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Overview 

 

Wildfires are a natural element of many ecosystems and have a great impact on 

society by destroying property and sometimes even by taking lives. In the United States 

alone, thousands of individual fires occur every year and the number of both burned 

hectares and destroyed buildings are higher than ever since recorded fire history. In 

2013 alone, a total of 2135 buildings (residences, out-buildings and commercial 

buildings) were destroyed (NICC 2013). Although the problem of burned buildings is 

not new, the impact of wildland fires is expected to increase due to the expansion of the 

wildland urban interface (WUI) (Hammer et al. 2007; Maranghides and Mell 2012) 

combined with climate change that is projected to increase the occurrence and intensity 

of forest fires (Dale et al. 2001). Given that billions of dollars are being allocated to fuel 

management and fire suppression and that the main fire suppression goal is to protect 

people and property, it is necessary to obtain a clear picture and understanding of WUI 

losses and WUI recovery. Therefore, the goal in my dissertation was to understand the 

major factors that contribute to building loss to wildfire in the WUI in the United States. 

To achieve my main goal, I divided my research in four chapters where I asked the 

following questions related to wildfires and buildings: 1) what are the key variables 

among vegetation, terrain and spatial arrangement of buildings and their location that 

explain why buildings burn in wildfires? 2) does the role of vegetation, terrain, location 

and the spatial arrangement of buildings regarding the probability that individual 

buildings will burn in a wildfire differ among ecoregions across the conterminous 
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United States? 3) what is the spatial distribution of the vulnerability of buildings to 

burning when wildfires occur, across the United States? and, 4) what are the patterns of 

rebuilding and new development after wildfires? 

 

Many people want to live “closer to nature”. With increasing and broad access to better 

communication and transportation technology, what was once wild and isolated is now 

easily accessible (Theobald 2005). Forestlands, in particular, are very attractive as 

residential building sites because they provide positive externalities such as scenic views, 

wildlife and bird watching opportunities, shade, screening from neighbors and easy 

access to forest-based recreation opportunities (Tyrvainen and Hannu 1998). 

Consequently, in many parts of the US there is increasing pressure from residential 

housing development on both public and private forested lands (Radeloff et al. 2010, 

Hammer et al. 2009). These areas, where houses meet or intermingle with undeveloped 

wildland vegetation, are called the wildland-urban interface (WUI) (Radeloff et al. 2005). 

The WUI is a pivotal area for human-environment conflicts, such as habitat 

fragmentation, introduction of exotic species, and biodiversity decline and loss, and the 

destruction of buildings by wildfires (Radeloff et al. 2005; Gonzalez-Abraham et al. 2007; 

Bar-Massada et al. 2014).  

 

Fire policies have explicitly considered the WUI since at least 1960 (USDI and USDA 

1995), as firefighting resources in the WUI are typically focused on defending buildings 

rather than containing fires (Hammer et al. 2007). Consequently, fire in the WUI is 
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intimately connected to housing growth patterns and any decisions related to fire 

management in the WUI have potentially substantial political, social, and economic 

impacts (Hammer et al. 2007). 

 

Six of the 10 fires with the largest losses of lives and homes of the 20th century occurred 

in the WUI, and all of them occurred within the last 20 years (NFPA 2008). WUI fires have 

economic consequences and public costs, as federal resources for suppression and 

wildland fuel treatments are allocated preferentially in WUI areas (Mell et al. 2010). The 

annual costs are growing, increasing from US$1.3 billion annually from 1996 to 2000, to 

US$3.1 billion annually from 2001 to 2005 (GAO 2007). The increase in fire related costs 

raises the question how to curtail these costs and minimize fire risk. 

 

The problem of WUI and wildfires is not exclusive of the United States. Other countries 

feel it as well and some research has been done in this area with particular attention and 

concern in the southern European countries where every year people are killed by 

wildland fires (Lampin-Maillet et al. 2010a). However, the WUI, as a defined problem, 

became present in the forest fire environment in Europe more recently and only since 

2000 (Lampin-Maillet et al. 2010b). Wildfires in WUI areas are a serious threat to 

communities because they can be very destructive as was the case in California 2003, 

Portugal 2003, Greece 2007, and Australia 2009, and can produce damages in the billions 

of dollars (Haynes et al. 2010; Mell et al. 2010; Lampin-Maillet et al. 2011). WUIs represent 

serious problems for risk management in the context of high urban pressure (Davis 1990; 
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Cohen 2000; Lampin-Maillet et al. 2010a), because it involves two major fire risk 

components in terms of threatening inhabited areas: hazard (fire ignitions caused by 

human activities), and vulnerability, (Hardy 2005; Jappiot et al. 2009).  

 

There is a relationship between human settlement patterns and vulnerability to 

natural disasters. Land use changes and housing growth not only create stresses on 

natural ecosystems, they also increase society’s vulnerability to natural hazards (Liu et 

al. 2007b). Human communities are both a source of, and a victim of, natural hazards 

(Alig et al. 2008), particularly when it comes to wildfires. Exurban development causes 

increased vulnerability to wildfire in two ways. First, isolated communities, and 

especially unincorporated areas, have less infrastructure (e.g., roads and water supply 

systems) and fewer resources for providing protection services (e.g., police and fire 

departments). Second, wildland fire is a threat to homes in the WUI, the same area 

where housing growth has been highest (Alig et al. 2008). Lastly, people are also 

contributing to the increase in the probability of fire occurrence because they are 

themselves a source of ignitions. 

 

In terms of the annual burned area, wildland fires burned 70% more area from 2000 to 

2005 than in the 1990s (Mell et al. 2010), despite increases in federal funding for 

suppression and wildland fuel treatments. A large proportion of these costs is redirected 

to protect private property and communities from wildfires (USDA et al. 2009). Two 

major trends and political choices have grown in parallel contributing to increased fire 
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intensity and increased WUI growth and susceptibility. Those are: management choices 

made decades ago (fire suppression in particular), and many people in the U.S. rapidly 

moving into the countryside because they are fleeing from negative aspects of 

urbanization toward the positive externalities of the countryside (Colburn 2008). 

 

The policy of wildfire exclusion started at the time of the origin of the U.S. Forest 

Services, in the 1910s (Cohen 2008). Although several foresters and researchers promoted 

the benefits of wildland burning, public land management policy saw fires as unwanted, 

thus to be prevented and suppressed (fire exclusion). The political (reflected in policies) 

recognition that wildfire is an ecological factor only happened in the late 1960s and early 

1970s (Pyne 2004). However, even today and nationwide, the total number of fires 

suppressed dominates the fire occurrence statistics suggesting that the exclusion 

approach largely continues (Cohen 2008). These policies have significantly contributed to 

fire reduction in most areas of the U.S, while at the same time having changed vegetation 

fuel structure, leading to fire food (fuel) accumulation and vegetation arrangements that 

enhance, in some systems, the potential for extensive areas of high intensity wildland 

fires like those experienced during the last decade (Scheller et al. 2005; Cohen 2008). The 

argument that fire suppression is one of the culprits for more frequent and more intense 

fires is true for forest types that can sustain crown fires and where tree composition 

contains species that are fire dependent or fire resistant, such as Jack Pine forests (Scheller 

et al. 2005). However, crown fires rarely consume the entire forest, creating therefore a 
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mosaic like landscape that provides spatial heterogeneity which can be desirable for the 

system’s resilience (Turner and Romme 1994; Schoennagel et al. 2008).   

 

Despite the fact that crown fires can cause damage to buildings, ground fires, 

grassland fires, shrub fires, all have the potential to cause damage to human property. 

Building loss to wildfires occurs in different regions, with different fire regimes and 

vegetation types, suggesting that there are more factors contributing to building loss 

than simply vegetation and fire occurrence. Building loss to wildfire in the WUI is 

partly caused by the occurrence of housing, as people are often a source of ignitions 

(Bar-Massada et al. 2011b), and, buildings that are located at intermediate distances to 

other buildings or cluster of buildings, are more likely to be lost to wildfires (Syphard, 

2012). Other factors contributing to building loss include the landscape context of the 

surrounding vegetation, topography, and spatial arrangement of buildings (Syphard, 

2012). Buildings located at higher elevations, or steeper slopes, or with difficult road 

access, are more susceptible to fire conditions that can ignite a building. While many 

efforts have focused on reducing vegetation and fuel load in the WUI, it was not clear 

how much the surrounding vegetation was in fact contributing to building losses to 

wildfires, nor where in the United States vegetation may play a more determinant role 

than terrain or the spatial arrangement of buildings. My thesis addresses these 

questions and provides an insight to how these factors interact, and whether there are 

regional differences in these relationships. 
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Another aspect I considered in my research regarding wildfires in the WUI is disaster 

recovery, with rebuilding as the main focus. For political reasons, local governments are 

usually quick in announcing financial or other types of aid for those who have lost their 

homes in natural disasters (Nakazato and Murao 2007). Because homes are one of the 

fundamental investments of families, rebuilding them is of paramount importance to 

the families who live there. Wildfires, however, affect communities in a semi-random 

way. One building may burn while the building next to it is unaffected. This apparent 

randomness in fire effects makes rebuilding a case by case situation, in which 

homeowners find themselves dealing with their insurance companies and local 

authorities individually. Rebuilding, however, provides an interesting insight on how 

people react and adapt to wildfire, because they are aware of the fire, but they still 

make the choice to rebuild. Rebuilding is an important part of the recovery process, but 

little is known about rebuilding patterns and rates across the United States.  

 

My objectives for this dissertation were to identify the factors related to vegetation, 

terrain and spatial arrangement that contribute to building loss from wildfires, and 

examine nationwide spatial patterns of vulnerability and rebuilding. In my first 

chapter, I looked at two fires that burned more than 100 buildings, one in California and 

another in Colorado and learned that each community was unique in what contributed 

to building loss. In Boulder, Colorado, topography was one of the most important 

factors influencing building loss, while in California, spatial arrangement and in some 

cases topography and how connected the vegetation around buildings is, were 
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significant factors. This paper was published in the Journal of Landscape Ecology. In 

my second chapter, I expanded the analysis to the conterminous United States and 

looked at all the fires that occurred between 2000 and 2010. I divided the analysis into 

ecoregions and the general trend that was captured in chapter one was present in this 

chapter as well. Overall, variables related to topography and the spatial arrangement of 

buildings were more frequently present in the best 20 regression models than 

vegetation-related variables. This chapter has been submitted to the journal Ecological 

Applications. In chapter three I used the information obtained from the previous 

chapter and used MaxEnt to provide a vulnerability map for the conterminous United 

States. This chapter is not yet submitted. Finally, in chapter four I characterized 

rebuilding and new development patterns after wildfires that occurred between 2000 

and 2005. This paper is published in the International Journal of Wildland Fire.  

 

In the following pages I will provide short synopsis for each paper/chapter. 
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Chapter 1 Summary 

 

Wildfires destroy thousands of buildings every year in the Wildland Urban Interface. 

However, fire typically only destroys a fraction of the buildings within a given fire 

perimeter, suggesting more could be done to mitigate risk if we understood how to 

configure residential landscapes so that both people and buildings could survive fire.  

 

The goal was to understand the relative importance of vegetation, topography and 

spatial arrangement of buildings on building loss, within the fire’s landscape context. 

 

I analyzed two fires: one in Boulder CO and another in San Diego, CA. We used 

Google Earth historical imagery to digitize buildings exposed to the fires, a geographic 

information system to measure some of the explanatory variables, and FRAGSTATS to 

quantify landscape metrics. Using logistic regression we conducted an exhaustive 

model search to select the best models. 

 

The type of variables that were important varied among communities. We found 

complex spatial effects and no single model explained building loss everywhere, but 

topography and the spatial arrangement of buildings explained most of the variability 

in building losses. Vegetation connectivity was more important than vegetation type. 
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Location and spatial arrangement of buildings affect which buildings burn in a 

wildfire, which is important for urban planning, building siting, landscape design of 

future development, and to target fire prevention, fuel reduction, and homeowner 

education efforts in existing communities. Landscape context of buildings and 

communities is an important aspect of building loss, and if taken into consideration, 

could help communities adapt to fire. 

 

Resulting paper: Alexandre, Patricia M., Susan I. Stewart, Miranda H. Mockrin, 

Nicholas S. Keuler Alexandra D. Syphard, Avi Bar-Massada, Murray K. Clayton, Volker 

C. Radeloff, 2015, The relative impacts of vegetation, topography and spatial arrangement on 

building loss to wildfires in case studies of California and Colorado, Landscape Ecology, DOI: 

10.1007/s10980-015-0257-6. 
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Chapter 2 Summary 

 

Wildfire is globally an important ecological disturbance affecting biochemical cycles, 

and vegetation composition, but also puts peoples and their homes at risk. Suppressing 

wildfires has detrimental ecological effects and can promote larger and more intense 

wildfires when fuels accumulate, which increases the threat to buildings in the 

Wildland Urban Interface (WUI). Yet, when wildfires occur, typically only a small 

proportion of the buildings within the fire perimeter are lost, and the question is what 

determines which buildings burn.  

 

The goal was to examine which factors are related to building loss when a wildfire 

occurs throughout the United States. I was particularly interested in the relative roles of 

vegetation, topography, and the spatial arrangement of buildings, and how their 

respective roles vary among ecoregions.  

 

I analyzed all fires that occurred within the conterminous U.S. from 2000 to 2010 and 

digitized which buildings were lost and which survived according to Google Earth 

historical imagery. I modeled the occurrence as well as the percentage of buildings lost 

within clusters using logistic and linear regression. Overall, variables related to 

topography and the spatial arrangement of buildings were more frequently present in 

the best 20 regression models than vegetation related variables. In other words, specific 
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locations in the landscape have inherently a higher fire risk, and certain development 

patterns can exacerbate that risk.  

 

Fire policies and prevention efforts focused on vegetation management are important, 

but insufficient to solve current wildfire problems. Furthermore, the factors associated 

with building loss varied considerably among ecoregions suggesting that fire policy 

applied uniformly across the US will not work equally well in all regions, and that 

efforts to adapt communities to wildfires must be regionally tailored.  

 

Resulting paper: Alexandre, Patricia M., Susan I. Stewart, Nicholas S. Keuler, Murray 

K. Clayton, Miranda H. Mockrin, Avi Bar-Massada, Alexandra D. Syphard, Volker C. 

Radeloff, 2015, “Factors related to building loss due to wildfires in the conterminous United 

States”, Ecological Applications, in review. 
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Chapter 3 Summary 

 

Housing growth is predicted to increase and, consequently, the WUI will increase as 

well. Housing development alters fire size and distribution around the WUI due to a 

potential increase in ignitions. Every ignition has the potential to become a large fire, 

and when it does, the potential loss is high. For these reasons it is important to 

understand how buildings are affected by fire and how vulnerable they can be in case 

of fire occurrence. The goal was thus to produce a map of building vulnerability if a 

wildfire occurs for the conterminous United States. 

 

I analyzed Google Earth’s historical imagery to assess building loss due to wildfires in 

all fire perimeters in the conterminous United States between 2000 and 2010 recorded in 

the Monitoring Trends in Burn Severity (MTBS) dataset. I digitized all the buildings that 

were lost (building present before the fire date, but not after). I digitized a total of 9,233 

burned buildings. I used Omernik’s Level II ecoregions to sub-divide the conterminous 

U.S. into regions that share ecological traits. To project the potential distribution of 

building loss likelihood given the occurrence of a wildfire, I used the maximum entropy 

model MaxEnt, a map-based modeling software built and used primarily for species 

distribution modeling.  

 

The Maxent models presented good discrimination, with all AUC values between 0.80 

– 0.98, meaning that the model can at least be considered useful, and some of them 
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highly accurate, in their predictive performance. Even though we divided the 

conterminous in ecoregions, there is a clear difference between the west and the east. 

The western part of the US presents higher vulnerability in clustered patterns that are 

more closely related to either topography and/or land cover, while the eastern US 

presents a reticulate pattern that relates closely to populated areas (land use).  

 

My analysis allowed, for the first time, to use real data from buildings lost to 

wildfires, related the occurrence of a lost building to the building’s surroundings, and 

then used this information to identify areas with similar characteristics. Thus my maps 

are of major importance for local government agencies aiming to plan ahead of time 

and allocate resources before the hazard occurs in order to reduce vulnerability. 

Furthermore, having access to a map of vulnerability may inform individuals’ decision 

of where to buy or build their primary residence or second home. 

 

Resulting paper: Alexandre, Patricia M.; Anthony To; Susan I. Stewart; Murray K. 

Clayton; Brooke Bateman-Plumb; Avi Bar-Massada; Alexandra D. Syphard; Miranda H. 

Mockrin; Volker C. Radeloff, 2015, Building vulnerability to wildfires across the US, 

International Journal of Wildland Fire, not submitted yet. 
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Chapter 4 Summary 

 

Despite protection efforts, many WUI buildings are lost every year to wildfires, and 

these losses entail considerable social, economic and emotional costs. Between 1999 and 

2011, an average of 1,354 residences were lost to wildfire each year in the U.S. (NIFC 

2011a), and on average two billion dollars were spent annually to suppress wildfires 

(NIFC 2011a; USDA 2011a; NIFC 2012). However, little is known to how much of the 

lost buildings is being rebuilt. 

 

The goal was to characterize the pattern of buildings destroyed by wildfire, and the 

rebuilding and new development patterns across the conterminous United States for all 

fires that occurred from 2000 to 2005. Specific objectives were to: Assess rebuilding rates 

across the conterminous U.S., at the fire/county, the state, and the ecoregion levels; 

Compare rebuilding rates to rates of new development at each of the three levels of 

analysis; Compare the rate of new housing development within fire perimeters to the 

rate of new housing development in the surrounding county. 

 

I identified all burned and rebuilt buildings within 2000-2005 fire perimeters from the 

Monitoring Trends in Burn Severity (MTBS, www.mtbs.gov) dataset, across the 

conterminous U.S., using Google Earth imagery.  
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Overall, the percentage of burned buildings relative to all buildings within fire 

perimeters was low, and so were rebuilding percentages. Over the six-year study 

period, the percentage of burned buildings within fire perimeters ranged from 0.4% to 

20.4% per year (average of 5.9%). For each fire year, the percentage of buildings rebuilt 

within five years varied from 6.2% to 63.8% (average of 25.3%). The percentage of new 

buildings within fire perimeters also varied among years from 1.4% to 10.3% (average 

of 4.4%). Inter-annual variation was very high partly because 2003 was a severe fire year 

with exceptional large number of fires. The number of burned buildings in 2003 was an 

order of magnitude larger than for all other years combined (20.4% of burned 

buildings), and had the highest rebuilding rate (63.8%). 

