.60, 0.36, and 0.66.  Our results were much stronger, but it should 

be noted that we included non-forested landscapes in our analysis, and it would be expected that 

the forest bird model, for example, would have stronger explanatory power over a range of non-

forest to forest, rather than in an entirely forested ecosystem.  In comparison to the explanatory 

power of the species richness from Chapter 4, our predictive models here have pseudo-R
2
 values 

ranging from 0.06 to 0.21 higher than the adjusted R
2
 values of our explanatory models, with an 

average increase of 0.13.   An important caveat to all of these comparisons however, is that 

pseudo-R
2
 values may not be directly comparable to adjusted R

2
 values, so although these values 

can give some indication of comparative performance, it would be unwise to draw strong 

conclusions from such comparisons. 

Comparing the pseudo-R
2
 values of the models among guilds can give further indication 

of relative model strength.  The forest bird, grassland bird, and permanent resident models were 

strongest, followed by Neotropical migrants, all birds, and shrubland birds.  The short-distance 

migrant model was clearly the weakest, with a pseudo-R
2
 value of 0.36 compared to 0.50 to 0.73 

for the other guilds.  Though it is difficult to comprehensively test the accuracy of the predicted 

species richness maps, to the naked eye, the results appear very logical.  For example, the 

numerical range of predicted species richness values is within the range of the (Comdyn-

adjusted) species richness of the BBS Routes.  The patterns of species richness are also as 

expected.  For example, forest and Neotropical migrant species richness are heavily associated 
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with forested areas, while grassland birds are concentrated in the Great Plains.  These logical 

patterns are present at the small scale too.  Examination of our maps for Wisconsin showed 

strong, logical relationships to known landcover and bird distribution patterns as well. 

 In the generation of our predictive models we explored two machine learning approaches, 

random forests and support vector regression.  Both approaches have been widely used in other 

fields, but are only recently appearing in an ecological context (especially support vector 

regression).  From the average model MSE from 500 model generation runs (Figure 5-3), it was 

clear that random forest models were superior to support vector regression models in fitting the 

training data.  In a study of coral reef fish species richness, random forest models also 

consistently outperformed support vector machine models (Knudby et al. 2010).  However, this 

substantial advantage in MSE in the training data all but disappeared when considering the test 

data.  Though the test set MSE of the random forest models was still marginally superior to 

support vector regression models, this seems to indicate that support vector regression models 

were better able to generalize from the training data to the test data and/or the random forest 

models were overfitting to the training data.  However, while the average MSEs of the test sets 

were quite similar between random forest and support vector regression models, there were some 

areas with sharp discontinuities in the maps predicted by support vector regression, while the 

random forest predictions were smoother.  This concurs with a study comparing the predictive 

performance of several classification and regression tree techniques on an ecological data set, 

where bagging trees and random forests had the highest predictive accuracy, but random forests 

were judged superior for producing a smoother output (Prasad et al. 2006). 

In addition to evaluating two relatively new and novel modeling techniques, we showed 

the value of community modeling to determine species richness patterns.  While predicting 
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species richness by modeling spatial distributions of individual species and compositing those 

distribution maps is a valid approach, it would have been challenging in our case.  With 400 

species in our all bird guild, developing a nationwide species distribution model for each of those 

species would have been a difficult undertaking, and models for rarely-sampled species may 

have been poor.  Another important consideration is that our maps based on guild will be easier 

for resource managers to digest, and the guilds represent communities often managed as a whole.  

Our study was a good example of the strengths of community modeling, where species can be 

grouped into meaningful assemblages (in our case, habitat and migratory guilds) that can be 

modeled as a unit, making nationwide richness prediction with an immense dataset feasible, and 

our results readily interpretable (Ferrier and Guisan 2006). 

 When considering the maps of predicted species richness, it is import to be aware of 

some of the limitations.  The most important point is the interpretation of the map.  As already 

mentioned, based on our method of analysis, the value of a given pixel represents the predicted 

species richness of a hypothetical BBS route centered at that point, and not the predicted richness 

for that pixel alone.  Secondly, caution should be taken when considering the coastal areas of the 

maps.  As a roadside survey, the Breeding Bird Survey is not designed for sampling of 

shorebirds or waterfowl, and thus they are likely to be underrepresented.  Because we modeled 

with a moving window approach, for coastal areas, the moving window extends into the ocean 

(or the Great Lakes).  Since relatively few of the BBR route buffers used in training the models 

extended into the ocean, the models may not be making good predictions in those cases, as was 

evident along the shore of Lake Superior in some of the Wisconsin maps (e.g. Figure 5-12).  

  Keeping these limitations in mind, our maps have important value for informing 

conservation efforts.  We suggest these maps be considered by land managers in identifying 
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potential locations of high biodiversity for further field-based investigation.  The maps also form 

a basis for comparison of relative levels of species richness within a region.  We hope that 

producing these maps will help push forward nationwide modeling of species richness.  Many 

modeling approaches may yield some insight into species richness relationships, but fail to 

produce a concrete product for comparison and improvement.  We hope that others will expand 

on our approach and produce further nationwide, fine-resolution maps of species richness, 

hopefully yielding improved results over our maps.  As the first nationwide, 1-km resolution 

maps of predicted avian species richness derived from numerous measures of climatic stability, 

productivity, and habitat structure, our study makes a significant contribution to the knowledge 

base for use in biodiversity modeling, conservation, and land-use planning. 
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Tables 

Table 5-1. Texture variables calculated from Landsat imagery.  Based on correlation analysis, 68 variables 

(marked "-") were excluded from subsequent analysis, and 12 variables (marked "X") were retained. 

Texture Landsat Band 

 2 3 4 5 

Mean_5x5_Mean - X - - 

Mean_21x21_Mean - - - - 

Mean_5x5_SD - X - - 

Mean_21x21_SD - - - X 

SD_5x5_Mean - X - - 

SD_21x21_Mean - - - - 

SD_5x5_SD X - - - 

SD_21x21_SD - - - - 

ASM_5x5_Mean - - X - 

ASM_5x5_SD X - - - 

Contrast_5x5_Mean - - - - 

Contrast_5x5_SD - - - - 

Correlation_5x5_Mean - X X - 

Correlation_5x5_SD - X - - 

Entropy_5x5_Mean - - - - 

Entropy_5x5_SD - - - - 

Homogeneity_5x5_Mean - - - X 

Homogeneity_5x5_SD - - X - 

SSVariance_5x5_mean - - - - 

SSVariance_5x5_SD - - - - 
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Table 5-2.  R
2
 values for univariate models of species richness.  Sign indicates direction of relationship. *** p-value < 0.001, ** p-value < 0.01, * p-value 

< 0.05.  Values > 0.15 bolded for emphasis.  Variable names in bold indicate variables retained after final correlation analysis, variables not in bold 

were dropped from subsequent analysis. 

  
All Species 

Neotropical 

Migrants 

Permanent 

Residents 

Short-Distance 

Migrants 

Forest 

Birds 

Grassland 

Birds 

Shrubland 

Birds 

Proportion Water 0.00(+)* 0.00(+)** 0.00(+) 0.00(+) 0.01(+)*** 0.01(-)*** 0.00(-) 

Proportion Ice 0.00(+) 0.00(+) 0.00(-) 0.00(+) 0.00(+) 0.00(-)** 0.00(-) 

Proportion Developed 0.00(+)* 0.00(+)* 0.01(+)*** 0.00(+)* 0.02(+)*** 0.02(-)*** 0.00(+)*** 

Proportion Barren 0.05(-)*** 0.04(-)*** 0.02(-)*** 0.03(-)*** 0.05(-)*** 0.00(-)** 0.01(-)*** 

Proportion Deciduous Forest 0.25(+)*** 0.34(+)*** 0.02(+)*** 0.05(+)*** 0.34(+)*** 0.06(-)*** 0.10(+)*** 

Proportion Evergreen Forest 0.03(+)*** 0.01(+)*** 0.03(+)*** 0.02(+)*** 0.06(+)*** 0.15(-)*** 0.00(+) 

Proportion Mixed Forest 0.08(+)*** 0.12(+)*** 0.00(+)** 0.01(+)*** 0.13(+)*** 0.08(-)*** 0.00(+)*** 