 

The fact that we found generally low rebuilding rates may thus indicate that people 

are adapting to fire by choosing not to rebuild. However, high rates of new 

development suggest the opposite and support the notion that homeowners are not 

aware of fire risk, or that amenities and other considerations outweigh the risk. 

 

Resulting paper: Alexandre, P.M., Mockrin, M., Stewart, S., Hammer, R., Radeloff, V., 

2015, Rebuilding and new housing development after wildfire, International Journal of 

Wildland Fire, 24(1). 
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Significance 

Current demographic processes and trends point to an increasing number of people 

who will migrate and redistribute into wildland areas and  continue to affect and 

profoundly change landscapes and ecosystems across the United States (Hammer et al. 

2009b). Housing has become increasingly dispersed, particularly in rural areas where 

land is more affordable, which leads to low-density development in wildlands (Gude et 

al. 2008). In the Western states only 14% of the potential WUI has been developed, 

which means that there is a potential for substantially more housing development 

(Gude et al. 2008; McDaniel 2009). Assuming that population, income increase and 

technological changes will continue, the expectation is that WUI fires will continue to be 

a serious and costly issue in the US (Radeloff et al. 2010). Given the magnitude and 

significance of wildfires in the WUI, my research contributes to decreasing the gap 

within several domains, such as scientific, methodological, and management.  

Scientific contribution 

The WUI represents a system where humans are interacting with a natural system 

(forests, shrub lands, or grasslands), causing relationships that are complex and not well 

understood (Liu et al. 2007b). The WUI is an example of a coupled human and natural 

system (CHANS), in which people interact with natural components (Liu et al. 2007a). 

This particular human-natural system presents reciprocal effects on both human and 

natural sides of the system (Liu et al. 2007b). My research is an example of an 

interdisciplinary project that integrates ecological and social science and shares the four 

major features that Liu, 2007 enumerated: 1) “it explicitly addresses complex 
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interactions and feedback between human and natural systems”. I explicitly included 

anthropogenic variables that represent human activities and human decisions, such as 

building placement and road infrastructure. 2) “the team is interdisciplinary, engaging 

both ecological and social scientists around common questions”. My collaborators 

included fire experts, statisticians and social scientists. 3) “integrate various tools and 

techniques from ecological and social sciences as well as other disciplines such as 

remote sensing and geographic information sciences for data collection, management, 

analysis, modeling and integration”. I used remote sensing and GIS tools to acquire my 

data and use advanced statistical techniques to model the data. 4) “simultaneously 

context specific and longitudinal over periods of time long enough to elucidate 

temporal dynamics”. I collected my data for an eleven year period (2000-2010) for the 

conterminous U.S., but performed my analysis within ecoregions that are context 

specific. I have also divided the analysis into administrative boundaries instead of 

ecological, which accounts for the social aspect of the WUI since building regulations 

follow administrative boundaries and not ecological.  

The WUI is not only an example of a CHANS, it is also an example of a novel 

ecosystem with emergent properties (of both landscape and people). Due to climate 

change and faster-than-ever environmental and social changes, ecosystems are now 

facing new anthropogenic stressors, such as pollution, habitat fragmentation, land-use 

change, invasive plants, animals and pathogens, and altered fire regimes (Millar et al. 

2007). The increase in climate variability together with anthropogenic stressors creates 

novel environmental conditions that are completely new to ecosystems (Millar et al. 
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2007; Radeloff et al. 2015). Although my research focus was related to how people are 

affected by and adapt to wildfires, the area where human settlement adjoins or is 

intermingled with natural landscapes is much larger than the fire WUI (Bar-Massada et 

al. 2014). There are biotic and abiotic interactions occurring in the WUI that can give 

place to the creation of novel ecosystems that science is starting to identify and study. 

Examples of biotic interactions include exotic species introduction and spread, wildlife 

subsidization, disease transfer, landcover conversion, fragmentation, and habitat loss 

(Bar-Massada et al. 2014). Examples of abiotic factors would be wildfire ignitions and 

spread (Bar-Massada et al. 2014), and I would add building/property loss, which is 

where my contribution lies.  

My scientific contribution is a better understanding of how the coupled human-

natural system of the WUI is affected by wildfires and how people are adapting to it. 

The decision whether or not to rebuild after a wildfire can been seen as a form of 

adaptation. In chapter four, my results showed that not everyone rebuilds within five 

years of the fire, which could be an indication of fire adaptation. On the other hand, 

rebuilding suggests that other non-ecological factors, such as local regulations or 

incentives, personal experience, regional cultures, and even insurance policies might be 

more important determinants for people’s response to wildfires. In parallel, new 

development occurred at higher rates than rebuilding, suggesting that homeowners are 

either not aware of the fire risk, or amenities and other considerations outweigh the 

risk.  
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My research supports previous research on how building location affects the 

probability of a building being lost to wildfires. Chapter one’s major findings were that 

variables describing the landscape, such as vegetation/fuel connectivity, topography, 

and the spatial arrangement of buildings were present more frequently in the models 

than variables measuring more common targets of fire risk mitigation. While chapter 

two highlights that fire policy should be regionally tailored because drivers of building 

loss differ across ecoregions. 

Methodological contribution 

From the methodological point of view, the development of new measuring 

techniques using free satellite imagery (Google Earth) is of major importance for quick 

data access and data collection. I used a freely available tool to collect all my data at a 

broad scale. The use of freely available data sources together with providing free access 

to both my data and my scripts, allows for time efficiency for future studies since these 

methods are easily reproducible in new regions of the world. I also combined 

methodologies from different fields of science, such as landscape ecology and GIS to 

calculate my variables of interest. I combined different statistical techniques, such as 

logistic regression with General Linear Models (GLM) and semi-likelihood generalized 

models that account for spatial autocorrelations. I used large computational processing 

methods available at UW campus in collaboration with computer science students and 

researchers.  

The characterization of post-wildfire rebuilding patterns had not been done before at 

this scale due to difficulty in accessing data. My methodological approach overcomes 
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this obstacle providing the opportunity to depict patterns and identify for the first time 

what is in fact happening after wildfires. The location and type of one’s home is a 

directly observable and almost universal human behavior that affects biodiversity 

conservation directly and it is potentially the most pervasive and direct link between 

human attitudes and intention (Peterson et al. 2008). The understanding of the why 

people are rebuilding, or not, after wildfires can only be pursued after the pattern has 

been clearly identified and characterized.  

Management contribution 

My major contribution, however, is related to management and policy making. By 

providing a relative importance of vegetation, terrain and spatial arrangement for 

different regions in the United States, my research allows for better planning and 

resource allocation. It also allows homeowners to focus on the most relevant factors in 

their own regions. It provides a customized approach to land management and urban 

planning. For example, in my second chapter, results show that vegetation is not as 

significant in Mountain areas, and topography is more strongly related to building loss. 

Different ecoregions should focus on the aspects that are most relevant in their 

ecological region, and funding for fuel treatments should be channeled to those areas 

where vegetation does have a major contribution to building loss. These results have 

major consequences for community planning, zoning officials, policy and decision 

makers all across the United States. My results can help inform future policy and land 

use decisions, as well as being useful to potential future homeowners. In particular, my 

vulnerability maps provide a better understanding of where housing development is 
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more vulnerable to wildfires, but also, where prevention measures can be done to 

minimize vulnerability. Maps are also great to help prioritize management actions and 

create a hierarchy of prevention measures according to the regions vulnerability 

“hotspots”.  

In sum, fire, people and housing create a complex system with economic, social, and 

environmental considerations. The WUI has unique dynamics at both the 

environmental and social levels in each instance. To analyze WUI communities 

individually is helpful at a very local management scale. However, in order to have a 

broad understanding of the phenomenon and the similarities and differences among 

communities, my analysis was necessary because it provided a broader scale and 

looked at the phenomenon as a whole.  

Summary and remarks 

Housing growth in the WUI is likely to continue (Hammer et al. 2007; Radeloff et al. 2010). 

Land use changes and housing growth not only create stresses on natural ecosystems, 

they also increase society’s vulnerability to natural hazard (Liu et al. 2007). Human 

communities are both a source of, and a victim of, natural hazards (Alig et al. 2008).  

It seems prudent, in the WUI context, to focus more on prevention, planning and 

community preparedness and adaptation. However, when losses to human communities 

are substantial, the outcome is often new policy, reallocation of public spending, and 

regulation (Alig et al. 2008).  People’s decision on whether or not to rebuild after a wildfire 

or to develop on areas that were affected by fires are a combination of complex factors 



23 

 

 
 

that vary across social and ecological gradients. The scientific community agrees that 

there is no single solution nor any single factor that is most important in managing 

wildland fire (Moritz et al. 2014). My research builds on this premise and examines what 

the combination of factors is when buildings are lost. Generally, factors other than 

vegetation are more strongly related to building loss. Although some of the factors are 

not manageable, such as topography and the spatial arrangement of building that are 

already in place, the awareness that these are influencing the outcomes of a wildfire that 

hits a community is important to both government agencies, local authorities, but mainly 

homeowners.  

 There are three possible approaches to reduce building loss risk in the WUI: 1. Federal 

and local governments intervene every time a wildfire occurs to protect lives and 

property; 2. The government (either local or federal) imposes regulations to homeowners 

through regulation such as zoning and building codes; 3. Provide homeowners with 

science based information on how to protect a building from wildfires (example: Firewise 

program) and let the homeowners decide and bare the risks and not actively fight 

wildfires. There are precedents for all the listed options. Europe is heavy on regulations 

and laws are in place that mandate homeowners that live in high fire risk zones to clear 

the area around buildings. In the U.S. the approach is to fight and priority is given to 

protect property, and some communities have adopted the Firewise program. Argentina, 

for example, has neither regulations nor a mandate to protect property. Either to adopt 

one or a combination of these alternatives, it is something that society as a whole, or 

communities locally, will have to decide on which approach works best for them.  
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Abstract 

Wildfires destroy thousands of buildings every year in the Wildland Urban Interface. 

However, fire typically only destroys a fraction of the buildings within a given fire 

perimeter, suggesting more could be done to mitigate risk if we understood how to 

configure residential landscapes so that both people and buildings could survive fire. 

Our goal was to understand the relative importance of vegetation, topography and 

spatial arrangement of buildings on building loss, within the fire’s landscape context. 

Methods. We analyzed two fires: one in Boulder CO and another in San Diego, CA. We 

analyzed Google Earth historical imagery to digitize buildings exposed to the fires, a 

geographic information system to measure some of the explanatory variables, and 

FRAGSTATS to quantify landscape metrics. Using logistic regression we conducted an 

exhaustive model search to select the best models. The type of variables that were 

important varied across communities. We found complex spatial effects and no single 

model explained building loss everywhere, but topography and the spatial arrangement 

of buildings explained most of the variability in building losses. Vegetation connectivity 

was more important than vegetation type. Location and spatial arrangement of 

buildings affect which buildings burn in a wildfire, which is important for urban 

planning, building siting, landscape design of future development, and to target fire 

prevention, fuel reduction, and homeowner education efforts in existing communities. 

Landscape context of buildings and communities is an important aspect of building 

loss, and if taken into consideration, could help communities adapt to fire. 
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Introduction 

Wildfires are an integral part of many terrestrial ecosystems (Pausas and Keeley 2009), 

but in a changing climate, wildfires are becoming more frequent, extensive, and 

destructive (Pechony and Shindell 2010; Brotons et al. 2013). As houses are built in or 

near wildlands, and the Wildland Urban Interface (WUI) continues to grow (Radeloff et 

al. 2005; Hammer et al. 2009b), future wildfires may cause catastrophic losses of 

property, and sometimes life (Karter 2010). However, when fire occurs, typically not all 

houses burn, raising the question, what determines which houses burn? In most cases, 

there will be multiple factors at play, ranging from building materials to the 

surroundings of a house. What is not clear though is the relative importance of factors 

such as vegetation, topography, and the spatial arrangement of buildings. 

Several recent pieces of legislation, including the National Fire Plan and the Healthy 

Forest Restoration Act, were at least partly motivated by the goal to reduce fire risk in 

the WUI (Radeloff et al 2005; Stewart et al 2007, 2009; Hammer et al 2009a). The need to 

reduce fire risk arises because the social, economic, and ecological losses from wildfire 

were and still are mounting, despite major fire prevention and suppression efforts 

(Syphard et al. 2008). This is why the protection of homes and lives is a main objective 

of wildland fire agencies across the United States, with widespread efforts to treat fuels, 

and some examples of programs to raise community awareness and preparedness. 
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Landscape context and the location and spatial arrangement of buildings may be other 

important factors to consider though when aiming to reduce fire risk, especially when 

new housing developments are planned, and our study was designed to investigate 

how important these factors are.  

Vegetation greatly affects wildfire behavior and is thus a main focus of wildfire 

prevention efforts (Andreu et al. 2013; Stevens et al. 2014; Kennedy and Johnson 2014). 

In addition to vegetation, topography influences the spatial variability of fuels and the 

biophysical conditions that determine fire spread, intensity and duration (Dillon et al. 

2011). Topography influences fire behavior as well as vegetation distribution and 

productivity (Barbour et al. 1999), by affecting energy and water balances that control 

vegetation development, and hence the amount of biomass that fuels fires when 

sufficiently dry (Dillon et al. 2011). Elevation, aspect, latitude, and topographic position 

all influence microclimatic conditions, such as temperature, precipitation, direct solar 

radiation, wind exposure, etc., which in turn influence the moisture content of fuel 

(Dillon et al. 2011). Type, spatial pattern and distribution of vegetation determine the 

probability of fire ignition, fire spread rate and intensity, and ultimately, the type of 

vegetation that will regenerate after the fire (Marlon et al. 2012). Indirectly, topography 

can affect ignition probability because steep slopes, ridge tops, and south-facing slopes 

are all characterized by drier fuel conditions (Haire and McGarigal 2009). Weather 

conditions can strongly affect fire behavior. Humidity and temperature determine the 

rate at which fuels dry (Westerling et al. 2006; Finney et al. 2010), and wind also dries 

fuels, provides the fire with oxygen, and governs fire direction and spread rate (Bessie 
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and Johnson 1995). However, neither fire spread data nor weather data was available at 

scales fine enough to determine the weather condition of a given building at the exact 

time it was hit by a fire, making it ill-suited to the scale of our analysis. 

While vegetation, topography, and weather influence fire occurrence and behavior, 

these factors are not the only reason why some buildings burn within the perimeters of 

a fire and others do not. Factors related to the building themselves are also important, 

including building location and the spatial arrangement of buildings (Gibbons et al. 

2012; Syphard et al. 2012). The probability that a building is lost is highest in small, 

isolated building clusters with low to intermediate building density and few roads (Bar-

Massada et al. 2009; Syphard et al. 2012; Maranghides et al. 2013). What is unclear 

though is the relative importance of vegetation and building location to the probability 

that a building will be lost when a wildfire occurs, and how much this relative 

importance varies by setting. 

There are several reasons why it is important to understand which buildings are likely 

to be lost if a fire occurs, and especially which roles the location and the spatial patterns 

of buildings play. First, understanding where buildings are more likely to be lost is 

important when planning future development (Syphard et al. 2013). If there are ways to 

place new buildings so that the chances of loss to fire are reduced, then that could be 

one important step towards more fire-adapted communities. Knowing where buildings 

are most likely to burn is also important for established communities because this 

information can inform mitigation efforts. For example, a building in a higher-risk 

location may require a larger defensible space than one in a lower-risk area. 
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Ultimately, all mitigation strategies have strengths and weaknesses, and no single 

mitigation strategy will suffice to stem the rise in the number of buildings lost to 

wildfire. Vegetation management aimed at removing biomass to reduce fire intensity 

and risk (Agee and Skinner 2005) can be highly effective in the short run, but requires 

large and recurring investments of time and money. Furthermore, vegetation 

management can have negative ecological impacts, and may not be effective in some 

ecosystem types, or for fires that occur under severe weather conditions (Merriam et al. 

2006; Syphard et al. 2011; Moritz et al. 2014). Nonetheless, the U.S. National Fire Plan 

(NFP), which aims to reduce the risks of catastrophic wildland fire to communities 

(USDA 2007), is focusing resources on fuel reduction efforts, especially in the WUI 

(Husari et al. 2006; Schoennagel et al. 2009).  

In addition to fuel reduction efforts, mitigation actions available to homeowners and 

legislators (for new construction) include the use of fire resistant building materials to 

limit fire spread and building ignitions (Cohen and Butler 1998; Cohen 2000; Nowicki 

and Schulke 2002; Gude et al. 2008). The combination of the buildings’ exterior 

materials with its exposure to flames and firebrands ultimately determines its 

likelihood of ignition (Cohen 2000). Wildfire cannot ignite buildings unless their 

surroundings supply the necessary heat from flames of adjacent burning materials, such 

as firewood piles, vegetation, neighboring buildings, or firebrands (Cohen 2000; 

Nowicki and Schulke 2002). Building materials are also important. As an extreme 

example, a concrete bunker would not ignite during a wildfire, while a building with a 

wooden roof could ignite without any flames in its vicinity due to firebrands (Cohen 
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2000; Quarles et al. 2010). In sum, a building’s ignition potential during a wildfire is 

determined by the characteristics of its exterior materials, the characteristics of the 

surroundings within 30 m (i.e.,the home ignition zone (Cohen 2008; Syphard et al. 

2014), and the occurrence of firebrands, which can travel up to 2500 m (Cohen 2000). 

This means that a variety of actions to manage vegetation and building materials is 

necessary to reduce fire risk.  

In addition to vegetation and building materials, current wildfire policy 

recommendations, are urging work at the level of homeowners and throughout a 

community to enact multiple mitigation strategies and create fire-adapted communities 

(e.g., Schwab and Meck, 2005), and such efforts may hold promise over the long term. 