Proportion Scrub Shrub 0.12(-)*** 0.16(-)*** 0.00(-) 0.07(-)*** 0.25(-)*** 0.00(+) 0.00(+)' 

Proportion Grassland 0.09(-)*** 0.09(-)*** 0.05(-)*** 0.03(-)*** 0.16(-)*** 0.20(+)*** 0.09(-)*** 

Proportion Pasture 0.03(+)*** 0.03(+)*** 0.03(+)*** 0.02(+)*** 0.05(+)*** 0.00(-) 0.02(+)*** 

Proportion Cultivated Crops 0.02(-)*** 0.02(-)*** 0.06(-)*** 0.00(+)* 0.03(-)*** 0.18(+)*** 0.03(-)*** 

Proportion Woody Wetland 0.00(+)** 0.00(+)*** 0.02(+)*** 0.00(-)** 0.03(+)*** 0.05(-)*** 0.00(-)** 

Proportion Herbaceous Wetland 0.01(-)*** 0.01(-)*** 0.00(-)* 0.01(-)*** 0.01(-)*** 0.00(+) 0.02(-)*** 

Number of Classes 0.12(+)*** 0.13(+)*** 0.01(+)*** 0.05(+)*** 0.15(+)*** 0.01(-)*** 0.01(+)*** 

Shannon Diversity of Landcover Classes 0.13(+)*** 0.13(+)*** 0.05(+)*** 0.05(+)*** 0.22(+)*** 0.06(-)*** 0.02(+)*** 

Mean Canopy Height 0.29(+)*** 0.31(+)*** 0.07(+)*** 0.07(+)*** 0.51(+)*** 0.34(-)*** 0.06(+)*** 

Standard Deviation of Canopy Height 0.32(+)*** 0.25(+)*** 0.13(+)*** 0.17(+)*** 0.53(+)*** 0.25(-)*** 0.12(+)*** 

Coefficient of Variation of Canopy Height 0.07(-)*** 0.06(-)*** 0.02(-)*** 0.04(-)*** 0.09(-)*** 0.03(+)*** 0.03(-)*** 

Mean Biomass 0.23(+)*** 0.25(+)*** 0.04(+)*** 0.07(+)*** 0.40(+)*** 0.22(-)*** 0.07(+)*** 

Standard Deviation of Biomass 0.18(+)*** 0.12(+)*** 0.08(+)*** 0.10(+)*** 0.32(+)*** 0.23(-)*** 0.06(+)*** 

Coefficient of Variation of Biomass 0.07(-)*** 0.06(-)*** 0.02(-)*** 0.04(-)*** 0.10(-)*** 0.03(+)*** 0.03(-)*** 

Mean of 5x5 Band 3 Mean 0.33(-)*** 0.34(-)*** 0.05(-)*** 0.15(-)*** 0.52(-)*** 0.09(+)*** 0.05(-)*** 

Standard Deviation of 5x5 Band 3 Mean 0.14(-)*** 0.19(-)*** 0.01(-)*** 0.05(-)*** 0.21(-)*** 0.01(+)*** 0.02(-)*** 

Standard Deviation of 21x21 Band 5 Mean 0.05(-)*** 0.09(-)*** 0.00(+)* 0.02(-)*** 0.06(-)*** 0.00(-)* 0.01(-)*** 

Mean of 5x5 Band 3 Standard Deviation 0.09(-)*** 0.14(-)*** 0.00(+)' 0.02(-)*** 0.13(-)*** 0.01(+)*** 0.00(-) 
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Standard Deviation of 5x5 Band 2 Standard Deviation 0.04(-)*** 0.05(-)*** 0.00(+) 0.01(-)*** 0.03(-)*** 0.00(-)* 0.00(-)* 

Mean of 5x5 Band 4 Angular Second Moment 0.12(-)*** 0.13(-)*** 0.02(-)*** 0.04(-)*** 0.16(-)*** 0.03(+)*** 0.07(-)*** 

Standard Deviation of 5x5 Band 2 Angular Second 

Moment 0.10(-)*** 0.08(-)*** 0.03(-)*** 0.07(-)*** 0.11(-)*** 0.00(-)** 0.02(-)*** 

Mean of 5x5 Band 3 Correlation 0.06(-)*** 0.12(-)*** 0.00(-) 0.00(-)* 0.14(-)*** 0.11(+)*** 0.00(-)* 

Mean of 5x5 Band 4 Correlation 0.00(-) 0.00(+) 0.03(-)*** 0.00(+)' 0.02(-)*** 0.08(+)*** 0.00(+) 

Standard Deviation of 5x5 Band 3 Correlation 0.02(+)*** 0.03(+)*** 0.00(+)* 0.02(+)*** 0.06(+)*** 0.00(-)* 0.00(+) 

Mean of 5x5 Band 5 Homogeneity 0.05(-)*** 0.02(-)*** 0.10(-)*** 0.02(-)*** 0.06(-)*** 0.05(+)*** 0.07(-)*** 

Standard Deviation of 5x5 Band 4 Homogeneity 0.06(-)*** 0.06(-)*** 0.03(-)*** 0.01(-)*** 0.08(-)*** 0.03(+)*** 0.05(-)*** 

Mean of fPAR Annual Sum 0.28(+)*** 0.24(+)*** 0.21(+)*** 0.07(+)*** 0.54(+)*** 0.28(-)*** 0.09(+)*** 

Standard Deviation of fPAR Annual Sum 0.02(+)*** 0.00(+) 0.05(+)*** 0.02(+)*** 0.03(+)*** 0.09(-)*** 0.01(+)*** 

Mean of fPAR Annual Minimum 0.05(+)*** 0.01(+)*** 0.34(+)*** 0.00(+)* 0.17(+)*** 0.27(-)*** 0.07(+)*** 

Standard Deviation of fPAR Annual Minimum 0.11(+)*** 0.05(+)*** 0.18(+)*** 0.03(+)*** 0.21(+)*** 0.28(-)*** 0.06(+)*** 

Mean of fPAR Annual Seasonality 0.00(-) 0.02(+)*** 0.30(-)*** 0.02(+)*** 0.01(-)*** 0.22(+)*** 0.05(-)*** 

Standard Deviation of fPAR Annual Seasonality 0.00(+)*** 0.01(+)*** 0.03(-)*** 0.01(+)*** 0.00(+)* 0.01(-)*** 0.00(-)*** 

Mean of SRTM Elevation 0.04(-)*** 0.04(-)*** 0.07(-)*** 0.00(-)*** 0.11(-)*** 0.11(-)*** 0.02(-)*** 

Standard Deviation of SRTM Elevation 0.00(+) 0.00(-) 0.00(-) 0.00(+)* 0.00(-)' 0.00(-)' 0.01(+)*** 

 



 

 

 

Table 5-3.  Pseudo-R2 values for random forest models of nationwide avian species richness. 

Guild Pseudo-R
2 

All Birds 0.55 

Forest Birds 0.73 

Grassland Birds 0.68 

Shrubland Birds 0.50 

Neotropical Migrants 0.60 

Short-Distance Migrants 0.36 

Permanent Residents 0.66 
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Figures 

 

Figure 5-1.  Breeding Bird Survey (BBS) routes (2,555) in the contiguous United States used to develop predictive richness models. 
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Figure 5-2.  A single Breeding Bird Survey (BBS) route in southern Wisconsin.  The 19.7 km radius circular buffer used in analysis is shown.  Examples 

of environmental data include canopy height, land cover, and 5x5 TM band 4 homogeneity. 
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Figure 5-3.  Average mean squared error (MSE) for training and test sets for models generated with support 

vector regression (SVR) and (RF) random forests.  The dataset was randomly split 500 times, with 80% of the 

data comprising the training set, and 20% the test set.  For each split, SVR and RF models were generated 

for each guild.  Error bars indicate 95% confidence interval. 
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Figure 5-4.  A selected portion of the predicted all bird species richness maps generated by the support vector regression model (left) and random forest 

model (right).  The image shows Arizona and portions of Utah, Nevada, and California.  While both models produced similar patterns overall, there are 

noticeable discontinuities in the support vector regression map, notably in the area of the Arizona – California border.
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Figure 5-5.  Predicted species richness for all birds.  Map indicates the predicted species richness of a hypothetical Breeding Bird Survey centered at a 

given point.  The pseudo-R
2
 for this model is 0.55. 
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Figure 5-6.  Predicted species richness for forest birds.  Map indicates the predicted species richness of a hypothetical Breeding Bird Survey centered at 

a given point.  The pseudo-R
2
 for this model is 0.73. 