However, choosing among potential management actions, requires knowledge of which 

factors determine building loss and how their relative importance might vary with site 

characteristics. 

Our goal was to understand the effects of vegetation, topography and spatial patterns 

of buildings on the probability of building loss when a wildfire occurs. Furthermore, we 

were interested to see how much the relative importance of these variables differs 

among landscapes and communities.  

 

Methods 

Study areas 

We analyzed two fires from two ecoregions in the US where fires are frequent and 

building losses have been high in recent years: the Cedar fire, which occurred in San 
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Diego County, California in October 2003, and the Fourmile Canyon fire, which 

occurred in Boulder County, Colorado in September 2010. 

Most of California has a Mediterranean climate, and major metropolitan areas are 

juxtaposed with highly flammable ecosystems (Syphard et al. 2009). The dominant 

vegetation types are coastal sage scrub, chaparral, oak woodland and oak forest, and at 

higher elevations, pine forest (CDF 2003). The WUI fire problem is particularly critical 

in southern California, where the highest losses of property and life from wildfires in 

the US occur, and 400 buildings are lost every year on average (Calfire 2000; Alexandre 

et al. 2015a). San Diego is a major, growing city in a particularly fire prone area. Its 

Mediterranean climate of cool, wet winters and long, dry summers creates dry fuels, 

and the autumnal, adiabatic Santa Ana wind can result in severe fire weather. The 

Cedar fire started near San Diego in the afternoon of October 25th 2003 when a lost 

hunter set a fire to signal for help (CDF 2003). It burned for 10 days, during which time 

it covered 110,579 ha, claimed the lives of 13 civilians and one firefighter, injured 91 

people, and destroyed more than 2500 buildings (Fig. 1).  

Fire regimes in Colorado are influenced by the El Niño-Southern Oscillation (ENSO), 

which drive year-to-year variability in moisture, with dry conditions linked to reduced 

amplitude of the ENSO (Kitzberger et al. 2001). In addition, the negative, cool phase of 

the Pacific Decadal Oscillation (PDO) is sometimes associated with increased drought in 

the southern Rockies when coupled with the positive (warm) phase of the Atlantic 

Multidecadal Oscillation (MDO) (Sibold and Veblen 2006). These broad-scale climate 

patterns can cause severe droughts resulting in conditions in which large fires can occur 
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(Sibold and Veblen 2006). Dominant vegetation types are ponderosa Pine (Pinus 

ponderosa), ponderosa pine/juniper (Juniperus spp.), and Douglas-fir (Pseudotsuga 

menziesii)/ponderosa pine forests (Graham et al. 2012). Between 2006 and 2011, 

Colorado lost 476 buildings to wildfire (Graham et al. 2012). Boulder, Colorado, is a 

medium sized city located in the Northern Colorado Front Range, where the Rocky 

Mountains meet the Great Plains. The Fourmile fire started on the morning of 

September 6th 2010 in the Rocky Mountain Front Range adjacent to Boulder under dry 

conditions and steady winds. It was active for 11 days, during which time it covered 

2307 ha and destroyed 331 buildings, a statewide record number at that time (Fig. 2). 

Data 

The probability of building loss due to wildfire is potentially affected by several 

predictor variables operating at different spatial scales. We measured all variables at 

one of three spatial scales:  

1. The building scale, where we derived variables at the location of a building, or 

averaged within 30 m of each building (30 m is the distance from a heat source 

beyond which a building is not likely to ignite; (Cohen and Butler 1998; Cohen 

2000; Nowicki and Schulke 2002; Gibbons et al. 2012);  

2. The neighborhood scale, where we considered buildings within 200 m of each 

other as part of the same neighborhood (Syphard et al. 2007a); and  

3. The landscape scale, defined as the area within 2500 m of each building, where 

we calculated landscape metrics. The 2500 m distance is the approximate 

distance up to which wind might carry an ember or fire brand during a fire event 
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(Cohen 2000). The exact distance will depend on wind conditions at the day of 

the fire. 

Building data 

We used Google Earth’s historical imagery to collect spatially explicit data on building 

loss due to wildfires (Fig. 3), where we distinguished buildings that were destroyed 

from those that did not burn. For the Cedar fire, we digitized all the buildings within 

the fire perimeter (USDA 2011b) from Google Earth imagery before and after the 

wildfires. We digitized a total of 15,543 buildings, of which 1,715 were destroyed. We 

considered a building to be destroyed when it burned to the ground and was no longer 

standing. We were not able to assess buildings that were damaged by the fire, for 

example by smoke damage or partial siding melt. We considered all buildings that were 

still standing after the fire as “surviving buildings.” 

All the buildings inside the Fourmile fire were digitized by Boulder County and are 

available online (Boulder County Colorado 2015). A total of 1,122 buildings were 

digitized, and 174 residential buildings plus 157 accessory buildings were destroyed by 

the fire. 

Vegetation Data 

We analyzed land cover data from the National Land Cover Dataset (NLCD 2006, 30-

m spatial resolution, Fry et al. 2011) and reclassified the land cover types as highly 

flammable, flammable, or non-flammable (Appendix 1). The two most extensive NLCD 

classes inside both fire perimeters were Evergreen forests (42), and Shrub/Scrub (52). 

Evergreen forests and shrubs differ in terms of fire behavior, but both can support 
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intense fires that can produce firebrands and ignitions far ahead of the fire front. 

Grassland areas tend to be highly flammable, especially in the dry season, and as such 

may exhibit fires that lead to building ignition (Knapp 1998; Mell et al. 2007). We 

therefore classified Evergreen Forest, Mixed forest, Shrub/Scrub, and 

Grassland/Herbaceous classes as highly flammable. Deciduous Forest, Pasture/Hay, 

and Crops are vegetation classes that can support fire spread in some seasons, but 

because hay and crop harvest occurs typically before moisture levels drop, and 

therefore are less likely to produce a fire that will ignite a building, we classified them 

as flammable. We classified the remaining NLCD classes as not flammable due to their 

lack of vegetation or because their moisture content is too high to sustain a fire. 

At the landscape level, we calculated landscape metrics based on the reclassified 

NLCD and the program Fragstats (McGarigal et al. 2012). The landscape metrics 

provided a measure of fuel configuration and connectivity in the area surrounding each 

building, which are important factors for fire occurrence and spread in the vicinity of 

buildings. We calculated two landscape metrics within 2500 m from each building: the 

Contagion Index (CONTAG) and Connectance Index (CONNECT). In addition, we 

calculated the percentage of Land (PLANDi) that each class occupied and the total 

number of patches for each class (NPi - see Appendix 2 for definitions).  

In addition to the NLCD, we collected the Existing Vegetation Type (EVT), and Fuel 

Characteristic Classification System Fuelbeds (FCCS), at the building level, from 

LANDFIRE version 1.0.5 (http://www.landfire.gov) as proxies for the flammable 

vegetation and fuels around each building. EVT represents vegetation conditions 



40 

 

 
 

around the year 2001, i.e., before either fire occurred. EVT values are calculated using 

several sources of information, including field data, elevation, Landsat imagery, NLCD, 

and biophysical gradient data, and are widely used in several other LANDFIRE fuel 

models and fire behavior models (http://www.landfire.gov). FCCS define a fuelbeds as 

the inherent physical characteristics of fuel that contribute to fire behavior (Riccardi et 

al. 2007). Fuelbeds represent a wide range of fuel characteristics in six horizontal fuel 

layers called strata (Ottmar et al. 2007). Strata include canopy, shrub, non-woody 

vegetation, woody fuel, litter/lichen/moss, and ground fuel. Each stratum is further 

divided into 16 categories and 20 subcategories to represent the complexity of wildland 

and managed fuel (http://www.landfire.gov). We were interested in knowing which 

vegetation or fuel related variables were most strongly related to building loss, and thus 

most useful for future modeling of building loss to fire. 

Topographic data 

Topographic variables that affect fire behavior include elevation and aspect, which 

affect moisture gradients, and topographic features like narrow valleys or steep slopes, 

which influence fire spread. Topography also affects vegetation distribution and 

productivity (Barbour et al. 1999) because it affects energy and water balances (Dillon et 

al. 2011), and therefore precipitation, runoff, temperature, wind and solar radiation 

(Daly et al. 1994).  

We included several topographic variables, including elevation, slope, topographic 

position index (TPI), and southwestness derived from aspect (Syphard et al. 2007b). 

Slope and elevation were acquired from LANDFIRE and are derived from the National 
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Elevation Dataset (NED, ned.usgs.gov, verified on 01/06/2015). LANDFIRE elevation 

data has a 30-m resolution and covers the entire United States. We also used the Digital 

Elevation Model (DEM) from LANDFIRE to calculate the topographic position index 

(TPI) using an algorithm that defines standardized threshold values for the difference 

between a cell elevation value and the average elevation of the cells around that cell 

measured in standard deviations from the mean (Jenness 2006). Topographic position is 

a categorical variable that refers to landscape position (i.e., valley, lower slope, gentle 

slope, steep slope, upper slope, ridges). The algorithm results in a categorical raster that 

contains values between 1 and 6 to represent the topographic position: 

1 - Valley: TPI ≤ -1 SD  

2 - Lower Slope: -1 SD < TPI ≤ -0.5 SD  

3 - Flat Slope: -0.5 SD < TPI < 0.5 SD, Slope ≤ 5°  

4 - Middle Slope: -0.5 SD < TPI < 0.5 SD, Slope > 5°  

5 - Upper Slope: 0.5 SD < TPI ≤ 1 SD  

6 - Ridge: TPI > 1 SD  

 

While weather also affects fire behavior, we were not able to include weather data in 

our analysis because, neither fire spread data nor weather data was available at scales 

fine enough to determine the weather conditions of a given building at the exact time it 

was hit by a fire, making it ill-suited to the scale of our analysis. 
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Spatial arrangement of buildings 

To quantify the spatial pattern of buildings, we analyzed spatial relationships among 

individual buildings and the arrangement of buildings within clusters. Clusters were 

created by placing a circular radius of 100 m around each building. Overlapping circles 

were merged to become part of the same cluster. Clusters defined the Neighborhood 

level of our analyses (Fig. 4). For each cluster we calculated total area, total number of 

buildings, building dispersion (eq.1), and building density (eq.2).  

(Equation 1 ) 

�������� ��	
��	�� =
	� ��� � �ℎ� ��	�. ���� ��������	 ���ℎ�� � ���	���

���� ��	�. ���� ��������	 ���ℎ�� � ���	���
 

 

(Equation 2 ) 

�������� ���	��� =  
������ � ��������	 ���ℎ�� � ���	���

���	��� ���� (ℎ�)
 

 

We also calculated the distance to the edge of the nearest neighboring cluster and the 

closest building, and the distance from each individual building to the edge of the 

cluster (Fig. 4), based on research indicating that buildings in the interior of a cluster are 

less susceptible to wildfire than those at its edge (Syphard et al. 2012; Maranghides et al. 

2013). At the Building level we counted the number of buildings within 40 m of each 

building (Fig. 4). For a complete list of all the variables used in the models, see Table 1. 
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Statistical analyses 

We analyzed all data with the statistical software R (R Core Team 2014). We 

performed exploratory analysis of the data by plotting scatterplots and calculating 

summaries. Our response variable was whether a building was destroyed by fire or 

survived, and hence a binary variable. Thus, we selected  logistic regression to model 

the relationships between the probability of building loss as a function of our predictor 

variables (Hosmer and Lemeshow 2000).  

In our preliminary statistical analyses, we parameterized a model for the entire Cedar 

fire perimeter, based on all the buildings within the perimeter (total of 13,543 

buildings).  However, the semivariograms showed spatial patterns indicating the need 

to parameterize models for sub-regions in the Cedar fire. Similarly, when we mapped 

the residuals, there was strong evidence of spatial clustering. We therefore split the 

California study area into three separate communities within the perimeter of the Cedar 

fire: Crest, Julian, and Poway; and analyzed them separately (Fig. 1). This left us with 

three separate models for which the autocorrelation conformed to a more typical and 

more easily modeled form that could be adequately handled with a generalized linear 

mixed models (GLMMs), using penalized quasi likelihood (PQL), and one model for the 

Fourmile fire as a whole. 

We conducted model selection based on an exhaustive search of all possible 

combinations of predictor variables, selecting up to seven of them per model, and 

selected the best models based on the Bayesian Information Criterion (BIC) (Schwarz 

1978), and the single best for each community. We conducted the search with the R 
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packages bestglm (McLeod and Xu 2011) when possible, and glmulti (Calcagno 2013) 

when the number of explanatory variables was larger than 32. In this first set of 

variables, we did not account for spatial autocorrelation, and therefore we refer to these 

models as the ‘non-spatial models.’ 

We checked for spatial autocorrelation in the residuals by plotting semivariograms (R 

package geoR, Ribeiro and Diggle, 2001) for the top model in each community (see 

supplementary material). Because we found evidence of spatial autocorrelation in the 

residuals of the models for all four communities, we used generalized linear mixed 

models (GLMMs), using penalized quasi likelihood (PQL), to account for spatial 

autocorrelation (R package nlme; (Pinheiro et al. 2014). Hereafter we shall refer to these 

as the ‘spatial models.’ Since the BIC cannot be used to assess the fit of a GLMM based 

on PQL, (PQL is not a true likelihood), we incorporated spatial autocorrelation only into 

the top non-spatial model for each community and applied backward selection to 

remove extraneous variables (p-values higher than 0.05 were excluded). 

To measure the discriminatory ability of both the spatial and non-spatial models, we 

calculated the area under the curve (AUC) of the receiver operating characteristic (ROC) 

curve (R package ROCR, (Sander et al. 2005). In the case of the spatial models, we 

calculated the AUC based on the fixed effects coefficients, since there is no 

straightforward way to calculate the AUC for models with random effects. This means 

that the AUC values for the spatial models are only an approximation. 
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Results 

Our initial list of variables included 23 potential explanatory variables and we were 

able to reduce it to eight variables for all four communities. Our goal was to understand 

the effect of vegetation, topography and spatial arrangement of buildings on the 

probability of building loss to wildfire. Hence we looked at each type of variable and 

their relative impact on building loss.  

 

Vegetation variables 

We included seven variables related to vegetation in our analysis: vegetation typeB, 

land cover classB, fuel characteristic classification system fuelbedsB, percentage of highly 

flammable vegetation within 2500 mL, number of patches for each class within 2500 mL, 

contagion index of the landscape within 2500 mL, and connectivity of the landscape 

within 2500 mL. Vegetation-related variables were part of the best non-spatial and 

spatial models for three of the four communities.  

Percentage of highly flammable landL was present in both spatial and non-spatial 

models in Boulder, and in the non-spatial model of the Crest community (Table 2). In 

both Boulder and Crest communities, the probability of building loss given a wildfire 

increased with higher percentages of highly flammable land surrounding the buildings. 

ContagionL was present in the non-spatial model for Boulder, but not in the spatial 

model and it had negative signal, meaning that lower contagion values for the 

landscape around the building represent higher risk of building loss (Table 2)  
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ConnectivityL was present in both the best spatial and the best non-spatial models of the 

Julian community, with higher connectivity values representing higher risk of building 

loss (Table 2).  

Number of patches of highly flammable landL was in both the spatial and non-spatial 

models of the Poway community, with a smaller number of patches of highly 

flammable landL representing higher risk for building loss (Table 2). 

It is noteworthy that all the vegetation-related variables that were included in our 

best spatial models were landscape-level variables (Table 3). 

Topography variables 

We included four variables related to topography in our analysis: elevationB, slopeB, 

topographic positionB and southwestnessB. ElevationB, topographic position indexB, and 

slopeB were part of the best non-spatial models for three of four communities (Table 2). 

In the Cedar fire, elevationB was important in non-spatial models of two of the three 

communities (Table 2 and 3). In the Crest community, the probability of building loss 

was higher for buildings located at higher elevationsB and on steeper slopesB.  

 
Spatial-arrangement of buildings 

Spatial-arrangement variables were included in the final spatial models of two of the 

four communities analyzed (Table 3) We included in our analysis eight variables related 

to spatial arrangement of buildings, and six of those variables were present in the non-

spatial models for all communities. Three out of the eight variables were present in the 
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spatial models for two communities: number of buildings in the clusterC, building 

densityC, and cluster sizeC. However, the results varied from one community to 

another, and what was selected in the model for one community was typically not 

included in models for the other. These results highlighted the importance of spatial 

arrangement since it was the most prevalent group of variables in both spatial and non-

spatial models. In the Julian community, the probability of building loss given a 

wildfire was greater when the cluster sizeC was smaller and when there was a larger 

number of buildings within a cluster. In the Poway community, however, the 

probability of building loss was greater when building densityC was lower. 

Discussion 

When modeling which buildings burned within a fire perimeter, we found that 

variables describing the landscape – vegetation connectivity, topography, and the 

spatial arrangement of buildings – were present more frequently in the models than 

were the variables measuring more common targets of fire risk mitigation, such as 

vegetation type and vegetation cover.  

We based our choice of variables in part on the work of Cohen and others whose 

investigation of building ignition and building loss to wildfires (Cohen and Butler 1998; 

Cohen 2000; Nowicki and Schulke 2002; Gibbons et al. 2012; Syphard et al. 2012) has 

strongly influenced recommendations made to homeowners and fire managers 

regarding structure protection and risk mitigation. This is why we included variables to 

represent the concepts these researchers found significant, and to assess their 
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importance, in an effort to clarify which contribute the most to the risk of building loss, 

given a fire occurrence.  

Vegetation 

Vegetation was present in models for three communities. Interestingly, it was not the 

type of vegetation that was present, but rather the amount and the connectivity of this 

vegetation that mattered most. These results may be due to the fact that the vegetation 

type was fairly uniform, in particular in the Fourmile fire where the vegetation cover 

was either Evergreen forest or shrub/scrub. The degree to which communities were 

different in terms of the factors determining building loss further underlines the 

importance of landscape factors in the risk of building loss. 