 

 

 

2
3

2
 

 

Figure 5-7.  Predicted species richness for grassland birds.  Map indicates the predicted species richness of a hypothetical Breeding Bird Survey 

centered at a given point.  The pseudo-R
2
 for this model is 0.68. 
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Figure 5-8.  Predicted species richness for shrubland birds.  Map indicates the predicted species richness of a hypothetical Breeding Bird Survey 

centered at a given point.  The pseudo-R
2
 for this model is 0.50. 
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Figure 5-9.  Predicted species richness for Neotropical migrant birds.  Map indicates the predicted species richness of a hypothetical Breeding Bird 

Survey centered at a given point.  The pseudo-R
2
 for this model is 0.60. 
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Figure 5-10.  Predicted species richness for short-distance migrant birds.  Map indicates the predicted species richness of a hypothetical Breeding Bird 

Survey centered at a given point.  The pseudo-R
2
 for this model is 0.36. 
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Figure 5-11.  Predicted species richness for permanent resident birds.  Map indicates the predicted species richness of a hypothetical Breeding Bird 

Survey centered at a given point.  The pseudo-R
2
 for this model is 0.66. 
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Figure 5-12.  Predicted species richness for all birds in the state of Wisconsin.  Map indicates the predicted 

species richness of a hypothetical Breeding Bird Survey centered at a given point.  The pseudo-R
2
 for this 

model at the national level is 0.55. 
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Figure 5-13.  Predicted species richness for forest birds in the state of Wisconsin.  Map indicates the predicted 

species richness of a hypothetical Breeding Bird Survey centered at a given point.  The pseudo-R
2
 for this 

model at the national level is 0.73. 
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Figure 5-14.  Predicted species richness for grassland birds in the state of Wisconsin.  Map indicates the 

predicted species richness of a hypothetical Breeding Bird Survey centered at a given point.  The pseudo-R
2
 

for this model at the national level is 0.68. 
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Figure 5-15.  Predicted species richness for shrubland birds in the state of Wisconsin.  Map indicates the 

predicted species richness of a hypothetical Breeding Bird Survey centered at a given point.  The pseudo-R
2
 

for this model at the national level is 0.50. 
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Figure 5-16. Predicted species richness for Neotropical migrant birds in the state of Wisconsin.  Map 

indicates the predicted species richness of a hypothetical Breeding Bird Survey centered at a given point.  The 

pseudo-R
2
 for this model at the national level is 0.60. 

 



242 

 

 

 

Figure 5-17.  Predicted species richness for short-distance migrant birds in the state of Wisconsin.  Map 

indicates the predicted species richness of a hypothetical Breeding Bird Survey centered at a given point.  The 

pseudo-R
2
 for this model at the national level is 0.36. 
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Figure 5-18.  Predicted species richness for permanent resident birds in the state of Wisconsin.  Map indicates 

the predicted species richness of a hypothetical Breeding Bird Survey centered at a given point.  The pseudo-

R
2
 for this model at the national level is 0.66. 
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Appendix A: Avian Guild Definitions 

Table A-1.  All Birds guild.  

American Ornithological Union Code Common Name 

3110 Plain Chachalaca 

3000 Ruffed Grouse 

3090 Greater Sage-Grouse 

3089 Gunnison Sage-Grouse 

2980 Spruce Grouse 

3010 Willow Ptarmigan 

3020 Rock Ptarmigan 

3040 White-Tailed Ptarmigan 

2970 Blue Grouse 

3050 Greater Prairie-Chicken 

3070 Lesser Prairie-Chicken 

3100 Wild Turkey 

2920 Mountain Quail 

2930 Scaled Quail 

2940 California Quail 

2950 Gambel's Quail 

2890 Northern Bobwhite 

2960 Montezuma Quail 

3260 Black Vulture 

3250 Turkey Vulture 

3240 California Condor 

3640 Osprey 

3271 Hook-Billed Kite 

3270 Swallow-Tailed Kite 

3280 White-Tailed Kite 

3300 Snail Kite 

3290 Mississippi Kite 

3520 Bald Eagle 

3310 Northern Harrier 

3320 Sharp-Shinned Hawk 

3330 Cooper's Hawk 

3340 Northern Goshawk 

3450 Common Black-Hawk 

3350 Harris's Hawk 

3390 Red-Shouldered Hawk 

3430 Broad-Winged Hawk 

3460 Gray Hawk 

3440 Short-Tailed Hawk 
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3420 Swainson's Hawk 

3410 White-Tailed Hawk 

3400 Zone-Tailed Hawk 

3370 Red-Tailed Hawk 

3480 Ferruginous Hawk 

3470 Rough-Legged Hawk 

3490 Golden Eagle 

3620 Crested Caracara 

3600 American Kestrel 

3570 Merlin 

3590 Aplomado Falcon 

3540 Gyrfalcon 

3560 Peregrine Falcon 

3550 Prairie Falcon 

3140 White-Crowned Pigeon 

3130 Red-Billed Pigeon 

3120 Band-Tailed Pigeon 

3190 White-Winged Dove 

3160 Mourning Dove 

3210 Inca Dove 

3200 Common Ground-Dove 

3180 White-Tipped Dove 

11230 Green Parakeet 

3821 Thick-Billed Parrot 

3826 Red-Crowned Parrot 

3870 Yellow-Billed Cuckoo 

3860 Mangrove Cuckoo 

3880 Black-Billed Cuckoo 

3850 Greater Roadrunner 

3830 Smooth-Billed Ani 

3840 Groove-Billed Ani 

3650 Barn Owl 

3740 Flammulated Owl 

3732 Western Screech-Owl 

3730 Eastern Screech-Owl 

3731 Whiskered Screech-Owl 

3750 Great Horned Owl 

3760 Snowy Owl 

3770 Northern Hawk Owl 

3790 Northern Pygmy-Owl 

3800 Ferruginous Pygmy-Owl 

3810 Elf Owl 

3780 Burrowing Owl 
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3690 Spotted Owl 

3680 Barred Owl 

3700 Great Gray Owl 

3660 Long-Eared Owl 

3670 Short-Eared Owl 

3710 Boreal Owl 

3720 Northern Saw-Whet Owl 

4210 Lesser Nighthawk 

4200 Common Nighthawk 

4201 Antillean Nighthawk 

4190 Common Pauraque 

4180 Common Poorwill 

4160 Chuck-Will's-Widow 

4161 Buff-Collared Nightjar 

4170 Whip-Poor-Will 

4220 Black Swift 

4230 Chimney Swift 

4240 Vaux's Swift 

4250 White-Throated Swift 

4410 Broad-Billed Hummingbird 

4401 White-Eared Hummingbird 

4381 Berylline Hummingbird 

4390 Buff-Bellied Hummingbird 

4391 Violet-Crowned Hummingbird 

4270 Blue-Throated Hummingbird 

4260 Magnificent Hummingbird 

4370 Lucifer Hummingbird 

4280 Ruby-Throated Hummingbird 

4290 Black-Chinned Hummingbird 

4310 Anna's Hummingbird 

4300 Costa's Hummingbird 

4360 Calliope Hummingbird 

4320 Broad-Tailed Hummingbird 

4330 Rufous Hummingbird 

4340 Allen's Hummingbird 

3890 Elegant Trogon 

3901 Ringed Kingfisher 

3900 Belted Kingfisher 

3910 Green Kingfisher 

4080 Lewis's Woodpecker 

4060 Red-Headed Woodpecker 

4070 Acorn Woodpecker 

4110 Gila Woodpecker 
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4100 Golden-Fronted Woodpecker 

4090 Red-Bellied Woodpecker 

4040 Williamson's Sapsucker 

4020 Yellow-Bellied Sapsucker 

4021 Red-Naped Sapsucker 

4030 Red-Breasted Sapsucker 

3960 Ladder-Backed Woodpecker 

3970 Nuttall's Woodpecker 

3940 Downy Woodpecker 

3930 Hairy Woodpecker 

3975 Arizona Woodpecker 

3950 Red-Cockaded Woodpecker 

3990 White-Headed Woodpecker 

4010 American Three-Toed Woodpecker 

4000 Black-Backed Woodpecker 

4123 Northern Flicker 

4140 Gilded Flicker 

4050 Pileated Woodpecker 

4720 Northern Beardless-Tyrannulet 

4590 Olive-Sided Flycatcher 

4600 Greater Pewee 

4620 Western Wood-Pewee 

4610 Eastern Wood-Pewee 

4630 Yellow-Bellied Flycatcher 

4650 Acadian Flycatcher 

4661 Alder Flycatcher 

4660 Willow Flycatcher 

4670 Least Flycatcher 

4680 Hammond's Flycatcher 

4691 Gray Flycatcher 

4690 Dusky Flycatcher 

4641 Pacific-Slope Flycatcher 

4640 Cordilleran Flycatcher 

4700 Buff-Breasted Flycatcher 

4580 Black Phoebe 

4560 Eastern Phoebe 

4570 Say's Phoebe 

4710 Vermilion Flycatcher 

4550 Dusky-Capped Flycatcher 

4540 Ash-Throated Flycatcher 

4520 Great Crested Flycatcher 

4530 Brown-Crested Flycatcher 

4490 Great Kiskadee 
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4510 Sulphur-Bellied Flycatcher 

4460 Tropical Kingbird 

4461 Couch's Kingbird 

4480 Cassin's Kingbird 

4451 Thick-Billed Kingbird 

4470 Western Kingbird 

4440 Eastern Kingbird 

4450 Gray Kingbird 

4430 Scissor-Tailed Flycatcher 

4411 Rose-Throated Becard 

6220 Loggerhead Shrike 

6210 Northern Shrike 

6310 White-Eyed Vireo 

6330 Bell's Vireo 

6300 Black-Capped Vireo 

6340 Gray Vireo 

6280 Yellow-Throated Vireo 

6292 Plumbeous Vireo 

6291 Cassin's Vireo 

6290 Blue-Headed Vireo 

6320 Hutton's Vireo 

6270 Warbling Vireo 

6260 Philadelphia Vireo 

6240 Red-Eyed Vireo 

6250 Yellow-Green Vireo 

6230 Black-Whiskered Vireo 

4840 Gray Jay 

4780 Steller's Jay 

4770 Blue Jay 

4830 Green Jay 

4832 Brown Jay 

4790 Florida Scrub-Jay 

4811 Island Scrub-Jay 

4810 Western Scrub-Jay 

4820 Mexican Jay 

4920 Pinyon Jay 

4910 Clark's Nutcracker 

4750 Black-Billed Magpie 

4760 Yellow-Billed Magpie 

4880 American Crow 

4890 Northwestern Crow 

4891 Tamaulipas Crow 

4900 Fish Crow 
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4870 Chihuahuan Raven 

4860 Common Raven 

4740 Horned Lark 

6110 Purple Martin 

6140 Tree Swallow 

6150 Violet-Green Swallow 

6170 Northern Rough-Winged Swallow 

6160 Bank Swallow 

6120 Cliff Swallow 

6121 Cave Swallow 

6130 Barn Swallow 

7360 Carolina Chickadee 

7350 Black-Capped Chickadee 

7380 Mountain Chickadee 

7370 Mexican Chickadee 

7410 Chestnut-Backed Chickadee 

7400 Boreal Chickadee 

7390 Gray-Headed Chickadee 

7340 Bridled Titmouse 

7330 Oak Titmouse 

7331 Juniper Titmouse 

7310 Tufted Titmouse 

7320 Black-Crested Titmouse 

7460 Verdin 

7430 Bushtit 

7280 Red-Breasted Nuthatch 

7270 White-Breasted Nuthatch 

7300 Pygmy Nuthatch 

7290 Brown-Headed Nuthatch 

7260 Brown Creeper 

7130 Cactus Wren 

7150 Rock Wren 

7170 Canyon Wren 

7180 Carolina Wren 

7190 Bewick's Wren 

7210 House Wren 

7220 Winter Wren 

7240 Sedge Wren 

7250 Marsh Wren 

7010 American Dipper 

7480 Golden-Crowned Kinglet 

7490 Ruby-Crowned Kinglet 

7470 Arctic Warbler 
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7510 Blue-Gray Gnatcatcher 

7530 California Gnatcatcher 

7520 Black-Tailed Gnatcatcher 

7531 Black-Capped Gnatcatcher 

7640 Bluethroat 

7650 Northern Wheatear 

7660 Eastern Bluebird 

7670 Western Bluebird 

7680 Mountain Bluebird 

7540 Townsend's Solitaire 

7560 Veery 

7570 Gray-Cheeked Thrush 

7571 Bicknell's Thrush 

7580 Swainson's Thrush 

7590 Hermit Thrush 

7550 Wood Thrush 

7621 Clay-Colored Robin 

7610 American Robin 