The vegetation-related measures that we included (e.g., land cover, fuel beds, and 

vegetation type), and their consistent relatively lower importance demonstrated that 

once a fire starts and there is adequate vegetation to carry the fire, other factors become 

more important determinants of building loss. Vegetation and fuel is related to fire 

probability and fire spread and therefore fire exposure (Whitlock et al. 2003; Marlon et 

al. 2006), but less to building loss. The presence of fuel near the building was not a 

strong predictor in our models of the likelihood that a building would be lost to the fire.  

Topography 

Across all locations and models, topographic characteristics such as elevation and 

slope, were selected in the model fitting. Topography can affect the outcome of a 

wildfire directly or indirectly. Directly, because topography influences fire spread and 
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behavior. Steeper slopes decrease the angle between the flame and the new fuel source, 

drying fuels faster and therefore, moving up the hill faster (Dupuy 1995), and indirectly 

because buildings located at higher places are typically harder to access and therefore to 

defend (e.g. The Valparaiso fire in Chile, Associated Press, 2014). The combination of 

faster moving flames with difficult access often results in building loss and was likely 

the reason why elevation was an important variable in the Fourmile fire.  

Spatial arrangement of buildings 

Spatial arrangement of buildings, including cluster size, number of buildings in the 

cluster, and building density, was also consistently important in our models. For 

example, clusters with many buildings were associated with greater probability of loss 

in the case of the Julian community. This may be because burning buildings are 

themselves a source of firebrands that can be carried by the wind and ignite other 

buildings (Suzuki et al. 2014). Smaller clusters with more buildings will be denser, again 

increasing the probability of building-to-building ignition. However, the model for the 

Poway community showed higher risk in lower-density neighborhoods, perhaps 

reflecting an unmeasured covariate such as differences in the ease of accessibility for 

suppression or in the age and building materials of different neighborhoods. Fire-

specific factors such as the time of day or sequence of the flame front’s passage through 

the community could also be important and we were not able to consider them here 

(Maranghides et al. 2013).  
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Caveats 

The relatively low AUC values suggest that factors not included in our models may 

also affect building loss. For example, construction materials (Cohen and Butler 1998; 

Cohen 2000), fire suppression efforts during the fire (Graham et al. 2012), weather 

conditions during the fire event, and vegetation in the home ignition zone (Cohen and 

Butler 1998; Nowicki and Schulke 2002; Cohen 2008) play a role in the outcome of 

wildfire events, including building loss. Due to the scale of our analysis and reliance on 

satellite imagery and remote sensing information to collect our data, it was not possible 

to include these factors in the models. We do acknowledge that wind influences how far 

a firebrand can reach, which may be why buildings closer to the edge are at greater risk 

under severe weather conditions. However, we did not account for weather because 

there was not enough variability in available weather data, particularly for the Cedar 

fire, which occurred under Santa Ana conditions. Furthermore, why including weather 

would be interesting from a scientific perspective, it is less relevant for community 

planning purposes, because weather conditions during future fires are unknown. 

The most important variables in the Fourmile fire were more closely related to 

topography and flammability of the landscape surrounding the buildings, than in the 

communities in San Diego. The AUC values were the lowest of all four communities 

and we can only speculate that we missed some variables, such as building materials, 

suppression efforts and pre-fire mitigation efforts on the property by the owners. 
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Despite the fact that many other variables could have been added to our initial list, we 

began with a broad set of 24 variables and reduced it to a fairly small, focused, 

collection of explanatory variables that resulted in good AUC values. We see this as a 

modeling success. The statistical methods used in this study are cutting-edge when 

dealing with binary dependent variables and spatial autocorrelation. As in any 

modeling approach, there is always a possibility for Type II errors and for that reason 

we used AUC to assess the quality of the models by looking at both matches and 

mismatches in the model estimates.  

We would like to emphasize that our goal was to understand the underlying drivers 

to building loss and that we had no data that allowed us to cross-validate the models in 

a different place. Therefore, we did not try to use the models to make prediction for 

areas outside our study area. We did try each model on all other three communities and 

the results were always a model with a poor performance, strengthening our finding 

that the drivers are location specific and may not apply in other WUI areas. 

Management implications 

The defense of buildings and the replacement of destroyed buildings constitute a 

substantial portion of the costs associated with wildland fires in the WUI (Gude et al. 

2013). Knowing where on the landscape buildings face the most risk could focus both 

mitigation and suppression efforts and inform land use planning, urban planning, and 

WUI regulation. This knowledge could also be used to expand and improve the fire risk 

information available to homeowners, and to highlight more location-specific factors 
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(i.e., lot-related risk in addition to building material- and landscaping-related risk). Our 

findings have implications for policy makers, urban planners and homeowners, 

reinforcing the growing awareness that landscape configuration, as modified through 

land use and urban planning, and WUI building regulations, is a crucial focus for 

creating fire-adapted communities.  

Past land-use decision-making have led to many buildings in highly flammable areas 

resulting in high exposure and therefore, vulnerability to wildfires, of both buildings 

and people (Pincetl et al. 2008). Our results support other studies (Gibbons et al. 2012; 

Syphard et al. 2012) in highlighting that the location of a building on the landscape and 

in relation to other buildings matters greatly in terms of the probability that a building 

will burn when a fire occurs. This suggests that building placement could be given 

more weight when deciding which homeowners to focus on first in outreach efforts like 

Firewise. Owners of the highest-risk building locations, i.e, those at higher elevation, at 

the top of a ridge, in dense clusters of buildings, or at the periphery of a cluster, should 

be made aware that their building has a higher probability of loss than their 

neighborhood as a whole if a wildfire occurs, so that they can decide upon mitigation 

steps. Community outreach programs aimed at helping communities adapt to fire 

(Firewise and similar programs) could prioritize efforts to reach the owners of these 

higher-risk properties, and to enlist their cooperation. While targeting higher-risk 

properties is a standard practice for firefighters working with their community, our 

study reinforces the significance of building placement, and indicates that it is a major 

risk factor. 
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While it is rarely feasible to alter development patterns once houses have been built, 

it may be possible to reduce future fire risk by more carefully siting new development 

in high fire-risk landscapes, or steering development away from such areas entirely. In 

addition, rebuilding after a wildfire can be an opportunity to implement mitigation 

actions, incentives and even regulations that place more responsibility on the 

homeowner side (Alexandre et al. 2015a; Mockrin et al. 2015). In this regard, our 

findings are especially important for urban planners who want to take fire risk into 

account. Similarly, land-use regulations intended to minimize fire risk must address 

landscape-level factors, including building location and arrangement (Syphard et al. 

2012), as well as promote defensible space (Syphard et al. 2014) if they are to be 

successful in reducing wildfire-related  losses. Subdivision or planned unit 

development requirements are the local regulations that directly govern the 

configuration of newly-built landscapes, suggesting these particular rules could be 

targeted for change. Vegetation connectivity is the province of landscape architects as 

well as landscape maintenance services, two additional groups whose cooperation in 

fire adaptation would be beneficial. Our study suggests that there are opportunities to 

be proactive about future risk by considering building locations and vegetation 

connectivity when planning to new housing developments. 
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Fig. 1- Cedar Fire perimeter with the three communities, Crest, Julian and Poway, and 
their affected buildings in San Diego, California, 2003 



68 

 

 
 

 

Fig. 2 - Fourmile Fire perimeter and affected buildings in Boulder, Colorado, 2010. 
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Fig. 3 - Example of Google Earth imagery before and after the Fourmile Fire in Colorado 
in 2010. 
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Fig. 4 - Example of clusters that were created using a radius of 100 m; Cluster 1: 

example of how the buildings within 40 m were calculated. The two buildings on the 

left would have one building within 40 m each, while the building on the right would 

have zero buildings. Cluster 2: examples of how distance to the edge of cluster, distance 

to the nearest building and distance to the nearest cluster were calculated.  
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Appendix 1 - Reclassification scheme of NLCD classes to use as input for FRAGSTATS. 

Classes: Original NLCD class New Class 

42 Evergreen Forest 

Highly 
flammable  

43 Mixed Forest 

52 Shrub/Scrub 

71 Grassland/Herbaceous 

41 Deciduous Forest 

Flammable 81 Pasture/Hay 

82 Crops 

21,22,23,24 Urban classes 

Non-flammable 

11 Open Water 

12 Perennial Ice/Snow 

31 Barren Land 

90,95 Wetlands 

No Data No Data 999 - No data 
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Appendix 2 - Explanation of FRAGSTATS variables used in the models at the landscape 
level.  

  Metric Explanation 

C
la

ss
 PLAND 

Percentage of Landscape (0 < PLAND ≤ 100) - equals the sum of the 
areas (m2) of all patches of the corresponding patch type, divided by 
total landscape area (m2), multiplied by 100 (to convert to a percentage); 
in other words, PLAND equals the percentage the landscape comprised 
of the corresponding patch type. Note, total landscape area (A) includes 
any internal background present. PLAND approaches 0 when the 
corresponding patch type (class) becomes increasingly rare in the 
landscape. PLAND = 100 when the entire landscape consists of a single 
patch type; that is, when the entire image is comprised of a single patch. 

NP 
Number of Patches - equals the number of patches of the corresponding 
patch type (class). 

L
an

d
sc

ap
e 

CONNECT 

Connectance Index (0 ≤ CONNECT ≤ 100) - equals the number of 
functional joinings between all patches of the same patch type (sum of 
cijk where cijk = 0 if patch j and k are not within the specified distance of 
each other and cijk = 1 if patch j and k are within the specified distance), 
divided by the total number of possible joinings between all patches of 
the same type, multiplied by 100 to convert to a percentage. CONNECT 
= 0 when either the landscape consists of a single patch, or all classes 
consist of a single patch, or none of the patches in the landscape are 
"connected" (i.e., within the user-specified threshold distance of another 
patch of the same type). CONNECT = 100 when every patch in the 
landscape is "connected." 

CONTAG 

Contagion Index (0 < CONTAG ≤ 100 ) - equals minus the sum of the 
proportional abundance of each patch type multiplied by the proportion 
of adjacencies between cells of that patch type and another patch type, 
multiplied by the logarithm of the same quantity, summed over each 
unique adjacency type and each patch type; divided by 2 times the 
logarithm of the number of patch types; multiplied by 100 (to convert to 
a percentage). In other words, the observed contagion over the 
maximum possible contagion for the given number of patch types. 
CONTAG approaches 0 when the patch types are maximally 
disaggregated (i.e., every cell is a different patch type) and interspersed 
(equal proportions of all pairwise adjacencies). CONTAG = 100 when all 
patch types are maximally aggregated; i.e., when the landscape consists 
of single patch. CONTAG is undefined and reported as “N/A” in the 
“basename”.land file if the number of patch types is less than 2, or all 
classes consist of one cell patches adjacent to only background. 
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Supplementary Material - Semivariograms for the non-spatial models of each 
community.  

 
Boulder – Fourmile fire 

 

San Diego – Cedar Fire - Crest 
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San Diego – Cedar Fire - Julian 

 

San Diego – Cedar Fire – Poway 
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Abstract 

Wildfire is globally an important ecological disturbance affecting biochemical cycles, 

and vegetation composition, but also puts people and their homes at risk. Suppressing 

wildfires has detrimental ecological effects and can promote larger and more intense 

wildfires when fuels accumulate, which increases the threat to buildings in the 

Wildland Urban Interface (WUI). Yet, when wildfires occur, typically only a small 

proportion of the buildings within the fire perimeter are lost, and the question is what 

determines which buildings burn. Our goal was to examine which factors are related to 

building loss when a wildfire occurs throughout the United States. We were 

particularly interested in the relative roles of vegetation, topography, and the spatial 

arrangement of buildings, and how their respective roles vary among ecoregions. We 

analyzed all fires that occurred within the conterminous U.S. from 2000 to 2010 and 

digitized which buildings were lost and which survived according to Google Earth 

historical imagery. We modeled the occurrence as well as the percentage of buildings 

lost within clusters using logistic and linear regression. Overall, variables related to 

topography and the spatial arrangement of buildings were more frequently present in 

the best 20 regression models than vegetation-related variables. In other words, specific 

locations in the landscape have a higher fire risk, and certain development patterns can 

exacerbate that risk. Fire policies and prevention efforts focused on vegetation 

management are important, but insufficient to solve current wildfire problems. 

Furthermore, the factors associated with building loss varied considerably among 

ecoregions suggesting that fire policy applied uniformly across the US will not work 
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equally well in all regions, and that efforts to adapt communities to wildfires must be 

regionally tailored.  

Key words: Building loss, ecoregions, linear and logistic regression, national analysis, 

wildfires, WUI. 

 

Introduction 

Severe wildfire is a growing threat to buildings in the Wildland Urban Interface 

(WUI), the area where houses meet or intermingle with undeveloped wildland 

vegetation (Radeloff et al., 2005). The number of buildings lost and the resources spent 

fighting fires (approximately two billion dollars per year for fuel management 

suppression (Colburn 2008; USDA 2014)) demonstrate how serious this problem has 

become in the U.S. Interestingly though, when wildfires occur, typically only a small 

proportion of the buildings within the fire perimeter are lost (Alexandre et al. 2015a), 

and one major gap in our knowledge of WUI fire is why some buildings burn and 

others do not. Building materials and vegetation characteristics are important (Cohen 

2000; Cary et al. 2009; Quarles et al. 2010; Maranghides and Mell 2012). However, 

building materials and vegetative fuel alone do not explain why only some buildings 

are destroyed (Alexandre et al. 2015b). A few local studies conducted in California, 

Colorado and State of Victoria (south-eastern Australia), suggest that topography and 

the spatial arrangement of buildings are also key factors in building loss (Gibbons et al. 

2012; Syphard et al. 2012; Alexandre et al. 2015b), but it is unclear if these findings apply 

in other ecoregions. Successful fire policy and mitigation must be based on 
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understanding how human and ecological factors interactively determine which 

buildings burn when a fire occurs, and how their relative importance changes among 

ecoregions. 

Globally, wildfire is an important ecological disturbance that affects biochemical 

cycles and vegetation composition (Thonicke et al. 2001), and maintains biodiversity in 

many areas (Pausas and Keeley 2009). Suppressing wildfires can have detrimental 

ecological effects in some dry forest types (Keeley et al. 1999), potentially promoting 

larger and more intense wildfires due to excess fuel accumulation and continuity 

(Covington and Moore 1994; Hessburg et al. 2007). However, too-frequent fire due to 

human-caused ignitions and invasive species can also threaten ecological functioning 

and biodiversity, especially in non-forested ecosystems (Brooks and Matchett 2006; 

Syphard et al. 2009). Deleterious ecological effects of changes in fire regimes are likely 

when broad-scale fire management strategies do not account for the inherent variation 

in natural fire regimes (Moritz et al. 2014). 

National fire policy in the United States, which originated after several years of severe 

fires between 1910 and 1935 (e.g., the Great Fire in 1910 in Idaho, Montana, and 

Washington, and the Porcupine Fire, in 1911 Ontario - Egan, 2009, 

http://www.nwcg.gov) mandated fire suppression to contain all fires by 10 am of the 

following day. This policy was in effect until 1964 when the positive benefits of natural 

and prescribed fires were formally recognized in the Wilderness Act, after having been 

demonstrated by research (Busenberg 2004). Similarly, in 1968 the National Park Service 

changed its policy to recognize the natural role of fire (Busenberg 2004). 
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Even with less emphasis on suppression, wildfire-related expenditures have 

continued to increase, yet the average area burned nationally has not decreased 

(Westerling et al. 2006; NICC 2013; Ellison et al. 2015). Some argue that throughout the 

United States, the protection of buildings has now become the primary activity of 

wildland fire agencies because scattered development patterns place so many homes 

and other buildings at risk (Pincetl et al. 2008). Indeed, on average, 2,677 buildings 

(residences, outbuildings, and commercial) were lost to wildfires every year in the 

conterminous U.S from 1999 to 2003 (NICC 2013). However, this number is much lower 

than the number of buildings exposed to wildfires, i.e., those located within fire 

perimeters. When wildfires occur in the wildland-urban interface (WUI), typically only 

a small proportion of the buildings within the fire perimeter are lost (Alexandre et al. 

2015a), raising the question why some buildings burn and others do not. 

Because wildfires are shaped by climate, topography and vegetative fuel, and because 

vegetation is the only factor that can be directly managed (Husari et al. 2006), fuel 

manipulation is seen as the most effective way to influence future wildland fires 

(Husari et al. 2006). Thus in 2000, the US National Fire Plan (NFP) established “a long-

term hazardous fuels reduction program to reduce the risks of catastrophic wildland 

fire to communities” (http://www.forestsandrangelands.gov/) and mandated to focus 

fuel management funds on the WUI (Husari et al. 2006). However, NFP’s 

implementation resulted in only a small proportion of the hazardous fuel reduction 

treatments within WUI areas, and only 50% guided by Community Wildfire Protection 

Plans (CWPPs) (Schoennagel et al. 2009). This is unfortunate, because it matters greatly 
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where WUI fuel treatments are located in relation to buildings (Bar-Massada et al. 

2011a). Irrespective of the location of fuel treatment, focusing solely on fuels may be 

insufficient, because where buildings are located in relation to other buildings is more 

important in explaining building loss than are vegetation patterns (Syphard et al. 2012; 

Alexandre et al. 2015b). In fact, at the building level, the most effective actions are to 

reduce woody cover by up to 40% immediately adjacent to buildings and ensure that 

vegetation does not overhang or touch the building (Syphard et al. 2014). However, at 

the landscape level, building density and distance to major roads were the strongest 

explanatory variables of building loss (Syphard et al. 2014). Arrangement and location 

of buildings are key in determining susceptibility to wildfire in southern California, 

where property loss is highest at low to intermediate building densities and in areas 

with short fire return intervals (Syphard et al. 2012). In Australia, a greater proportion 

of the buildings lost were within 40 m of other buildings (Gibbons et al. 2012). And 

finally, in Southern California and Colorado, topography, the spatial arrangement of 

buildings, and vegetation connectivity explain a larger portion of the variability in 

building losses than does vegetation type (Alexandre et al. 2015b).  

However, it is likely that the relationships and dynamics between fuel treatments, 

building placement, and landscape configuration differ among ecoregions of the U.S., in 

part because their fire regimes vary. Some forest types have historically burned 

infrequently but with high intensity (Agee 1993), while others have long dry seasons 

and easily combusted forest floors, burning more frequently but less intensely. For 

example, the dry Ponderosa Pine forests have short fire return intervals with frequent, 
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low severity fire (Allen et al. 2002), while California’s Chaparral and southern 

shrublands have longer fire return intervals, and periodic fires under severe weather 

conditions (Keeley et al. 2009). Because the drivers of fire occurrence and behavior differ 

in these two landscapes, they have different fire regimes. The two landscapes also have 

different building patterns, regulations and topography. It would be expected that the 

topography strongly affects building loss to wildfire in a landscape where topography 

is variable, while in flat areas dominated by grasslands building loss might be more 

strongly related to building materials or wind intensity. In Southern California, strong 

winds that pass through deep valleys generate extreme fire behavior resulting in a large 

number of buildings lost to wildfires, and likely affecting which buildings are lost. 

Similarly, in a crown fire regime versus a low intensity grassland fire regime, it is likely 

that vegetation affects building loss differently even if building loss is high in both 

situations. These examples highlight that there is a need to understand which factors 

are most important in determining if a building will be lost when a wildfire occurs. 

In summary, our goal was to identify how vegetation, topography, and the spatial 

patterns of buildings relate to building loss when a wildfire occurs, and how the relative 

importance of these factors varies among ecoregions. Specifically, we asked:  

1. What factors are related to whether any buildings are lost when a wildfire hits 

a cluster of buildings? and,  

2. What factors are related to the proportion of buildings that are lost within a 

cluster when at least one building in the cluster is lost? 
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Methods 

Study area and Data - Buildings and clusters 

We used Google Earth’s historical imagery to assess building loss due to wildfires in 

all fire perimeters in the conterminous United States between 2000 and 2010 recorded in 

the Monitoring Trends in Burn Severity (MTBS) dataset (http://www.mtbs.gov/ 

downloaded on 03/05/2012). Google Earth imagery comes from a variety of sources, 

such as satellites (Landsat, SPOT Image, GeoEye-1, and IKONOS), aerial photography 

and even kites and balloons, which means that the spatial and temporal resolution, as 

well as the number of available historical images, varies by location 

(http://www.gearthblog.com/blog/archives/2014/04/google-earth-imagery.html, 

assessed on Sep/2/2015) 

Within each fire perimeter we digitized all the buildings that survived the fire 

(buildings present before and after the fire date), and all that were lost (buildings 

present before the fire date, but not after). We considered a building to be lost when it 

was completely removed in the post-fire image. This means that our estimates are 

conservative, and did not include partial damage or damage that was not visible from 

the top, such as smoke damage or partial siding melt. In total, we digitized 114,532 

buildings, of which 9,236 were lost (Fig. 5). 

We conducted our analysis at the scale of clusters of buildings, because previous 

analysis (Alexandre, 2015) showed evidence of spatial autocorrelation when buildings 

were the unit of analysis. We considered buildings to be in the same cluster if 100-m 

buffers around each building were contiguous (Syphard et al. 2007a) (Fig. 6). For each 
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cluster we calculated our independent variables, derived from mapped data, at two 

scales: 1. within the cluster; and 2. within the surrounding landscape, defined as the 

area within 2500 m (because 2500 m is the approximate distance the wind might carry 

an ember (Cohen 2000)).  

We examined only clusters that had at least eight buildings, because smaller cluster 

areas make analysis of the percentage of buildings lost less meaningful. For the logistic 

regression analysis, we examined only clusters with at least eight buildings. The reason 

was that in clusters with fewer buildings, over 75% lost no buildings due to fire, 

potentially biasing the logistic regressions (Appendix 3). In addition, we restricted our 

analyses to ecoregions that had at least 40 clusters and where at least 10% of clusters 

lost buildings (Table 4). In total, there were 16,595 clusters of buildings within fire 

perimeters, of which 2,029 contained at least eight buildings and these included 70% of 

all digitized buildings. We used 1,980 of these clusters for the logistic regression 

analysis, categorizing them according to whether any building was lost, or none of the 

buildings was lost, and used that binary variable as the response (we also ran our 

logistic regression models for all clusters with at least four buildings and results were 

very similar to those for clusters with at least eight buildings). For the linear regression, 

we used only those 547 clusters that had at least one building lost. The response 

variable for the linear regression was the proportion of buildings lost within the cluster 

(Table 4). 

 

 



84 

 

 
 

Ecoregions 

We analyzed our data for Omernik level I ecoregions 

(http://www.epa.gov/wed/pages/ecoregions/na_eco.htm#Downloads, last accessed 

on 02/20/2015, Fig. 7, (Omernik 1987)). We assigned clusters to ecoregions based on 

their location. However, only five ecoregions had enough clusters (> 40) for our logistic 

regression analysis, which accounted for 69% (78,961 buildings) of all the buildings that 

we digitized; and four ecoregions had enough for our linear regression analysis, which 

included 67% (77,170 buildings) of all buildings digitized (see Table 4 and Appendix 5 

for total number of digitized buildings). 

 

Vegetation Data 

The 2006 National Land Cover Database (NLCD 2006, (Fry et al. 2011) is a land cover 

classification scheme that has been applied consistently across the conterminous U.S. at 

a spatial resolution of 30 m, based on Landsat satellite data of circa 2006. Since our 

study area was the conterminous U.S. and our fire data was from 2000 to 2010, we used 

NLCD 2006 data as a proxy for the horizontal distribution of fuels during that time 

period. Due to the categorical nature of this variable, and for effective statistical 

analysis, we reclassified the data for deriving fuels metrics at both the cluster level and 

landscape level analyses. For cluster level analyses, we reclassified land cover into four 

groups: Non-flammable, Forest, Shrubs/Scrubs, and Grassland/Pasture/Hay 

(Appendix 5). For landscape level analysis, we reclassified land cover into three groups: 

Highly-flammable, Flammable, and Non-flammable (Appendix 6). Shrublands can 
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support intense fires that may produce firebrands, and grassland areas produce less 

intense fast moving fires. We therefore included Evergreen Forest, Mixed forest, 

Shrub/Scrub, and Grassland/Herbaceous classes in the Highly-flammable class. 

Deciduous Forest, Pasture/Hay, and Crops are vegetation types that can support fire 

spread in some seasons but are less likely to produce a fire that will ignite a building, so 

we classified them as Flammable. The remaining NLCD classes are not flammable due 

to their lack of vegetation or because their moisture content is too high to produce a fire 

and these were classified as Non-flammable (Appendix 6). 

Landscape metrics provide a measure of fuel configuration and connectivity in the 

area surrounding a building, which are important to fire spread. We derived landscape 

metrics, based on the second reclassification of the NLCD, using Fragstats, a software 

for spatial analysis, (McGarigal et al. 2012) for the area within 2500 m from each cluster. 

We calculated one landscape-scale metric, contagion (Fragstats name: CONTAG), and 

two class-scale metrics; percentage of land for each class (PLANDi), and connectivity 

(CONNECTi) (see Appendix 7 for definitions).  

 

Topographic data 

In our statistical models we included elevation, slope, topographic position index 

(TPI), road density, and southwestness derived from aspect (Syphard et al. 2007b). 

Topography affects fire behavior due to the micro-weather conditions created by 

elevation and aspect (e.g., moisture gradients), and topographic features such as narrow 

valleys or steep slopes influence fire spread. Topography also affects fires indirectly by 
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determining vegetation distribution and productivity (Barbour et al. 1999) because it 

affects energy and water balances (Dillon et al. 2011) and therefore precipitation, runoff, 

temperature, wind and solar radiation (Daly et al. 1994).  

Slope and elevation are part of the LANDFIRE (http://landfire.cr.usgs.gov/viewer 

assessed on 03/05/2015, 30-m resolution) dataset and derived from the National 

Elevation Dataset (NED, ned.usgs.gov). Topographic position index is a categorical 

variable that refers to the position of a building on the landscape (valley, lower slope, 

gentle slope, steep slope, upper slope, ridge). We calculated the topographic position 

index from the LANDFIRE elevation data using an algorithm that defines standardized 

threshold values for the difference between a cell elevation value and the average 

elevation of the cells around that cell measured in standard deviations from the mean 

(Jenness 2006). The algorithm results in a categorical raster that contains values between 

1 and 6 to represent the topographic position: 

 

1 - Valley: TPI ≤ -1 SD  

2 - Lower Slope: -1 SD < TPI ≤ -0.5 SD  

3 - Flat Slope: -0.5 SD < TPI < 0.5 SD, Slope ≤ 5°  

4 - Middle Slope: -0.5 SD < TPI < 0.5 SD, Slope > 5°  

5 - Upper Slope: 0.5 SD < TPI ≤ 1 SD  

6 - Ridge: TPI > 1 SD  
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Each building acquired the TPI value of the raster cell that intersected the building. 

Each cluster assumed the majority value of the buildings in the cluster. Due to a biased 

distribution of values towards ridges or valleys, we reclassified the remaining values to 

be either valleys or ridges, having a simple classification of two categorical values. 

Values 2 and 3 were reclassified to 1 (valley). Values 4 and 5 were reclassified to 6 

(ridge).  

Road density is a proxy for both human presence on the landscape and access to 

buildings. We downloaded road data from the U.S. Census Bureau website 

(www.census.gov downloaded on 04/14/2014) and calculated road density by dividing 

total road length within each cluster by cluster area.  

 

Spatial arrangement of buildings 

Because research suggests that buildings in the interior of a cluster are less susceptible 

to wildfire than those at its edge (Syphard et al. 2012; Maranghides et al. 2013), we 

calculated seven variables to quantify the spatial pattern of buildings within clusters. 

For each cluster we calculated a) the area, b) the number of buildings, c) building 

density (eq. 3), d) building dispersion (eq.4), e) the average distance to the edge of the 

cluster, f) the average distance to the nearest building, and g) average distance to the 

nearest cluster (Fig. 6). We calculated building density and building dispersion using 

the following equations: 

Equation 3  
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For a complete list of all the variables used in our analysis, see Table 5. 

 

Statistical analysis 

To answer our first question, i.e., what factors are related to whether any buildings are 

lost when a wildfire hits a cluster of buildings, we used logistic regression (Hosmer and 

Lemeshow 2000). We selected the best model based on an exhaustive search of all 

possible combinations of explanatory variables, and ranked models by their Bayesian 

Information Criterion (BIC) (Schwarz 1978), while allowing the maximum number of 

variables in the models to vary depending on the number of observations within a 

given ecoregion. We conducted the search with bestglm (McLeod and Xu 2011) in the 

statistical software R (R Core Team 2014) and examined the top 20 models in detail. For 

simplicity, we report the coefficients for the best model for each ecoregion in each group 

and how frequently each explanatory variable was present in the top 20 models, a more 

informative measure of variable importance than presence in the top model only. We 

checked for spatial autocorrelation in the residuals of the top model in each ecoregion 

using semivariograms (R package geoR, Ribeiro and Diggle, 2001), and found no 

significant spatial autocorrelation. In order to measure the discriminatory ability of the 
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models, we calculated the area under the curve (AUC) of the receiver operating 

characteristic (ROC) curve (R package ROCR, (Sander et al. 2005). In addition, for each 

ecoregion, we performed cross-validation to test for robustness. We randomly removed 

20% of the observations, performed model selection with the remaining 80%, and 

calculated AUC for the best model using the 20% data that was removed. We followed 

these steps 10 times for each ecoregion. 

To answer our second question, i..e, what factors are related to the proportion of 

buildings that are lost within a cluster where at least one building is lost, we modeled 

the proportion of buildings lost within each cluster using multiple linear regression 

models (Freedman 2009). We conducted model selection based on an exhaustive search 

of all possible combinations of explanatory variables using the R package bestglm 

(McLeod and Xu 2011) and ranked models based on the Bayesian Information Criterion 

(BIC) (Schwarz 1978). We again observed how frequently each variable was selected in 

the top 20 models. We checked for spatial autocorrelation in the residuals of the top 

model in each ecoregion using semivariograms (R package geoR, Ribeiro and Diggle, 

2001), and found no significant spatial autocorrelation. To measure the ability of the 

models to explain the variability in the data, we calculated the adjusted R2 for the top 

model in each ecoregion.  

Although we expected that there would be differences in the importance of variables 

among ecoregions, we conducted a preliminary analysis where we used all the 

observations regardless of the ecoregion to which they belonged (a ‘national model’). In 

this national model, we found significant interactions between ecoregion and some 
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variables (results shown in Appendix 8 and 9), indicating that the effect of these 

variables was different in different ecoregions, and because we were interested in these 

differences, we conducted our analysis at the ecoregion level.  

 

Results 

Likelihood of any wildfire losses - Logistic regression 

Vegetation 

We included seven variables related to vegetation and fuels in our analysis: land 

cover, contagion index, connectivity of the landscape, connectivity of highly flammable 

land and non-flammable land, and percentage of highly flammable land and non-

flammable land. Overall, the frequency of vegetation-related variables in the top 20 

models was low. The variable that appeared most frequently in the top 20 models was 

percentage of non-flammable land in the Mediterranean California ecoregion (Fig. 8) 

with a negative effect, meaning that places with a higher percentage of urban area were 

less likely to be affected by wildfires (Table 6). Contagion index and connectivity of 

non-flammable land were the next most frequent vegetation variables and occurred in 

Eastern Temperate Forests and in the Northwestern Forested Mountains (Fig. 8). In both 

ecoregions, the effect was negative, meaning that dispersed urban areas and fragmented 

landscapes were more likely to be associated with building losses to wildfires. For the 

remaining ecoregions, the frequency of vegetation related variables was always less 

than eight times out of 20.  
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Topography 

We included five variables related to topography in our analysis: Elevation, slope, 

southwestness, topographic position index (TPI) and road density. Topographic 

position index, elevation and road density appeared more frequently in the models of 

Mediterranean California, Northwestern Forested Mountains, and Eastern Forested 

Mountains. Topography related variables were selected in the top models for 

Mediterranean California and Northwestern Forested Mountains, always with positive 

effects, meaning that clusters located at the tops of ridges, at higher elevations and with 

higher road density were more likely to be affected if a wildfire occurs. In the remaining 

ecoregions, Great Plains and North American Deserts, topography related variables 

were present in fewer than seven of the top 20 models.  

Spatial-arrangement of buildings 

Of the three types of variables, the spatial arrangement variables were most frequent 

in the top 20 models (Fig. 8). We included seven variables related to spatial 

arrangement of buildings in our analysis: Cluster area, number of buildings in the 

cluster, average distance to the nearest building, average distance to the nearest cluster, 

average distance to cluster edge, building density, and building dispersion. Cluster area 

was the most frequently included variable (selected in all 20 top models) in the models 

of Mediterranean California and Great Plains, and was present in 18 of the 20 top 

models of the North American Deserts (Fig. 8). All three coefficients had a positive sign 

meaning that larger clusters were more strongly associated with the loss of at least one 

building, mostly likely because more buildings are exposed (Table 6). The number of 
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buildings in the cluster and average distance to the nearest building were the second 

most frequent variables and were present in the top model of Mediterranean California, 

Northwestern Forested Mountains and Easter Temperate Forests. In both Northwestern 

Forested Mountains and in Eastern Temperate Forest, the higher the number of 

buildings in the cluster, the more likely it was that at least one building was lost. In 

Mediterranean California, the average distance to the nearest building had a positive 

effect, meaning that the farther apart the buildings are, the more likely they are to be 

affected. In the Northwestern Forested Mountains the average distance to the nearest 

cluster had a negative sign meaning that clusters that are closer to other clusters are 

more likely to be affected by wildfires (Table 6). All other variables were present in 

fewer than seven of the 20 top models.  

 

Extent of wildfire losses - Linear regression 

Vegetation 

The vegetation variables that occurred most frequently in all 20 top models were 

percentage of highly flammable land and connectivity of highly flammable land, 

followed by the contagion index (14 out of 20 top models). Vegetation variables were 

most frequently selected in two ecoregions: the Northwestern Forested Mountains and 

the Eastern Temperate Forests (Fig. 9). In both ecoregions, clusters that were located in 

landscapes with higher percentage of flammable land but with lower connectivity, i.e., 

fragmented landscapes, were more likely to have a higher proportion of buildings lost 
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(Table 7). In Mediterranean California and the Great Plains ecoregions, vegetation 

related variables were present fewer than seven times in the 20 top models (Fig. 9).  

 

Topography 

The most frequently included topography variables were elevation, topographic 

position index, and road density (Fig. 9). In the Mediterranean California ecoregion, 

clusters located at higher elevations were more likely to have higher proportions of 

buildings lost (Table 7). In the Northwestern Forested mountains ecoregion, clusters 

with lower road density were more likely to have higher proportions of buildings lost 

(Table 7). In the Eastern Temperate Forest clusters on ridges were more likely to have 

higher proportions of buildings lost (Table 7). In the Great Plains, topography variables 

were less frequent in the top models, and all topography variables occurred fewer than 

seven of the top 20 models (Fig. 9).  

 

Spatial arrangement of buildings 

Variables related to the spatial arrangement of buildings were present more 

frequently than topography or vegetation related variables in the top 20 models, and in 

all four studied ecoregions. Cluster area was the most frequent variable in the Eastern 

Temperate Forests, and the second-most frequent in the Great Plains. In both cases, 

smaller clusters were more likely to have a higher proportion of buildings lost (Table 7). 

Building dispersion was frequently present in the models for the Great Plains, where 

clusters with lower dispersion values were more likely to have a higher proportion of 
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buildings lost. In the Northwestern Forested Mountains, building density was the most 

frequent spatial arrangement variable, and clusters with lower density had a higher 

proportion of buildings lost (Table 7). In Mediterranean California variable frequencies 

were less consistent among the top 20 models, but the number of buildings in the 

cluster was selected in 14 of the 20 top models (Fig. 9), and clusters with fewer 

buildings were more likely to have a higher proportion of buildings lost (Table 7).  

 

Model performance 

The AUC values for the logistic regression for each top model in each ecoregion 

ranged from 0.66 to 0.88 (Table 6). For the linear regression the adjusted R2 values were 

generally low, ranging from 0.20 to 0.67 (Table 7). Cross-validation for each ecoregion 

yielded averaged AUC values that were close to the ones obtained in the top model for 

each ecoregion (Table 6), indicating that our results were robust.  