7630 Varied Thrush 

7420 Wrentit 

7040 Gray Catbird 

7030 Northern Mockingbird 

7020 Sage Thrasher 

7050 Brown Thrasher 

7060 Long-Billed Thrasher 

7080 Bendire's Thrasher 

7070 Curve-Billed Thrasher 

7100 California Thrasher 

7120 Crissal Thrasher 

7110 Le Conte's Thrasher 

6940 White Wagtail 

6990 Red-Throated Pipit 

6970 American Pipit 

7000 Sprague's Pipit 

6180 Bohemian Waxwing 

6190 Cedar Waxwing 

6200 Phainopepla 

6510 Olive Warbler 

6410 Blue-Winged Warbler 

6420 Golden-Winged Warbler 

6470 Tennessee Warbler 

6460 Orange-Crowned Warbler 

6450 Nashville Warbler 
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6440 Virginia's Warbler 

6471 Colima Warbler 

6430 Lucy's Warbler 

6480 Northern Parula 

6490 Tropical Parula 

6520 Yellow Warbler 

6590 Chestnut-Sided Warbler 

6570 Magnolia Warbler 

6500 Cape May Warbler 

6540 Black-Throated Blue Warbler 

6556 Yellow-Rumped Warbler 

6650 Black-Throated Gray Warbler 

6660 Golden-Cheeked Warbler 

6670 Black-Throated Green Warbler 

6680 Townsend's Warbler 

6690 Hermit Warbler 

6620 Blackburnian Warbler 

6630 Yellow-Throated Warbler 

6640 Grace's Warbler 

6710 Pine Warbler 

6700 Kirtland's Warbler 

6730 Prairie Warbler 

6720 Palm Warbler 

6600 Bay-Breasted Warbler 

6610 Blackpoll Warbler 

6580 Cerulean Warbler 

6360 Black-And-White Warbler 

6870 American Redstart 

6370 Prothonotary Warbler 

6390 Worm-Eating Warbler 

6380 Swainson's Warbler 

6740 Ovenbird 

6750 Northern Waterthrush 

6760 Louisiana Waterthrush 

6770 Kentucky Warbler 

6780 Connecticut Warbler 

6790 Mourning Warbler 

6800 Macgillivray's Warbler 

6810 Common Yellowthroat 

6840 Hooded Warbler 

6850 Wilson's Warbler 

6860 Canada Warbler 

6900 Red-Faced Warbler 
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6880 Painted Redstart 

6921 Rufous-Capped Warbler 

6830 Yellow-Breasted Chat 

6090 Hepatic Tanager 

6100 Summer Tanager 

6080 Scarlet Tanager 

6070 Western Tanager 

6071 Flame-Colored Tanager 

6020 White-Collared Seedeater 

5860 Olive Sparrow 

5900 Green-Tailed Towhee 

5880 Spotted Towhee 

5870 Eastern Towhee 

5910 Canyon Towhee 

5911 California Towhee 

5920 Abert's Towhee 

5790 Rufous-Winged Sparrow 

5780 Cassin's Sparrow 

5750 Bachman's Sparrow 

5760 Botteri's Sparrow 

5800 Rufous-Crowned Sparrow 

5742 Five-Striped Sparrow 

5590 American Tree Sparrow 

5600 Chipping Sparrow 

5610 Clay-Colored Sparrow 

5620 Brewer's Sparrow 

5630 Field Sparrow 

5650 Black-Chinned Sparrow 

5400 Vesper Sparrow 

5520 Lark Sparrow 

5730 Black-Throated Sparrow 

5740 Sage Sparrow 

6050 Lark Bunting 

5420 Savannah Sparrow 

5460 Grasshopper Sparrow 

5450 Baird's Sparrow 

5470 Henslow's Sparrow 

5480 Le Conte's Sparrow 

5491 Nelson's Sharp-Tailed Sparrow 

5490 Saltmarsh Sharp-Tailed Sparrow 

5500 Seaside Sparrow 

5850 Fox Sparrow 

5810 Song Sparrow 
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5830 Lincoln's Sparrow 

5840 Swamp Sparrow 

5580 White-Throated Sparrow 

5530 Harris's Sparrow 

5540 White-Crowned Sparrow 

5570 Golden-Crowned Sparrow 

5677 Dark-Eyed Junco 

5700 Yellow-Eyed Junco 

5390 Mccown's Longspur 

5360 Lapland Longspur 

5370 Smith's Longspur 

5380 Chestnut-Collared Longspur 

5340 Snow Bunting 

5350 Mckay's Bunting 

5930 Northern Cardinal 

5940 Pyrrhuloxia 

5950 Rose-Breasted Grosbeak 

5960 Black-Headed Grosbeak 

5970 Blue Grosbeak 

5990 Lazuli Bunting 

5980 Indigo Bunting 

6000 Varied Bunting 

6010 Painted Bunting 

6040 Dickcissel 

4940 Bobolink 

4980 Red-Winged Blackbird 

5000 Tricolored Blackbird 

5010 Eastern Meadowlark 

5011 Western Meadowlark 

4970 Yellow-Headed Blackbird 

5090 Rusty Blackbird 

5100 Brewer's Blackbird 

5110 Common Grackle 

5130 Boat-Tailed Grackle 

5120 Great-Tailed Grackle 

4961 Shiny Cowbird 

4960 Bronzed Cowbird 

4950 Brown-Headed Cowbird 

5060 Orchard Oriole 

5050 Hooded Oriole 

5051 Streak-Backed Oriole 

5080 Bullock's Oriole 

5031 Altamira Oriole 
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5030 Audubon's Oriole 

5070 Baltimore Oriole 

5040 Scott's Oriole 

5241 Unid. Rosy-Finch 

5150 Pine Grosbeak 

5170 Purple Finch 

5180 Cassin's Finch 

5190 House Finch 

5210 Red Crossbill 

5220 White-Winged Crossbill 

5280 Common Redpoll 

5270 Hoary Redpoll 

5330 Pine Siskin 

5300 Lesser Goldfinch 

5310 Lawrence's Goldfinch 

5290 American Goldfinch 

5140 Evening Grosbeak 
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Table A-2.  Forest Birds guild. 

American Ornithological Union Code Common Name 

3000 Ruffed Grouse 

2970 Blue Grouse 

3100 Wild Turkey 

2920 Mountain Quail 

2940 California Quail 

2890 Northern Bobwhite 

3260 Black Vulture 

3250 Turkey Vulture 

3640 Osprey 

3270 Swallow-Tailed Kite 

3290 Mississippi Kite 

3520 Bald Eagle 

3320 Sharp-Shinned Hawk 

3330 Cooper's Hawk 

3340 Northern Goshawk 

3390 Red-Shouldered Hawk 

3430 Broad-Winged Hawk 

3370 Red-Tailed Hawk 

3600 American Kestrel 

3570 Merlin 

3120 Band-Tailed Pigeon 

3160 Mourning Dove 

3870 Yellow-Billed Cuckoo 

3880 Black-Billed Cuckoo 

3840 Groove-Billed Ani 

3732 Western Screech-Owl 

3730 Eastern Screech-Owl 

3750 Great Horned Owl 

3790 Northern Pygmy-Owl 

3690 Spotted Owl 

3680 Barred Owl 

3660 Long-Eared Owl 

3720 Northern Saw-Whet Owl 

4200 Common Nighthawk 

4160 Chuck-Will's-Widow 

4170 Whip-Poor-Will 

4240 Vaux's Swift 

4410 Broad-Billed Hummingbird 

4280 Ruby-Throated Hummingbird 

4290 Black-Chinned Hummingbird 

4310 Anna's Hummingbird 

4360 Calliope Hummingbird 
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4330 Rufous Hummingbird 

4340 Allen's Hummingbird 

3900 Belted Kingfisher 

4080 Lewis's Woodpecker 

4060 Red-Headed Woodpecker 

4070 Acorn Woodpecker 

4110 Gila Woodpecker 

4090 Red-Bellied Woodpecker 

4040 Williamson's Sapsucker 

4020 Yellow-Bellied Sapsucker 

4021 Red-Naped Sapsucker 

4030 Red-Breasted Sapsucker 

3960 Ladder-Backed Woodpecker 

3970 Nuttall's Woodpecker 

3940 Downy Woodpecker 

3930 Hairy Woodpecker 

3975 Arizona Woodpecker 

3950 Red-Cockaded Woodpecker 

3990 White-Headed Woodpecker 

4010 American Three-Toed Woodpecker 

4000 Black-Backed Woodpecker 

4123 Northern Flicker 

4050 Pileated Woodpecker 

4590 Olive-Sided Flycatcher 

4600 Greater Pewee 

4620 Western Wood-Pewee 

4610 Eastern Wood-Pewee 

4630 Yellow-Bellied Flycatcher 

4650 Acadian Flycatcher 

4661 Alder Flycatcher 

4670 Least Flycatcher 

4680 Hammond's Flycatcher 

4690 Dusky Flycatcher 

4641 Pacific-Slope Flycatcher 

4640 Cordilleran Flycatcher 

4560 Eastern Phoebe 

4710 Vermilion Flycatcher 

4520 Great Crested Flycatcher 

4530 Brown-Crested Flycatcher 

4490 Great Kiskadee 

4461 Couch's Kingbird 

4480 Cassin's Kingbird 

4470 Western Kingbird 
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4440 Eastern Kingbird 

4450 Gray Kingbird 

4430 Scissor-Tailed Flycatcher 

6310 White-Eyed Vireo 

6280 Yellow-Throated Vireo 

6292 Plumbeous Vireo 