 

Discussion 

As we expected, the role of vegetation, topography and the spatial arrangement of 

buildings differed greatly among ecoregions. However, for both questions, i.e., whether 

any building was lost, and what proportion of buildings was lost, topography and the 

spatial arrangement of buildings were more frequently selected than vegetation related 

variables.  
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People are moving near wildland vegetation and into landscapes where fire is a 

reality, even though fire frequency varies depending on the ecosystem (Nowak and 

Walton 2005; Hammer et al. 2007; Gude et al. 2008). More people means higher 

probability for human caused ignitions (Bar-Massada et al. 2009; Price and Bradstock 

2014), creating a positive feedback cycle and thus a coupled human-natural system.  

For both logistic and linear regressions, vegetation variables related to landscape 

metrics, such as connectivity and percentage of highly flammable land, were important. 

For example, the top model for the North American Deserts ecoregion identified cluster 

area and landscape connectivity as the two main drivers of wildfire effects on 

communities. Although fire behavior in grasslands is not as well studied as in other 

vegetation types, some studies in shrubland dominated areas, such as California, have 

shown us that crown fires in forests are not required for building loss to occur (Brooks 

and Matchett 2006; Syphard et al. 2011; Gray and Dickson 2015). Furthermore, invasive 

annual grasses in the desert are providing fuel connectivity to support fires where they 

had been absent historically, raising ecological concern (Gray and Dickson 2015).  

Topography-related variables were present in the top logistic models of two 

ecoregions and the top linear models in three ecoregions. For both Mediterranean 

California and the Northwestern Forested Mountains, clusters located at higher 

elevations or on top of ridges were more likely to have lost buildings. That supports 

other studies done in California where topography was an important driver of extreme 

fire behavior (Flatley et al. 2011; Dillon et al. 2011; Syphard et al. 2012). The 

Northwestern Forested Mountains is a very diverse ecoregion. It contains the highest 
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mountain of North America and the most diverse mosaic of ecosystem types, such as 

mountains and plateaus separated by valleys and lowlands. Topography is the common 

denominator for such diversity, and clusters in Northwestern Forested Mountains that 

were located at higher elevations or at the tops of ridges were more likely to be affected 

by wildfire. 

High road density increased the probability that any building was lost in 

Mediterranean California, but it was negatively correlated with the proportion of 

buildings lost in the Northwestern Forested Mountains. Mediterranean landscapes are 

often heavily settled and roads are a proxy of human activity, which is linked to a 

higher probability of ignition (Syphard et al. 2007b; Bar-Massada et al. 2011b). In the 

Northwest Forested Mountains, however, lower road density makes areas harder to 

access when fighting fires, leading to a higher proportion of buildings lost.  

The spatial arrangement of buildings was important in every top logistic or linear 

model. This is one of the most striking results, given the predominant focus in fire 

management on vegetation as a risk factor. Independent of the ecoregion’s 

characteristics, the location of the cluster in relation to other clusters and how far 

buildings were from other buildings had a clear association with building loss in case of 

wildfire. The most prominent variable was cluster area, followed by the number of 

buildings in the cluster, but the signs of the coefficients for both variables varied 

depending on the type of analysis. When explaining if any building was lost, larger 

clusters with more buildings were more likely to be affected by a wildfire. However, 

when explaining what proportion of buildings was lost, smaller clusters with fewer 
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buildings were more likely to lose a higher proportion. When building density is 

higher, there is a higher probability that once a wildfire hits one building, the fire will 

progress from building to building. Indeed, in Australia being close to other buildings 

increases a building’s chance of being lost to wildfires (Gibbons et al. 2012). In addition, 

smaller clusters are more likely to contain buildings lost because they have more edge 

and thus more buildings directly exposed to wildland vegetation. 

Finding that smaller, denser clusters are more likely to be affected by wildfires poses a 

land use dilemma because conservation strategies seek to cluster buildings in order to 

minimize the human footprint on the landscape (Theobald et al. 1997; Gonzalez-

Abraham et al. 2007). Furthermore, it is cheaper to protect buildings in groups rather 

than each individually (Bar-Massada et al. 2011a). The question is what size a cluster 

should be in order to optimize both conservation and fire risk reduction goals. The 

relationships between building density and fire risk are non-linear and fire risk 

decreases rapidly above a building density threshold (Syphard et al. 2012), but at such 

high building density values, conservation options are limited because space for natural 

habitat is limited. At low to medium building densities, clustering would be 

advantageous for conservation, but appears to be problematic for fire risk reduction.  

Both top models for the Great Plains ecoregion contained only variables related to the 

spatial arrangement of buildings, whereas topography, or vegetation, or both were also 

important in the other ecoregions. The potential natural vegetation of the Great Plains 

are grasslands, and the climate is dry and continental, characterized by short hot 

summers and long cold winters, high winds, and periodic, intense droughts and frosts. 
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High winds might be one explanation of why so many wildfires result in building loss 

in the Great Plains. Out of all ecoregions, the Great Plains had the highest proportion of 

clusters where at least one building was affected (122 out of 319). When modeling if any 

building was lost, only cluster area was significant and larger clusters were more likely 

to have at least one destroyed building in the event of a wildfire. The topography in the 

Great Plains generally consists of mild slopes, with a very low range of variation. 

Therefore, it is not surprising that topography was not present in the models. Similarly, 

vegetation, although certainly important to carry wildfires, was not variable enough to 

be included in the models. However, low AUC and adjusted R2 values suggest that 

some important variables were missing. We speculate wind may play an important role, 

but one that we were not able to consider. Higher wind speeds will produce fast 

moving fires, which may catch homeowners by surprise. Firebrands from burning 

structures can be carried far enough to ignite another roof or a pile of wood stored close 

to a building. We suggest that management efforts could focus on building materials 

and defensible space and less on the larger surrounding landscape. 

The linear regression analysis was designed to explain variation in the proportion of 

buildings lost within the cluster and although our models did explain substantial 

amounts of the variation, quite a bit of this variation remained unexplained, suggesting 

that some factors were missing from our models. The most obvious of these are 

building materials and firefighting effort, neither of which we could measure. Another 

issue is that the number of buildings lost that we identified is likely lower than the 
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number actually lost, and some buildings may have been damaged but not lost. Because 

we used satellite imagery, we could only identify buildings that were completely lost. 

 

Conclusions 

The most important message from our results is that topography and building 

arrangements strongly affect which buildings are lost, but that the relative importance 

of variables varies considerably among ecoregions suggesting that policies and 

management efforts need to be regionally tailored, as the National Science analysis for 

the cohesive strategy strongly suggest in their report 

(http://cohesivefire.nemac.org/option/6 assessed on October 10 2015). 

Although vegetation may be the most obvious and manageable aspect of wildfire risk 

that managers can address, fuel treatments are only a partial and short-term solution, 

and insufficient to address the other sources of fire risk to buildings, as our models 

clearly show. The challenge is that factors such as topography and building patterns 

cannot be changed after buildings are in place, and need to be accounted for when 

urban planners make community-wide planning, subdivision layout, or building siting 

decisions. We suggest that a better understanding how different factors contribute to 

the risk that a building will be lost in a wildfire, as we present here, will allow policy 

makers, planners, and resource managers to develop long-term solutions to reduce fire 

risk to buildings and make communities more fire adapted.   
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Table 6 - Coefficients, standard errors, p-values and AUC values for 10-fold cross-
validation for the top logistic model in each ecoregion. 

    Coefficient St. Error Pr(>|z|) AUC 

North American Deserts         

  Intercept -3.56 0.74 p < 0.001 
0.802 

(0.56 to 0.88, 0.69 avg) 
  Cluster area 0.07 0.02 0.007 

  Connectivity of the landscape 0.04 0.02 0.030 

Mediterranean California         

  Intercept -2.13 0.28 p < 0.001 

0.766  
(0.70 to 0.82, 0.76 avg) 

  Cluster area 0.03 0.00 p < 0.001 

  Road density 9.94E-04 0.00 0.004 

  Distance to nearest building 0.01 0.00 0.001 

  
Topographic Position Index - 

Top ridges 
0.64 0.17 p < 0.001 

  
Percentage of non-flammable 

land 
-0.02 0.01 p < 0.001 

Northwestern Forested Mountains         

  Intercept -2.97 0.73 p < 0.001 

0.878  
(0.70 to 0.93, 0.81 avg) 

  
Number of buildings in the 

cluster 
0.04 0.01 0.002 

  Distance to nearest cluster -1.52E-03 0.00 0.157 

  Elevation 1.01E-03 0.00 0.004 

  
Topographic Position Index - 

Top ridges 
1.33 0.46 0.004 

  
Connectivity Index of non-

flammable class 
-0.07 0.03 0.033 

Eastern Temperate Forests         

  Intercept -1.31 0.55 0.018 

0.727  
(0.68 to 0.84, 0.75 avg) 

  
Number of buildings in the 

cluster 
0.02 0.00 p < 0.001 

  Contagion index -0.03 0.01 0.005 

Great Plains         

  Intercept -1.30 0.21 p < 0.001 0.669  
(0.62 to 0.75, 0.69 avg)   Cluster area 0.04 0.01 p < 0.001 
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Table 7 - Coefficients, standard errors, and p-values for the top linear model in each 
ecoregion. 

    Coefficient St. Error Pr(>|t|) Adj R2 

Mediterranean California         

  Intercept 3.24 0.27 p < 0.001 

0.20   Number of buildings in the cluster -0.35 0.05 p < 0.001 

  Elevation 0.02 0.01 0.003 

Northwestern Forested Mountains         

  Intercept 0.21 1.89 0.910 

0.34 

  Building density -0.95 0.24 p < 0.001 

  Road density -0.10 0.03 0.004 

  Contagion index -0.78 0.25 0.003 

  Percentage of highly flammable land 1.05 0.35 0.005 

Eastern Temperate Forests         

  Intercept 5.48 0.47 p < 0.001 

0.67 

  Cluster Area -1.15 0.12 p < 0.001 

  
Topographic Position Index - Top 

ridges 
0.83 0.25 0.002 

  Percentage of highly flammable land 0.33 0.09 0.001 

  
Connectivity of highly flammable 

class 
-1.18 0.30 p < 0.001 

Great Plains         

  Intercept 7.68 1.19 p < 0.001 

0.30   Cluster area -0.60 0.09 p < 0.001 

  Building dispersion -4.15 1.57 0.009 
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Fig. 5 – Distribution of all the digitized buildings (destroyed and survived) that were 

inside fire perimeters between 2000 and 2010 for the conterminous U.S. 
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Fig. 6 - Example of clusters that were created using a radius of 100 m; Cluster 1 contains 

one example of how the shortest distance to the edge of cluster (A), shortest distance to 

the nearest building (B) and shortest distance to the nearest cluster (C) were calculated. 
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Fig. 7 – Divisions Level for Omernik Ecoregions for the conterminous U.S and clusters 

distribution per ecoregion.  
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Fig. 8 - Frequency of variables in the top 20 models of our logistic regressions. 
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Fig. 9 - Frequency of variables in the top 20 models of our linear regressions 
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Appendix 3 - Total number of clusters depending on how many buildings are 
considered for analysis  

Number of 

buildings within 

the cluster 

Total number of 

clusters 

Number of clusters 

with at least 1 

building lost 

% 

Any 16595 1713 10.32 

2 10571 1435 13.57 

3 6980 1175 16.83 

4 5019 987 19.67 

5 3789 825 21.77 

6 2960 691 23.34 

7 2428 603 24.84 

8 2029 547 26.96 

 

Bar graph of number of clusters depending on the minimum number of buildings in the 

clusters.   
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Appendix 5 - NLCD reclassification scheme for statistical analysis 

Original Class Frequency New Class Frequency 

21 Developed - Open Space 113 

I Non-flammable 212 

22 Developed - low intensity 56 

23 
Developed - Medium 

intensity 
24 

31 
Barren Land 

(Rock/Sand/Clay) 
1 

82 Cultivated crops 10 

90 Woody wetland 6 

95 
Emergent Herbaceous 

wetlands 
2 

41 Deciduous Forest 13 

II Forest 46 42 Evergreen Forest 31 

43 Mixed Forest 2 

52 Shrub/Scrub 96 III Shrubs/Scrubs 96 

71 Grassland/Herbaceous 157 IV Grassland/Pasture, 

Hay 
175 

81 Pasture/Hay 18 
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Appendix 6 - NLCD reclassification scheme for FRAGSTATS 

Classes: Original NLCD class New Class 

42 Evergreen Forest 

Highly 

flammable  

43 Mixed Forest 

52 Shrub/Scrub 

71 Grassland/Herbaceous 

41 Deciduous Forest 

Flammable 81 Pasture/Hay 

82 Crops 

21,22,23,24 Urban classes 

Non-

flammable 

11 Open Water 

12 Perennial Ice/Snow 

31 Barren Land 

90,95 Wetlands 

No Data No Data 999 - No data 
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Appendix 7 – Fragstats metrics definitions 

  Explanation 

C
O

N
T

A
G

 (
L

an
d

sc
ap

e)
 

Contagion Index (0 < CONTAG ≤ 100 ) - equals minus the sum of the 

proportional abundance of each patch type multiplied by the proportion of 

adjacencies between cells of that patch type and another patch type, multiplied 

by the logarithm of the same quantity, summed over each unique adjacency 

type and each patch type; divided by 2 times the logarithm of the number of 

patch types; multiplied by 100 (to convert to a percentage). In other words, the 

observed contagion over the maximum possible contagion for the given number 

of patch types. Note, CONTAG considers all patch types present on an image, 

including any present in the landscape border, if present, and considers like 

adjacencies (i.e., cells of a patch type adjacent to cells of the same type). All 

background edge segments are ignored, as are landscape boundary segments if 

a border is not provided, because adjacency information for these edge 

segments is not available and the intermixing of the classes with background is 

assumed to be irrelevant. Cell adjacencies are tallied using the double-count 

method in which pixel order is preserved, at least for all internal adjacencies 

(i.e., involving cells on the inside of the landscape). If a landscape border is 

present, adjacencies on the landscape boundary are counted only once as are all 

adjacencies with background. Note, Pi is based on the total landscape area (A) 

excluding any internal background present. CONTAG approaches 0 when the 

patch types are maximally disaggregated (i.e., every cell is a different patch 

type) and interspersed (equal proportions of all pairwise adjacencies). CONTAG 

= 100 when all patch types are maximally aggregated; i.e., when the landscape 

consists of single patch. CONTAG is undefined and reported as “N/A” in the 

“basename”.land file if the number of patch types is less than 2, or all classes 

consist of one cell patches adjacent to only background. 
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P
L

A
N

D
 (

C
la

ss
) 

Percentage of Landscape (0 < PLAND ≤ 100) - equals the sum of the areas (m2) 

of all patches of the corresponding patch type, divided by total landscape area 

(m2), multiplied by 100 (to convert to a percentage); in other words, PLAND 

equals the percentage the landscape comprised of the corresponding patch type. 

Note, total landscape area (A) includes any internal background present. 

PLAND approaches 0 when the corresponding patch type (class) becomes 

increasingly rare in the landscape. PLAND = 100 when the entire landscape 

consists of a single patch type; that is, when the entire image is comprised of a 

single patch. 

C
O

N
N

E
C

T
 (

C
la

ss
) 

Connectance Index (0 ≤ CONNECT ≤ 100) - equals the number of functional 

joinings between all patches of the corresponding patch type (sum of cijk where 

cijk = 0 if patch j and k are not within the specified distance of each other and 

cijk = 1 if patch j and k are within the specified distance), divided by the total 

number of possible joinings between all patches of the corresponding patch 

type, multiplied by 100 to convert to a percentage. CONNECT = 0 when either 

the focal class consists of a single patch or none of the patches of the focal class 

are "connected" (i.e., within the user-specified threshold distance of another 

patch of the same type). CONNECT = 100 when every patch of the focal class is 

"connected." 

Source: 

http://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf
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Appendix 8 - Logistic regression – National model interactions with Ecoregion 

National model - glm Estimate 
Std. 