6291 Cassin's Vireo 

6290 Blue-Headed Vireo 

6320 Hutton's Vireo 

6270 Warbling Vireo 

6260 Philadelphia Vireo 

6240 Red-Eyed Vireo 

6230 Black-Whiskered Vireo 

4840 Gray Jay 

4780 Steller's Jay 

4770 Blue Jay 

4830 Green Jay 

4790 Florida Scrub-Jay 

4810 Western Scrub-Jay 

4820 Mexican Jay 

4920 Pinyon Jay 

4910 Clark's Nutcracker 

4750 Black-Billed Magpie 

4760 Yellow-Billed Magpie 

4880 American Crow 

4890 Northwestern Crow 

4900 Fish Crow 

4860 Common Raven 

6110 Purple Martin 

6140 Tree Swallow 

6150 Violet-Green Swallow 

6170 Northern Rough-Winged Swallow 

6160 Bank Swallow 

6120 Cliff Swallow 

7360 Carolina Chickadee 

7350 Black-Capped Chickadee 

7380 Mountain Chickadee 

7410 Chestnut-Backed Chickadee 

7400 Boreal Chickadee 

7340 Bridled Titmouse 

7330 Oak Titmouse 

7331 Juniper Titmouse 

7310 Tufted Titmouse 
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7320 Black-Crested Titmouse 

7430 Bushtit 

7280 Red-Breasted Nuthatch 

7270 White-Breasted Nuthatch 

7300 Pygmy Nuthatch 

7290 Brown-Headed Nuthatch 

7260 Brown Creeper 

7150 Rock Wren 

7170 Canyon Wren 

7180 Carolina Wren 

7190 Bewick's Wren 

7210 House Wren 

7220 Winter Wren 

7010 American Dipper 

7480 Golden-Crowned Kinglet 

7490 Ruby-Crowned Kinglet 

7510 Blue-Gray Gnatcatcher 

7660 Eastern Bluebird 

7670 Western Bluebird 

7680 Mountain Bluebird 

7540 Townsend's Solitaire 

7560 Veery 

7580 Swainson's Thrush 

7590 Hermit Thrush 

7550 Wood Thrush 

7610 American Robin 

7630 Varied Thrush 

7420 Wrentit 

7040 Gray Catbird 

7030 Northern Mockingbird 

7050 Brown Thrasher 

6190 Cedar Waxwing 

6200 Phainopepla 

6510 Olive Warbler 

6410 Blue-Winged Warbler 

6420 Golden-Winged Warbler 

6470 Tennessee Warbler 

6460 Orange-Crowned Warbler 

6450 Nashville Warbler 

6440 Virginia's Warbler 

6430 Lucy's Warbler 

6480 Northern Parula 

6590 Chestnut-Sided Warbler 
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6570 Magnolia Warbler 

6500 Cape May Warbler 

6540 Black-Throated Blue Warbler 

6650 Black-Throated Gray Warbler 

6670 Black-Throated Green Warbler 

6680 Townsend's Warbler 

6690 Hermit Warbler 

6620 Blackburnian Warbler 

6630 Yellow-Throated Warbler 

6640 Grace's Warbler 

6710 Pine Warbler 

6730 Prairie Warbler 

6720 Palm Warbler 

6600 Bay-Breasted Warbler 

6610 Blackpoll Warbler 

6580 Cerulean Warbler 

6360 Black-And-White Warbler 

6870 American Redstart 

6370 Prothonotary Warbler 

6390 Worm-Eating Warbler 

6380 Swainson's Warbler 

6740 Ovenbird 

6750 Northern Waterthrush 

6760 Louisiana Waterthrush 

6770 Kentucky Warbler 

6780 Connecticut Warbler 

6790 Mourning Warbler 

6800 Macgillivray's Warbler 

6810 Common Yellowthroat 

6840 Hooded Warbler 

6850 Wilson's Warbler 

6860 Canada Warbler 

6900 Red-Faced Warbler 

6830 Yellow-Breasted Chat 

6090 Hepatic Tanager 

6100 Summer Tanager 

6080 Scarlet Tanager 

6070 Western Tanager 

5880 Spotted Towhee 

5870 Eastern Towhee 

5750 Bachman's Sparrow 

5600 Chipping Sparrow 

5650 Black-Chinned Sparrow 
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5850 Fox Sparrow 

5810 Song Sparrow 

5830 Lincoln's Sparrow 

5580 White-Throated Sparrow 

5540 White-Crowned Sparrow 

5677 Dark-Eyed Junco 

5930 Northern Cardinal 

5950 Rose-Breasted Grosbeak 

5960 Black-Headed Grosbeak 

5970 Blue Grosbeak 

5990 Lazuli Bunting 

5980 Indigo Bunting 

6010 Painted Bunting 

5110 Common Grackle 

5120 Great-Tailed Grackle 

4950 Brown-Headed Cowbird 

5060 Orchard Oriole 

5030 Audubon's Oriole 

5070 Baltimore Oriole 

5150 Pine Grosbeak 

5170 Purple Finch 

5180 Cassin's Finch 

5190 House Finch 

5210 Red Crossbill 

5220 White-Winged Crossbill 

5330 Pine Siskin 

5310 Lawrence's Goldfinch 

5140 Evening Grosbeak 
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Table A-3. Grassland Birds guild. 

American Ornithological Union Code Common Name 

3050 Greater Prairie-Chicken 

3070 Lesser Prairie-Chicken 

3310 Northern Harrier 

3420 Swainson's Hawk 

3480 Ferruginous Hawk 

3650 Barn Owl 

3780 Burrowing Owl 

3670 Short-Eared Owl 

4200 Common Nighthawk 

4180 Common Poorwill 

4740 Horned Lark 

7240 Sedge Wren 

7000 Sprague's Pipit 

6810 Common Yellowthroat 

5780 Cassin's Sparrow 

5760 Botteri's Sparrow 

5400 Vesper Sparrow 

5520 Lark Sparrow 

6050 Lark Bunting 

5420 Savannah Sparrow 

5460 Grasshopper Sparrow 

5450 Baird's Sparrow 

5470 Henslow's Sparrow 

5480 Le Conte's Sparrow 

5390 Mccown's Longspur 

5380 Chestnut-Collared Longspur 

6040 Dickcissel 

4940 Bobolink 

5010 Eastern Meadowlark 

5011 Western Meadowlark 
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Table A-4.  Shrubland Birds guild. 

American Ornithological Union Code Common Name 

3090 Greater Sage-Grouse 

3089 Gunnison Sage-Grouse 

2920 Mountain Quail 

2930 Scaled Quail 

2940 California Quail 

2950 Gambel's Quail 

2890 Northern Bobwhite 

3350 Harris's Hawk 

3190 White-Winged Dove 

3200 Common Ground-Dove 

3850 Greater Roadrunner 

3830 Smooth-Billed Ani 

3840 Groove-Billed Ani 

3660 Long-Eared Owl 

4210 Lesser Nighthawk 

4180 Common Poorwill 

4300 Costa's Hummingbird 

4661 Alder Flycatcher 

4660 Willow Flycatcher 

4691 Gray Flycatcher 

4540 Ash-Throated Flycatcher 

4461 Couch's Kingbird 

6310 White-Eyed Vireo 

6330 Bell's Vireo 

6340 Gray Vireo 

4830 Green Jay 

4790 Florida Scrub-Jay 

4811 Island Scrub-Jay 

4810 Western Scrub-Jay 

4920 Pinyon Jay 

7460 Verdin 

7430 Bushtit 

7130 Cactus Wren 

7180 Carolina Wren 

7190 Bewick's Wren 

7210 House Wren 

7520 Black-Tailed Gnatcatcher 

7420 Wrentit 

7040 Gray Catbird 

7020 Sage Thrasher 

7050 Brown Thrasher 

7080 Bendire's Thrasher 
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7070 Curve-Billed Thrasher 

7100 California Thrasher 

7120 Crissal Thrasher 

7110 Le Conte's Thrasher 

6200 Phainopepla 

6410 Blue-Winged Warbler 

6420 Golden-Winged Warbler 

6460 Orange-Crowned Warbler 

6450 Nashville Warbler 

6440 Virginia's Warbler 

6430 Lucy's Warbler 

6520 Yellow Warbler 

6590 Chestnut-Sided Warbler 

6650 Black-Throated Gray Warbler 

6730 Prairie Warbler 

6720 Palm Warbler 

6780 Connecticut Warbler 

6790 Mourning Warbler 

6800 Macgillivray's Warbler 

6810 Common Yellowthroat 

6850 Wilson's Warbler 

6830 Yellow-Breasted Chat 

5860 Olive Sparrow 

5900 Green-Tailed Towhee 

5880 Spotted Towhee 

5870 Eastern Towhee 

5910 Canyon Towhee 

5911 California Towhee 

5790 Rufous-Winged Sparrow 

5800 Rufous-Crowned Sparrow 

5610 Clay-Colored Sparrow 

5620 Brewer's Sparrow 

5630 Field Sparrow 

5650 Black-Chinned Sparrow 

5520 Lark Sparrow 

5730 Black-Throated Sparrow 

5740 Sage Sparrow 

5850 Fox Sparrow 

5810 Song Sparrow 

5830 Lincoln's Sparrow 

5580 White-Throated Sparrow 

5540 White-Crowned Sparrow 

5930 Northern Cardinal 
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5940 Pyrrhuloxia 

5970 Blue Grosbeak 

5990 Lazuli Bunting 

5980 Indigo Bunting 

6000 Varied Bunting 

6010 Painted Bunting 

5040 Scott's Oriole 

5300 Lesser Goldfinch 

5290 American Goldfinch 
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Table A-5. Neotropical Migrants guild 

American Ornithological Union Code Common Name 

3270 Swallow-Tailed Kite 

3290 Mississippi Kite 

3430 Broad-Winged Hawk 

3420 Swainson's Hawk 

3400 Zone-Tailed Hawk 

3570 Merlin 

3560 Peregrine Falcon 

3120 Band-Tailed Pigeon 

3870 Yellow-Billed Cuckoo 

3880 Black-Billed Cuckoo 

3740 Flammulated Owl 

3780 Burrowing Owl 

4210 Lesser Nighthawk 

4200 Common Nighthawk 

4160 Chuck-Will's-Widow 

4161 Buff-Collared Nightjar 

4170 Whip-Poor-Will 

4220 Black Swift 

4230 Chimney Swift 

4240 Vaux's Swift 

4250 White-Throated Swift 

4370 Lucifer Hummingbird 

4280 Ruby-Throated Hummingbird 

4290 Black-Chinned Hummingbird 

4300 Costa's Hummingbird 

4360 Calliope Hummingbird 

4320 Broad-Tailed Hummingbird 

4330 Rufous Hummingbird 

4340 Allen's Hummingbird 

3900 Belted Kingfisher 

4020 Yellow-Bellied Sapsucker 

4021 Red-Naped Sapsucker 

4590 Olive-Sided Flycatcher 

4620 Western Wood-Pewee 

4610 Eastern Wood-Pewee 

4630 Yellow-Bellied Flycatcher 

4650 Acadian Flycatcher 

4661 Alder Flycatcher 

4660 Willow Flycatcher 

4670 Least Flycatcher 

4680 Hammond's Flycatcher 

4691 Gray Flycatcher 
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4690 Dusky Flycatcher 

4641 Pacific-Slope Flycatcher 

4640 Cordilleran Flycatcher 

4560 Eastern Phoebe 

4570 Say's Phoebe 

4710 Vermilion Flycatcher 

4540 Ash-Throated Flycatcher 

4520 Great Crested Flycatcher 

4510 Sulphur-Bellied Flycatcher 

4480 Cassin's Kingbird 

4470 Western Kingbird 

4440 Eastern Kingbird 

4450 Gray Kingbird 

4430 Scissor-Tailed Flycatcher 

6220 Loggerhead Shrike 

6310 White-Eyed Vireo 

6330 Bell's Vireo 

6300 Black-Capped Vireo 

6340 Gray Vireo 

6280 Yellow-Throated Vireo 

6292 Plumbeous Vireo 

6291 Cassin's Vireo 

6290 Blue-Headed Vireo 

6270 Warbling Vireo 

6260 Philadelphia Vireo 

6240 Red-Eyed Vireo 

6250 Yellow-Green Vireo 

6230 Black-Whiskered Vireo 

6110 Purple Martin 

6140 Tree Swallow 

6150 Violet-Green Swallow 

6170 Northern Rough-Winged Swallow 

6160 Bank Swallow 

6120 Cliff Swallow 

6130 Barn Swallow 

7210 House Wren 

7250 Marsh Wren 

7490 Ruby-Crowned Kinglet 

7510 Blue-Gray Gnatcatcher 

7560 Veery 

7570 Gray-Cheeked Thrush 

7571 Bicknell's Thrush 

7580 Swainson's Thrush 
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7590 Hermit Thrush 

7550 Wood Thrush 

7040 Gray Catbird 

7020 Sage Thrasher 

6970 American Pipit 

7000 Sprague's Pipit 

6190 Cedar Waxwing 

6200 Phainopepla 

6410 Blue-Winged Warbler 

6420 Golden-Winged Warbler 

6470 Tennessee Warbler 

6460 Orange-Crowned Warbler 

6450 Nashville Warbler 

6440 Virginia's Warbler 

6471 Colima Warbler 

6430 Lucy's Warbler 

6480 Northern Parula 

6520 Yellow Warbler 

6590 Chestnut-Sided Warbler 

6570 Magnolia Warbler 

6500 Cape May Warbler 

6540 Black-Throated Blue Warbler 

6556 Yellow-Rumped Warbler 

6650 Black-Throated Gray Warbler 

6660 Golden-Cheeked Warbler 

6670 Black-Throated Green Warbler 

6680 Townsend's Warbler 

6690 Hermit Warbler 

6620 Blackburnian Warbler 

6630 Yellow-Throated Warbler 

6640 Grace's Warbler 

6700 Kirtland's Warbler 

6730 Prairie Warbler 

6720 Palm Warbler 

6600 Bay-Breasted Warbler 

6610 Blackpoll Warbler 

6580 Cerulean Warbler 

6360 Black-And-White Warbler 

6870 American Redstart 

6370 Prothonotary Warbler 

6390 Worm-Eating Warbler 

6380 Swainson's Warbler 

6740 Ovenbird 
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6750 Northern Waterthrush 

6760 Louisiana Waterthrush 

6770 Kentucky Warbler 

6780 Connecticut Warbler 

6790 Mourning Warbler 

6800 Macgillivray's Warbler 

6810 Common Yellowthroat 

6840 Hooded Warbler 

6850 Wilson's Warbler 

6860 Canada Warbler 

6900 Red-Faced Warbler 

6830 Yellow-Breasted Chat 

6090 Hepatic Tanager 

6100 Summer Tanager 

6080 Scarlet Tanager 

6070 Western Tanager 

5900 Green-Tailed Towhee 

5600 Chipping Sparrow 

5610 Clay-Colored Sparrow 

5620 Brewer's Sparrow 

5400 Vesper Sparrow 

5520 Lark Sparrow 

6050 Lark Bunting 

5420 Savannah Sparrow 

5460 Grasshopper Sparrow 

5450 Baird's Sparrow 

5830 Lincoln's Sparrow 

5840 Swamp Sparrow 

5540 White-Crowned Sparrow 

5950 Rose-Breasted Grosbeak 

5960 Black-Headed Grosbeak 

5970 Blue Grosbeak 

5990 Lazuli Bunting 

5980 Indigo Bunting 

6000 Varied Bunting 

6010 Painted Bunting 

6040 Dickcissel 

4940 Bobolink 

4970 Yellow-Headed Blackbird 

5100 Brewer's Blackbird 

4950 Brown-Headed Cowbird 

5060 Orchard Oriole 

5050 Hooded Oriole 
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5080 Bullock's Oriole 

5070 Baltimore Oriole 

5040 Scott's Oriole 
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Table A-6. Short-Distance Migrants guild. 

American Ornithological Union Code Common Name 

3010 Willow Ptarmigan 

3020 Rock Ptarmigan 

3250 Turkey Vulture 

3640 Osprey 

3520 Bald Eagle 

3310 Northern Harrier 

3320 Sharp-Shinned Hawk 

3330 Cooper's Hawk 

3450 Common Black-Hawk 

3390 Red-Shouldered Hawk 

3460 Gray Hawk 

3440 Short-Tailed Hawk 

3370 Red-Tailed Hawk 

3480 Ferruginous Hawk 

3470 Rough-Legged Hawk 

3490 Golden Eagle 

3600 American Kestrel 

3540 Gyrfalcon 

3550 Prairie Falcon 

3140 White-Crowned Pigeon 

3130 Red-Billed Pigeon 

3190 White-Winged Dove 

3160 Mourning Dove 

3821 Thick-Billed Parrot 

3840 Groove-Billed Ani 

3650 Barn Owl 

3760 Snowy Owl 

3770 Northern Hawk Owl 

3810 Elf Owl 

3700 Great Gray Owl 

3660 Long-Eared Owl 

3670 Short-Eared Owl 

3720 Northern Saw-Whet Owl 

4180 Common Poorwill 

4410 Broad-Billed Hummingbird 

4390 Buff-Bellied Hummingbird 

4391 Violet-Crowned Hummingbird 

4270 Blue-Throated Hummingbird 

4260 Magnificent Hummingbird 

3890 Elegant Trogon 

4080 Lewis's Woodpecker 

4060 Red-Headed Woodpecker 
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4040 Williamson's Sapsucker 

4030 Red-Breasted Sapsucker 

4123 Northern Flicker 

4720 Northern Beardless-Tyrannulet 

4600 Greater Pewee 

4700 Buff-Breasted Flycatcher 

4550 Dusky-Capped Flycatcher 

4530 Brown-Crested Flycatcher 

4460 Tropical Kingbird 

4451 Thick-Billed Kingbird 

6210 Northern Shrike 

4770 Blue Jay 

4880 American Crow 

4900 Fish Crow 

4740 Horned Lark 

6121 Cave Swallow 

7280 Red-Breasted Nuthatch 

7260 Brown Creeper 

7150 Rock Wren 

7190 Bewick's Wren 

7220 Winter Wren 

7240 Sedge Wren 

7480 Golden-Crowned Kinglet 

7660 Eastern Bluebird 

7670 Western Bluebird 

7680 Mountain Bluebird 

7540 Townsend's Solitaire 

7610 American Robin 

7630 Varied Thrush 

7050 Brown Thrasher 

7080 Bendire's Thrasher 

7070 Curve-Billed Thrasher 

6180 Bohemian Waxwing 

6510 Olive Warbler 

6490 Tropical Parula 

6710 Pine Warbler 

6880 Painted Redstart 

5880 Spotted Towhee 

5870 Eastern Towhee 

5780 Cassin's Sparrow 

5750 Bachman's Sparrow 

5590 American Tree Sparrow 

5630 Field Sparrow 



272 

 