Error 
z value Pr(>|z|) 

(Intercept) -5.19 2.64 -1.96 0.05 

Cluster area 0.07 0.03 2.22 0.03 

Mediterranean California 5.94 2.85 2.08 0.04 

Southern Semiarid Highlands -74.60 39200.00 0.00 1.00 

Temperate Sierras -2810.00 266000.00 -0.01 0.99 

Tropical Wet Forests -9.87 3220.00 0.00 1.00 

Northern Forests -109.00 51300.00 0.00 1.00 

Northwestern Forested Mountains 3.48 3.86 0.90 0.37 

Marine West Coast Forest -27.20 11200.00 0.00 1.00 

Eastern Temperate Forests 2.12 2.86 0.74 0.46 

Great Plains 3.91 2.71 1.44 0.15 

Road density -0.02 0.01 -2.06 0.04 

Elevation 0.00 0.00 1.22 0.22 

Topographic Position Index -0.28 1.15 -0.24 0.81 

Contagion Index 0.00 0.03 0.01 0.99 

Percentage of highly flammable land 0.03 0.03 0.95 0.34 

Percentage of non-flammable land -0.03 0.04 -0.83 0.41 

Cluster area:Mediterranean California -0.05 0.03 -1.37 0.17 

Cluster area:Southern Semiarid Highlands 1.14 72.30 0.02 0.99 

Cluster area:Temperate Sierras -0.09 57.30 0.00 1.00 

Cluster area:Tropical Wet Forests 0.14 22.20 0.01 0.99 

Cluster area:Northern Forests -0.16 127.00 0.00 1.00 

Cluster area:Northwestern Forested 

Mountains 
-0.02 0.04 -0.57 0.57 

Cluster area:Marine West Coast Forest 0.45 348.00 0.00 1.00 
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Cluster area:Eastern Temperate Forests -0.05 0.03 -1.43 0.15 

Cluster area:Great Plains -0.03 0.03 -0.76 0.45 

Mediterranean California:Road density 0.02 0.01 2.18 0.03 

Southern Semiarid Highlands:Road 

density 
-1.50 132.00 -0.01 0.99 

Temperate Sierras:Road density 0.01 6.44 0.00 1.00 

Tropical Wet Forests:Road density 0.02 5.50 0.00 1.00 

Northern Forests:Road density 0.00 16.40 0.00 1.00 

Northwestern Forested Mountains:Road 

density 
0.01 0.01 1.87 0.06 

Marine West Coast Forest:Road density -0.04 65.60 0.00 1.00 

Eastern Temperate Forests:Road density 0.01 0.01 1.91 0.06 

Great Plains:Road density 0.02 0.01 2.26 0.02 

Mediterranean California:Elevation 0.00 0.00 -0.37 0.71 

Southern Semiarid Highlands:Elevation 0.04 6.63 0.01 0.99 

Temperate Sierras:Elevation 0.00 1.83 0.00 1.00 

Tropical Wet Forests:Elevation -0.38 1080.00 0.00 1.00 

Northern Forests:Elevation 0.12 52.90 0.00 1.00 

Northwestern Forested 

Mountains:Elevation 
0.00 0.00 0.30 0.77 

Marine West Coast Forest:Elevation 0.05 18.30 0.00 1.00 

Eastern Temperate Forests:Elevation 0.00 0.00 2.39 0.02 

Great Plains:Elevation 0.00 0.00 -0.18 0.86 

Mediterranean California:Top-ridges 0.93 1.16 0.80 0.42 

Southern Semiarid Highlands:Top-ridges -63.50 7000.00 -0.01 0.99 

Temperate Sierras:Top-ridges 31.60 2550.00 0.01 0.99 

Tropical Wet Forests:Top-ridges NA NA NA NA 

Northern Forests:Top-ridges 21.60 1850.00 0.01 0.99 
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Northwestern Forested Mountains:Top-

ridges 
2.04 1.25 1.63 0.10 

Marine West Coast Forest:Top-ridges NA NA NA NA 

Eastern Temperate Forests:Top-ridges 0.29 1.23 0.23 0.82 

Great Plains:Top-ridges 0.06 1.18 0.05 0.96 

Mediterranean California:Contagion Index 0.01 0.03 0.24 0.81 

Southern Semiarid Highlands:Contagion 

Index 
-0.55 73.40 -0.01 0.99 

Temperate Sierras:Contagion Index 0.00 30.30 0.00 1.00 

Tropical Wet Forests:Contagion Index NA NA NA NA 

Northern Forests:Contagion Index 0.98 738.00 0.00 1.00 

Northwestern Forested 

Mountains:Contagion Index 
0.08 0.05 1.82 0.07 

Marine West Coast Forest:Contagion 

Index 
NA NA NA NA 

Eastern Temperate Forests:Contagion 

Index 
-0.03 0.03 -1.02 0.31 

Great Plains:Contagion Index -0.03 0.03 -0.91 0.36 

Mediterranean California:Percentage of 

highly flammable land 
-0.06 0.04 -1.76 0.08 

Southern Semiarid Highlands:Percentage 

of highly flammable land 
1.59 460.00 0.00 1.00 

Temperate Sierras:Percentage of highly 

flammable land 
28.00 2650.00 0.01 0.99 

Tropical Wet Forests:Percentage of highly 

flammable land 
NA NA NA NA 

Northern Forests:Percentage of highly 

flammable land 
-0.35 78.80 0.00 1.00 
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Northwestern Forested 

Mountains:Percentage of highly 

flammable land 

-0.14 0.06 -2.26 0.02 

Marine West Coast Forest:Percentage of 

highly flammable land 
NA NA NA NA 

Eastern Temperate Forests:Percentage of 

highly flammable land 
-0.02 0.04 -0.60 0.55 

Great Plains:Percentage of highly 

flammable land 
-0.02 0.04 -0.50 0.62 

Mediterranean California:Percentage of 

non-flammable land 
-0.01 0.04 -0.33 0.74 

Southern Semiarid Highlands:Percentage 

of non-flammable land 
NA NA NA NA 

Temperate Sierras:Percentage of non-

flammable land 
28.10 2620.00 0.01 0.99 

Tropical Wet Forests:Percentage of non-

flammable land 
NA NA NA NA 

Northern Forests:Percentage of non-

flammable land 
0.80 72.00 0.01 0.99 

Northwestern Forested 

Mountains:Percentage of non-flammable 

land 

0.03 0.06 0.56 0.57 

Marine West Coast Forest:Percentage of 

non-flammable land 
NA NA NA NA 

Eastern Temperate Forests:Percentage of 

non-flammable land 
0.05 0.04 1.25 0.21 

Great Plains:Percentage of non-flammable 

land 
0.03 0.04 0.69 0.49 
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Appendix 9 - Linear regression – National model interactions with Ecoregion 

National model - lm Estimate Std. Error 
t-

value 

Pr 

(>|t|) 

(Intercept) 8.35 7.13 1.17 0.24 

Cluster area -0.38 0.29 -1.34 0.18 

Mediterranean California -2.39 7.23 -0.33 0.74 

Southern Semiarid Highlands -0.24 3.50 -0.07 0.95 

Temperate Sierras 0.06 1.26 0.05 0.96 

Tropical Wet Forests 0.43 2.48 0.17 0.86 

Northern Forests -0.92 1.36 -0.68 0.50 

Northwestern Forested Mountains -6.13 7.79 -0.79 0.43 

Marine West Coast Forest -1.96 3.76 -0.52 0.60 

Eastern Temperate Forests -2.40 7.65 -0.31 0.75 

Great Plains -2.03 7.32 -0.28 0.78 

Forest 0.82 0.59 1.37 0.17 

Shrubs/Scrubs 0.32 0.66 0.48 0.63 

Grasslands/Pasture -0.10 0.72 -0.14 0.89 

Building dispersion -9.13 8.17 -1.12 0.26 

Percentage of highly flammable land 0.26 0.32 0.81 0.42 

Cluster area:Mediterranean California -0.06 0.29 -0.22 0.83 

Cluster area:Southern Semiarid Highlands -0.29 1.09 -0.26 0.79 

Cluster area:Temperate Sierras NA NA NA NA 

Cluster area:Tropical Wet Forests NA NA NA NA 

Cluster area:Northern Forests NA NA NA NA 

Cluster area:Northwestern Forested 

Mountains 
0.44 0.34 1.27 0.20 

Cluster area:Marine West Coast Forest 1.15 1.28 0.90 0.37 

Cluster area:Eastern Temperate Forests -0.50 0.33 -1.53 0.13 
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Cluster area:Great Plains -0.13 0.31 -0.40 0.69 

Mediterranean California:Forest 0.02 0.66 0.02 0.98 

Southern Semiarid Highlands:Forest 2.85 2.31 1.24 0.22 

Temperate Sierras:Forest NA NA NA NA 

Tropical Wet Forests:Forest NA NA NA NA 

Northern Forests:Forest NA NA NA NA 

Northwestern Forested Mountains:Forest 0.09 0.72 0.12 0.90 

Marine West Coast Forest:Forest NA NA NA NA 

Eastern Temperate Forests:Forest -0.65 0.72 -0.89 0.37 

Great Plains:Forest NA NA NA NA 

Mediterranean California:Shrubs/Scrubs -0.31 0.68 -0.47 0.64 

Southern Semiarid 

Highlands:Shrubs/Scrubs 
NA NA NA NA 

Temperate Sierras:Shrubs/Scrubs NA NA NA NA 

Tropical Wet Forests:Shrubs/Scrubs NA NA NA NA 

Northern Forests:Shrubs/Scrubs NA NA NA NA 

Northwestern Forested 

Mountains:Shrubs/Scrubs 
0.30 0.85 0.35 0.72 

Marine West Coast Forest:Shrubs/Scrubs NA NA NA NA 

Eastern Temperate Forests:Shrubs/Scrubs -0.27 0.86 -0.31 0.76 

Great Plains:Shrubs/Scrubs -0.10 0.80 -0.13 0.90 

Mediterranean 

California:Grasslands/Pasture 
0.01 0.73 0.01 0.99 

Southern Semiarid 

Highlands:Grasslands/Pasture 
NA NA NA NA 

Temperate Sierras:Grasslands/Pasture NA NA NA NA 

Tropical Wet Forests:Grasslands/Pasture NA NA NA NA 

Northern Forests:Grasslands/Pasture NA NA NA NA 
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Northwestern Forested 

Mountains:Grasslands/Pasture 
0.19 1.04 0.18 0.86 

Marine West Coast 

Forest:Grasslands/Pasture 
NA NA NA NA 

Eastern Temperate 

Forests:Grasslands/Pasture 
0.13 0.80 0.17 0.87 

Great Plains:Grasslands/Pasture 0.51 0.75 0.69 0.49 

Mediterranean California:Building 

dispersion 
5.86 8.27 0.71 0.48 

Southern Semiarid Highlands:Building 

dispersion 
NA NA NA NA 

Temperate Sierras:Building dispersion NA NA NA NA 

Tropical Wet Forests:Building dispersion NA NA NA NA 

Northern Forests:Building dispersion NA NA NA NA 

Northwestern Forested 

Mountains:Building dispersion 
7.36 8.70 0.85 0.40 

Marine West Coast Forest:Building 

dispersion 
NA NA NA NA 

Eastern Temperate Forests:Building 

dispersion 
7.42 8.77 0.85 0.40 

Great Plains:Building dispersion 5.58 8.40 0.66 0.51 

Mediterranean California:Percentage of 

highly flammable land 
-0.19 0.32 -0.58 0.56 

Southern Semiarid Highlands:Percentage 

of highly flammable land 
NA NA NA NA 

Temperate Sierras:Percentage of highly 

flammable land 
NA NA NA NA 
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Tropical Wet Forests:Percentage of highly 

flammable land 
NA NA NA NA 

Northern Forests:Percentage of highly 

flammable land 
NA NA NA NA 

Northwestern Forested 

Mountains:Percentage of highly 

flammable land 

-0.10 0.40 -0.26 0.80 

Marine West Coast Forest:Percentage of 

highly flammable land 
NA NA NA NA 

Eastern Temperate Forests:Percentage of 

highly flammable land 
-0.16 0.33 -0.50 0.62 

Great Plains:Percentage of highly 

flammable land 
-0.21 0.32 -0.65 0.51 
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Abstract 

The wildland Urban Interface is the area where buildings are most frequently lost to 

wildfires. However, where buildings are most vulnerable if a wildfire occurs is 

unknown. Our goal was to create building vulnerability maps across the conterminous 

United States that capture the probability of a building being lost if a wildfire occurs 

based on environmental characteristics. We collected data on all visibly destroyed 

buildings within fire perimeters that occurred between 2000 and 2010 across the US 

using Google Earth, and used these data as presence observations in a species 

distribution model (MaxEnt). We parameterized the models for each Omernik level II 

ecoregion to account for regional differences in building loss patterns. We generated 

one vulnerability map and one map depicting the certainty of the predictions (both with 

30-m resolution) for each ecoregion that contained enough lost buildings. Results were 

consistent across ecoregions, with land cover, elevation and distance to urban areas 

being the most frequent variables in the predictive models. Our maps showed a clear 

difference between west and east, with vulnerable areas more clustered in the west and 

more reticulate in the east.  Overall, our maps had good performances with AUC values 

ranging between 0.8 and 0.98. We were able to cover 90% of the conterminous U.S. and 

we created for the first time a large scale and high resolution vulnerability map based 

on lost buildings observations.  

Keywords: Building loss, Ecoregions, Maximum Entropy, Maxent, Predictive models, 

WUI. 
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Introduction 

The areas where houses intermix or intermingle with natural vegetation are called the 

Wildland Urban Interface (WUI), and represent an area of human-environment conflict 

(Radeloff et al 2005), and where buildings are most frequently destroyed by wildfires.  

Housing growth is predicted to increase and, consequently, the WUI will increase as 

well (Nowak and Walton 2005; Theobald and Romme 2007; Bar-Massada et al 2009). 

Simultaneously, housing development alters fire size and distribution around the WUI 

due to a potential increase in ignitions, although most fires are quickly extinguished 

and thus fire sizes remain small (Spyratos et al 2007). However, every ignition has the 

potential to become a large fire (Bar-Massada et al 2009), and when it does, the potential 

loss can be high. For these reasons it is important to assess the vulnerability of building 

loss to wildfire across the United States. 

The risk of a building being destroyed by wildfire depends on two likelihoods, first 

the likelihood that a fire will occur, and second the likelihood that a building will 

actually burn if it is within a wildfire. Most fire risk and probability assessments focus 

on the likelihood that a fire will occur based on biophysical and climate variables (e.g. 

Bradstock et al. 1998; Fried et al. 1999; Diaz-Avalos et al. 2001; Rollins et al. 2002; 

Preisler et al. 2004). These models consider fire only as a physical phenomenon function 

of weather, fuels, and topography (Countryman 1972). Other models are used to predict 

fire behavior within different fuel types and weather condition inputs (Burgan and 

Rothermel 1984; Forestry Canada 1992).  
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Another approach to model fire risk or fire occurrence, is to model ignitions. Fire 

occurrence is a function of suitable environmental conditions and the occurrence of 

ignitions (Parisien and Moritz 2009). The most common approach to ignition modeling 

is to use past ignitions locations (Sturtevant and Cleland 2007; Syphard et al 2008; Bar-

Massada et al 2011). Ignitions can be caused by lightning or by humans. In human-

dominated landscapes, anthropogenic ignitions surpass natural ignitions, thus making 

human accessibility and population density good predictors of ignition risk (Dickson et 

al 2006; Yang et al 2007; Bar-Massada et al 2013b). For example, in southern California, a 

human-dominated landscape, fire ignition patterns are strongly influenced by variables 

related to human activities (roads, trails, and housing development), and fire history 

(Syphard et al 2008).  

It is equally important to understand how buildings are affected by fire and how 

vulnerable they can be in case of fire occurrence (Pyne 2001; DellaSalla et al 2004; 

Haight et al 2004). Factors such as topography and spatial arrangement of buildings are 

important when explaining building loss (Gibbons et al 2012; Syphard et al 2012; 

Alexandre et al 2015b). However, since we did not have information on the location of 

all existing buildings in the U.S., we could not measure the spatial arrangement of 

buildings. Therefore, we had to use proxy variables based on land use cover, such as 

distance to urban areas and distance to roads.  

Models are useful tools in several fields of science and they can be either explanatory 

or predictive. Explanatory models test hypotheses that specify how and why certain 

empirical phenomena occur, while predictive models are aimed at predicting the future 
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or new observations with high accuracy (Shmueli 2010). In other words, the primary 

goal of explanatory models is to depict relationships between an observed pattern and 

its causal factors. In contrast, for predictive models, the relationships are not as 

important as the accuracy of the prediction (Elith and Leathwick 2009). When using 

explanatory models, the statistical techniques (e.g. linear regression) are somewhat 

intuitive and it is easier to understand the relationship between the response 

phenomenon and the explanatory variable because both the signal and the magnitude 

of the relationships are available in the form of coefficients, p-values and confidence 

intervals. However, many assumptions have to be met in order to apply statistical 

modeling (e.g., normality, and independence of data). When prediction is the main 

objective, other techniques, such as machine learning, neural networks, maximum 

entropy, generalized linear models (GLM), or support vector regression, can produce 

very good predictions and are less demanding in terms of data requirements (e.g. no 

requirement of normality - Culbert, 2012).  

Species distribution models (SDMs) are a special type of model, that estimate the 

probability of a certain species occurring in sites outside the observed sites by 

comparing the environmental variables that are relevant to habitat suitability in sites of 

occurrence with sites where the species was not seen. This approach is widely used in 

ecology, biogeography, biology and conservation to determine species distribution. In 

formal biological surveys, it is possible to determine presence and absence or 

abundance of a certain species at each site and therefore, models such as generalized 

linear or additive models (GLMs or GAMs) or regression trees are used. However, 
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because systematic surveys are often sparse or inexistent, and in many cases data 

records capture presence only, new SDM methods were developed that can interpret 

presence-only data. MaxEnt is one such method and the one used in this study, which 

estimates a distribution across geographic space (Phillips et al 2006). A presence-only 

modeling approach is particularly useful when predicting where buildings are most 

vulnerable to wildfires because it is difficult to ascertain which buildings can burn if a 

wildfire occurs. Even buildings that did not burn during a wildfire would not represent 

true absence points, because it may be actions by firefighters that prevented them from 

burning, but knowing if that was the case would be difficult for large areas. 

Predictive models are powerful for decision making, because they result in maps, and 

maps are a pragmatic and powerful visual policy tool (Stewart et al 2009) and WUI 

maps in particular are important for wildfire management (Radeloff et al 2005; Wilmer 

and Aplet 2005; Theobald and Romme 2007; Bar-Massada et al 2013a). However, WUI 

maps only depict where houses meet or intermingle with wildland vegetation, not 

where fire vulnerability is highest at a national scale, but that is needed to improve the 

efficiency of prevention actions (Lampin-Maillet et al 2010).  

I would like to distinguish between vulnerability and risk. Vulnerability is the ability 

of, or susceptible to, being wounded or hurt, and risk is the exposure to the chance of 

injury or loss, or the degree of probability of such loss. The maps that we created are a 

measure of the ability to be “hurt” by a hazard, in this specific case, wildfire. It is 

important to make this distinction because of the different implications vulnerability 

versus risk have on the type of data they demand. A fire risk map requires information 
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on variables that are related to the likelihood of fire itself, which include ignitions, fire 

behavior and fire spread. Our models and maps do not depict fire risk. Instead they are 

based on the assumption that a wildfire will occur at some point in time and they 

predict how vulnerable buildings are to that particular hazard.  

Our goal was thus to produce a map of the vulnerability of buildings if a wildfire 

occurs for the conterminous United States.  

 

Methods 

Data 

We analyzed Google Earth’s historical imagery to assess building loss due to wildfires 

in all fire perimeters in the conterminous United States between 2000 and 2010 recorded 

in the Monitoring Trends in Burn Severity (MTBS) dataset (http://www.mtbs.gov/ 

downloaded on 03/05/2012). 

Within each fire perimeter we digitized all the buildings that were lost (building 

present before the fire date, but not after). We considered a building to be lost when it 

was completely removed in the post fire image. This means that our estimates are 

conservative, and did not include damage caused by the fire, such as smoke damage or 

partial siding melt. We digitized a total of 9,233 burned buildings (Fig. 10).  