 

5650 Black-Chinned Sparrow 

5730 Black-Throated Sparrow 

5740 Sage Sparrow 

5470 Henslow's Sparrow 

5480 Le Conte's Sparrow 

5491 Nelson's Sharp-Tailed Sparrow 

5490 Saltmarsh Sharp-Tailed Sparrow 

5500 Seaside Sparrow 

5850 Fox Sparrow 

5810 Song Sparrow 

5580 White-Throated Sparrow 

5530 Harris's Sparrow 

5570 Golden-Crowned Sparrow 

5677 Dark-Eyed Junco 

5390 Mccown's Longspur 

5360 Lapland Longspur 

5370 Smith's Longspur 

5380 Chestnut-Collared Longspur 

5340 Snow Bunting 

5350 Mckay's Bunting 

4980 Red-Winged Blackbird 

5010 Eastern Meadowlark 

5011 Western Meadowlark 

5090 Rusty Blackbird 

5110 Common Grackle 

4960 Bronzed Cowbird 

5031 Altamira Oriole 

5241 Unid. Rosy-Finch 

5150 Pine Grosbeak 

5170 Purple Finch 

5180 Cassin's Finch 

5190 House Finch 

5210 Red Crossbill 

5220 White-Winged Crossbill 

5280 Common Redpoll 

5270 Hoary Redpoll 

5330 Pine Siskin 

5300 Lesser Goldfinch 

5290 American Goldfinch 

5140 Evening Grosbeak 
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Table A-7.  Permanent Residents Guild  

American Ornithological Union Code Common Name 

3110 Plain Chachalaca 

3000 Ruffed Grouse 

3090 Greater Sage-Grouse 

3089 Gunnison Sage-Grouse 

2980 Spruce Grouse 

3040 White-Tailed Ptarmigan 

2970 Blue Grouse 

3050 Greater Prairie-Chicken 

3070 Lesser Prairie-Chicken 

3100 Wild Turkey 

2920 Mountain Quail 

2930 Scaled Quail 

2940 California Quail 

2950 Gambel's Quail 

2890 Northern Bobwhite 

2960 Montezuma Quail 

3260 Black Vulture 

3240 California Condor 

3280 White-Tailed Kite 

3300 Snail Kite 

3340 Northern Goshawk 

3350 Harris's Hawk 

3410 White-Tailed Hawk 

3620 Crested Caracara 

3590 Aplomado Falcon 

3210 Inca Dove 

3200 Common Ground-Dove 

3180 White-Tipped Dove 

3826 Red-Crowned Parrot 

3860 Mangrove Cuckoo 

3850 Greater Roadrunner 

3830 Smooth-Billed Ani 

3732 Western Screech-Owl 

3730 Eastern Screech-Owl 

3731 Whiskered Screech-Owl 

3750 Great Horned Owl 

3800 Ferruginous Pygmy-Owl 

3690 Spotted Owl 

3680 Barred Owl 

3710 Boreal Owl 

4190 Common Pauraque 

4310 Anna's Hummingbird 
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3901 Ringed Kingfisher 

3910 Green Kingfisher 

4070 Acorn Woodpecker 

4110 Gila Woodpecker 

4100 Golden-Fronted Woodpecker 

4090 Red-Bellied Woodpecker 

3960 Ladder-Backed Woodpecker 

3970 Nuttall's Woodpecker 

3940 Downy Woodpecker 

3930 Hairy Woodpecker 

3975 Arizona Woodpecker 

3950 Red-Cockaded Woodpecker 

3990 White-Headed Woodpecker 

4010 American Three-Toed Woodpecker 

4000 Black-Backed Woodpecker 

4050 Pileated Woodpecker 

4580 Black Phoebe 

4490 Great Kiskadee 

4461 Couch's Kingbird 

6320 Hutton's Vireo 

4840 Gray Jay 

4780 Steller's Jay 

4830 Green Jay 

4790 Florida Scrub-Jay 

4811 Island Scrub-Jay 

4810 Western Scrub-Jay 

4820 Mexican Jay 

4920 Pinyon Jay 

4910 Clark's Nutcracker 

4750 Black-Billed Magpie 

4760 Yellow-Billed Magpie 

4890 Northwestern Crow 

4870 Chihuahuan Raven 

4860 Common Raven 

7360 Carolina Chickadee 

7350 Black-Capped Chickadee 

7380 Mountain Chickadee 

7370 Mexican Chickadee 

7410 Chestnut-Backed Chickadee 

7400 Boreal Chickadee 

7390 Gray-Headed Chickadee 

7340 Bridled Titmouse 

7330 Oak Titmouse 
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7331 Juniper Titmouse 

7310 Tufted Titmouse 

7320 Black-Crested Titmouse 

7460 Verdin 

7430 Bushtit 

7270 White-Breasted Nuthatch 

7300 Pygmy Nuthatch 

7290 Brown-Headed Nuthatch 

7130 Cactus Wren 

7170 Canyon Wren 

7180 Carolina Wren 

7010 American Dipper 

7530 California Gnatcatcher 

7520 Black-Tailed Gnatcatcher 

7420 Wrentit 

7030 Northern Mockingbird 

7060 Long-Billed Thrasher 

7100 California Thrasher 

7120 Crissal Thrasher 

7110 Le Conte's Thrasher 

6020 White-Collared Seedeater 

5860 Olive Sparrow 

5910 Canyon Towhee 

5911 California Towhee 

5920 Abert's Towhee 

5790 Rufous-Winged Sparrow 

5760 Botteri's Sparrow 

5800 Rufous-Crowned Sparrow 

5742 Five-Striped Sparrow 

5700 Yellow-Eyed Junco 

5930 Northern Cardinal 

5940 Pyrrhuloxia 

5000 Tricolored Blackbird 

5130 Boat-Tailed Grackle 

5120 Great-Tailed Grackle 

5030 Audubon's Oriole 

5310 Lawrence's Goldfinch 
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Appendix B: Predicted Avian Species Richness calculated from linear models 

of the 12 strongest performing variables from hierarchical partitioning 

analysis. 
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Figure B-1.  Predicted species richness of all birds, calculated from a linear model of the 12 strongest performing variables as determined by 

hierarchical partitioning analysis. 
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Figure B-19.  Predicted species richness of all birds, calculated from a linear model of the 12 strongest performing variables as determined by 

hierarchical partitioning analysis.
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Figure B-20.  Predicted species richness of all birds, calculated from a linear model of the 12 strongest performing variables as determined by 

hierarchical partitioning analysis. 
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Figure B-21.  Predicted species richness of all birds, calculated from a linear model of the 12 strongest performing variables as determined by 

hierarchical partitioning analysis. 
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Figure B-22.  Predicted species richness of all birds, calculated from a linear model of the 12 strongest performing variables as determined by 

hierarchical partitioning analysis. 
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Figure B-23.  Predicted species richness of all birds, calculated from a linear model of the 12 strongest performing variables as determined by 

hierarchical partitioning analysis.
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Figure B-24.  Predicted species richness of all birds, calculated from a linear model of the 12 strongest performing variables as determined by 

hierarchical partitioning analysis. 
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Appendix C: Raw residuals of species richness predictions from random forest models. 

 

Figure C-1.  Raw residuals of predicted species richness of all birds from the final random forest model. 
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Figure C-2. Raw residuals of predicted species richness of forest birds from the final random forest model 
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Figure C-25.  Raw residuals of predicted species richness of grassland birds from the final random forest model. 
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Figure C-26.  Raw residuals of predicted species richness of shrubland birds from the final random forest model 
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Figure C-27.  Raw residuals of predicted species richness of Neotropical migrants from the final random forest model 
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Figure C-28.  Raw residuals of predicted species richness of short-distance migrants from the final random forest model 
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Figure C-29.  Raw residuals of predicted species richness of Permanent Residents from the final random forest model 

 

 