 

Ecoregions 

We parameterize models for Omernik level II ecoregions 

(http://www.epa.gov/wed/pages/ecoregions/na_eco.htm#Downloads assessed on 
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02/20/2015, (Omernik 1987). We assigned buildings to ecoregions based on their 

location. Fourteen ecoregions had enough buildings (> 25) for our analysis (Table 8). 

 

Vegetation Data 

The National Land Cover Database - NLCD 2006 (Fry et al 2011), is a 30-m land cover 

class classification based on Landsat satellite data of circa 2006 covering the 

conterminous U.S. We used NLCD 2006 data as a proxy for the distribution of fuels. 

Topographic data 

We included elevation, slope, and southwestness derived from aspect (Syphard et al 

2007) as explanatory variables. Topographical variables that affect fire behavior include 

micro weather conditions created by elevation and aspect (e.g., moisture gradients), and 

topographic features such as narrow valleys or steep slopes that influence fire spread. 

Topography also affects vegetation distribution and productivity (Barbour et al 1999) 

because it affects energy and water balances (Dillon et al 2011), and therefore 

precipitation, runoff, temperature, wind and solar radiation (Daly et al 1994).  

Slope, elevation and aspect are part of the LANDFIRE 

(http://landfire.cr.usgs.gov/viewer assessed on 03/05/2015, 30-m resolution) dataset 

and are derived from the National Elevation Dataset (NED, ned.usgs.gov). 

  

Human related data 

There are two sources of wildfire ignitions, natural and human. Both natural and 

human ignitions are non-random and their spatial distribution can be predicted based 
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on social and biophysical data (Bar-Massada et al 2011). We used distance to roads and 

distance to urban areas as proxies for human presence and therefore higher probability 

for ignitions sources. Road data was available through the United States Census bureau 

(www.census.gov), TIGER products, and we downloaded a file that contained all the 

roads in the conterminous US in 2010. We selected all the roads that were classified as 

primary road, secondary road, local neighborhood road, rural road or city streets. 

Lastly, we measured distance of each pixel to urban areas, defined as the classes in the 

NLCD data set that are classified as developed (Developed, Open Space (21), 

Developed, Low Intensity (22), Developed, Medium Intensity (23), and Developed High 

Intensity (24)). 

 

GUIDOS/ MSPA 

Landscape context, especially the connectivity of the fuels around the buildings, also 

affects the probability of building loss to wildfire (Alexandre et al 2015b). Based on the 

national land cover dataset, we reclassified areas into two categories: forest and non-

forest. We then used the Graphical User Interface for the Description of Image Objects 

(GUIDOS) toolbox, which contains a wide variety of generic processing routines to 

process geospatial data. GUIDOS represents Morphological Spatial Pattern Analysis 

(MSPA), which is a customized sequence of mathematical operators targeted to 

measure the connectivity of the image components 

(http://forest.jrc.ec.europa.eu/download/software/guidos/ assessed on 02/12/2015). 

MSPA can be used at any scale to any kind of binary image. The output image has a 
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new value for each pixel indicating if the pixel is one of the eight classes: Core, islet, 

loop, bridge, perforation, edge, branch, and non-forest 

(http://forest.jrc.ec.europa.eu/download/software/guidos/mspa/ assessed on 

02/12/2015). We simplified the original MSPA classification system into six classes: 

0 = non-forest 

1 = other mspa-class forest (loop, branch and bridge) 

2 = perforation forest 

3 = islet forest 

4 = edge forest 

5 = core forest 

 

Modeling 

To project the potential distribution of building loss likelihood given the occurrence of 

a wildfire, we used the maximum entropy model MaxEnt (Phillips et al 2006; Elith et al 

2011), a map-based modeling software built and used primarily for species distribution 

modeling (Elith et al 2011). The dependent variable was the location of buildings 

destroyed by fire between 2000 and 2010. The MaxEnt software uses a machine-learning 

algorithm that iteratively evaluates contrasts among values of predictor values at 

locations where buildings burned versus values distributed across the entire study area. 

MaxEnt assumes that the best approximation of an unknown distribution (in this case 

destroyed buildings) is the one with maximum entropy. The output is an exponential 
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function that assigns a probability to every cell in the map, in our case the probability of 

a building being destroyed if a fire occurs. 

We parameterized MaxEnt with default settings (Phillips and Dudík 2008) but 

removed threshold and hinge features (for details, see Phillips et al 2006), to assure 

more ecologically realistic response curves (Austin 2007; Bateman et al 2012).. We 

selected the jackknife variable importance option to assess the relative importance of the 

environmental predictors in the models. Ten-thousand background points were 

selected at random from each ecoregion. Model validation was based on the area under 

the curve (AUC) of the receiver operating characteristics (ROC) curve (Fielding and 

Bell, 1997; Phillips et al., 2006; Wiley et al., 2003). AUC values above 0.5 are better than 

random predictions, with those above 0.7 being considered useful (Elith et al 2006) and 

those above 0.9 highly accurate (Guisan et al 2007). 

Maxent calculates several measures of variable importance: (1) relative gain 

contribution per variable (a goodness-of-fit measure similar to deviance, Phillips et al. 

(2006)), (2) variable response curves for single-variable models, and (3) a jackknife 

procedure to assess AUC/gain changes when excluding a variable. We analyzed all of 

them to assure that our models were ecologically reasonable. 

Fire vulnerability maps were calculated by applying Maxent models to all cells in the 

study region, using a logistic link function to yield a habitat suitability index (HSI) 

between zero and one (Phillips and Dudik, 2008). We mapped each ecoregion 

separately, and then combined maps for a broad scale depiction. 
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Due to the high resolution of our explanatory variables (environmental variables in 

MaxEnt), we used UW Madison's High Throughput Computing System (HTCS), called 

HTCondor (https://research.cs.wisc.edu/htcondor, assessed on 10/12/2015). This 

system allowed us to access high memory machines needed to analyze our largest 

MaxEnt jobs. Specifically, we were allotted 370 GB of RAM on dedicated servers for the 

Great Plains, Eastern Temperate Forest, and Northwestern Forested Mountains Level I 

ecoregions. For the remaining ecoregions (Southern Semi-Arid Highlands, 

Mediterranean California, Marine West Coast, and North American Deserts), we used 

the servers owned by SILVIS lab which have 260 GB of RAM.  

 

Results 

The Maxent models had good discrimination, with all AUC values between 0.80 – 

0.98, meaning that our model can at least be considered useful, and some of them highly 

accurate, in their predictive performance (Elith et al 2006; Guisan et al 2007). Even 

though we divided the conterminous U.S. into ecoregions, there is a clear difference 

between the west and the east. The western part of the US presents higher vulnerability 

in clustered patterns that are more closely related to topography and/or land cover, 

while the eastern US presents a reticulate pattern that relates closely to populated areas 

(land use) (Fig. 11).  

We used eight variables that are available for the conterminous United States and that 

have been shown to be related to building loss in previous studies (Alexandre et al 

2015a; Alexandre et al 2015b). Interestingly, the variables that contributed the most to 
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the predictive ability of models were overal similar for the different ecoregions. Indeed, 

the top three variables that most consistently contributed to the models were land 

cover, elevation, and distance to urban areas (Table 9).  

 

Discussion 

Our goal was to produce a map depicting the vulnerability of buildings if a 

wildfire occurs that was both accurate and useful for managers, policy makers and 

homeowners. We successfully achieved our goal, our models had good predictive 

power, and resulted in 30-m spatial resolution maps showing the probability of a 

building to be lost to wildfire across the conterminous U.S., but specific to each 

ecoregion. 

We used species distribution models (SDMs) to identify the probability of losing a 

building to wildfire. We treated buildings that had been destroyed by wildfire 

essentially as a species where each burnt building location is an occurrence (or 

presence). SDM have been used in the context of wildfire to map fire hazard using 

burned structures in Southern California (Syphard et al 2012; Syphard et al 2013), and to 

map ignitions distribution (Parisien and Moritz 2009; Bar-Massada et al 2013b), but 

never at such broad scale (conterminous U.S.) and at the spatial resolution (30-m) used 

here. Our results provided interesting and exciting information including a very 

detailed visualization of the locations that have higher vulnerability. 

We acknowledge that our maps could be improved if information on the spatial 

arrangement of buildings was available, but at this scale it was not possible to calculate 
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such variables because we do not have information on where all buildings on all the 

U.S. are located.  

Our maps can greatly facilitate decision processes by providing managers, land 

planners and the general public information about burning vulnerability. For example, 

fire risk maps are used in the decision process in California, where they are available 

online to the public via the California Department of Forestry and Fire protection 

(http://www.fire.ca.gov). However, Syphard et al. (2012) showed that California’s 

maps are not good predictors of where people and their homes are vulnerable. 

Similarly, at a National scale, what is readily available is current fires and smoke maps, 

such as the NOAA Satellite and Information Service (http://www.osdpd.noaa.gov), the 

NASA active fire data (http://earthdata.nasa.gov), or the current fuels and fire 

behavior advisory map made by the National Interagency Coordination Center 

(http://www.predictiveservices.nifc.gov). These maps are useful for disaster 

management and short-term prevention in situations where the hazard is already 

ongoing and people within the affected area can use the information to make decisions 

about whether or not to stay. However, maps of vulnerability have been lacking so far. 

Existing fire risk maps are most useful if they properly identify areas where property 

loss is most likely to occur. In order to evaluate the effectiveness of such maps they 

must be analyzed against empirical data. Our analysis allowed, for the first time, the 

use of real data from buildings lost to wildfires, related the occurrence of a lost building 

to the building’s surroundings, and then used this information to identify areas with 

similar characteristics. Thus our maps are of major importance for local government 
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agencies aiming to plan ahead of time and allocate resources before the hazard occurs in 

order to reduce vulnerability. Furthermore, having access to a map of vulnerability may 

inform individuals’ decision of where to buy or build their primary residence or second 

home.   
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Table 8: Omernik ecoregions that contained more than 25 observations 

Ecoregion Observations 

Eastern Temperate Forests 373  

Central USA Plains*  0 

Mississippi Alluvial and Southeast USA Coastal Plains  133 

Mixed Wood Plains  48 

Ozark/Quachita-Appalachian Forests  124 

South Eastern USA Plains  68 

Great Plains 1309  

South Central Semiarid Prairies  1134 

Tamaulipas-Texas Semiarid Plain*  13 

Temperate Prairies  37 

Texas Louisiana Coastal Plain*  3 

West Central Semiarid Prairies  122 

Marine West Coast 41  

Mediterranean California 6074  

North American Deserts 186  

Cold Deserts  159 

Warm Deserts  27 

Northern Forests* 10  

Northwest Forested Mountains 1040  

Southern Semiarid Highlands 173  

Temperate Sierras 25  

Tropical Wet Forests* 2  

Total  9233 

 * Ecoregion not used in the analysis because the number of observations was below 25.  
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Table 9 – Maxent output: mean AUC, standard deviation values (10 fold cross-
validation); variable contribution (%) and permutation importance for each ecoregion. 

Region 
Mean 
AUC 

Std. 
Dev. 

Variable 
Percent 

contribution 
Permutation 
importance 

Eastern Temperate Forests 

Mississippi 
Alluvial and 

Southeast USA 
Coastal Plains 

0.825 0.058 

Land cover 53.7 32.6 

Distance to vegetation 13.3 18.9 

MSPA 11.5 15.5 

Elevation 7.8 18 

Southwestness 4.7 4.6 

Slope 4.2 3.1 

Distance to roads 2.6 4.6 

Distance to urban areas 2.2 2.7 

Mixed Wood 
Plains 

0.973 0.044 

Land cover 43 9.5 

Elevation 19.5 49.4 

Slope 14.4 13.2 

Distance to urban areas 13.2 17.2 

MSPA 6.4 2 

Distance to roads 2.5 1.2 

Distance to vegetation 0.5 7.1 

Southwestness 0.4 0.3 

Ozark/Quachita-
Appalachian 

Forests 
0.898 0.058 

Land cover 46.1 31.4 

MSPA 28.7 24.3 

Elevation 10.4 20.4 

Distance to vegetation 5.1 9.4 

Distance to urban areas 4.5 6.4 

Slope 4.1 5.4 

Distance to roads 0.9 2.2 

Southwestness 0.2 0.5 

South Eastern 
USA Plains 

0.811 0.055 

Land cover 40.6 32.7 

Distance to urban areas 32.8 32.9 

MSPA 16.1 7 

Distance to vegetation 4.1 12.5 

Elevation 2.5 7.3 

Distance to roads 1.5 3.3 

Southwestness 1.4 0.8 

Slope 1.1 3.5 
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Great Plains 

South Central 
Semiarid Prairies 

0.853 0.019 

Land cover 40.7 26.8 

Elevation 39.3 23.5 

Distance to urban areas 11.4 32.9 

Distance to roads 5.4 7.9 

Distance to vegetation 2 6.3 

MSPA 0.7 0.2 

Slope 0.6 2.2 

Southwestness 0 0.1 

Temperate Prairies 0.896 0.06 

Land cover 25.1 4.4 

Elevation 20.3 2.4 

Distance to urban areas 19.4 15.8 

Distance to roads 16.7 15.5 

Distance to vegetation 13.5 52.1 

MSPA 2.5 0.8 

Southwestness 1.8 6 

Slope 0.8 3.2 

West Central 
Semiarid Prairies 

0.819 0.059 

Land cover 41.8 24.4 

Distance to roads 36.1 45.4 

Distance to urban areas 7.1 6.6 

Southwestness 6.2 6.2 

Slope 4.4 8.9 

Elevation 3.1 5.3 

Distance to vegetation 0.8 2.5 

MSPA 0.5 0.6 

Marine West Coast 0.976 0.022 

Elevation 48.1 84.9 

Land cover 21.8 5.6 

Distance to urban areas 12.1 1.9 

Slope 6.8 1.1 

Distance to roads 5.4 5.9 

MSPA 5 0.1 

Southwestness 0.7 0.4 

Distance to vegetation 0 0.1 

Mediterranean 
California 

0.795 0.007 

Land cover 53.7 25.2 

Distance to urban areas 17.2 25.2 

Distance to roads 9.3 22.1 

Elevation 6.2 8.1 

Distance to vegetation 5.3 9.6 

Slope 4.2 7.1 
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MSPA 4.1 2.6 

Southwestness 0.1 0 

North American Deserts 

Cold Deserts 0.88 0.029 

Distance to urban areas 34.6 41.3 

Elevation 32.5 24.7 

Land cover 15.3 4.1 

Distance to roads 8.1 4.7 

Slope 4.5 17.3 

MSPA 2.7 3 

Distance to vegetation 1.7 3.5 

Southwestness 0.7 1.5 

Warm Deserts 0.961 0.022 

Distance to roads 51.5 81.7 

Elevation 15.5 9.9 

Land cover 15.1 2 

MSPA 9.8 2.8 

Southwestness 3.8 1.9 

Slope 2 1 

Distance to vegetation 1.6 0.2 

Distance to urban areas 0.6 0.4 

Northwest 
Forested 

Mountains 
0.888 0.012 

Elevation 29 4.4 

Distance to roads 25.2 59.6 

Land cover 22.7 6 

Slope 12.9 16.9 

Distance to urban areas 5.1 11.5 

MSPA 4.4 0.8 

Southwestness 0.4 0.4 

Distance to vegetation 0.3 0.3 

Southern Semiarid 
Highlands 

0.963 0.031 

Land cover 40.3 2.2 

Elevation 39.8 39.8 

Distance to urban areas 9.8 33.8 

Distance to roads 5.5 17.2 

Slope 2.3 6.4 

MSPA 2.1 0 

Southwestness 0.3 0.5 

Distance to vegetation 0 0 

Temperate Sierras 0.926 0.063 

Distance to roads 27.8 63.5 

Elevation 25.3 4.8 

MSPA 23.2 19.5 

Land cover 16.4 5.5 
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Distance to urban areas 4.6 3.3 

Distance to vegetation 1.6 0.2 

Southwestness 0.7 3.1 

Slope 0.4 0.1 
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Fig. 10 – Burned buildings distribution across the U.S. between 2000 and 2010, and 
Omernick Ecoregions levels I and II.  
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Fig. 11 – Predictive maps of building loss probability output of Maxent software. 
Warmer colors indicate regions with high probability, while cooler colors suggest lower 
probability. 
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Abstract 

The number of communities exposed to and affected by wildfire, particularly in the 

Wildland Urban Interface, is increasing, and both losses from and prevention of 

wildfires entail substantial economic costs. However, little is known about post-wildfire 

response by homeowners and communities after buildings are lost. Our goal was to 

characterize patterns and rates of rebuilding and new development after wildfires 

across the conterminous United States. We analyzed all wildfires that occurred in the 

conterminous U.S. from 2000 to 2005. We mapped a total of 42,724 buildings, of which 

34,836 were present before the fire and survived, 3,604 were burned, 2,403 were post-

fire new development, and 1,881 burned and were rebuilt. The total pre-fire number of 

buildings within fire perimeters was 38,440 (surviving plus burned). Within five years 

after the fires there were 39,120 buildings (surviving, rebuilt, and new development). 

Nationally, rebuilding rates were low; only 25% of burned buildings were rebuilt within 

five years, but rates were higher in the West, the South, and in Kansas. New 

development rates inside fire perimeters were similar to development rates outside of 

fire perimeters. The finding that the number of buildings within the fire perimeters was 

higher within 5 years of the fire than before, indicated that people want to live in 

wildland areas and are either willing to face wildfire risks, or are unaware of them, or 

that the economic incentives to rebuild in the same place are stronger than any 

considerations of risk. 
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Summary:  

Our goal was to assess rates of rebuilding and new development after wildfires destroy 

buildings. Across the U.S., rebuilding rates were low (about 25%), but new 

development within burned areas was common and new-development rates similar to 

surrounding non-burned areas, suggesting that knowledge, awareness, or concern 

about wildfire risk was limited or people chose to maintain their home in fire prone 

area regardless of the risks, even after a fire occurred. 

Additional keywords: Wildland Urban Interface, Rebuilding patterns, Wildfires, 

Housing development. 

 

Introduction 

Wildfires are common in many parts of the United States. Every year, large areas burn 

and substantial efforts are made to prevent and suppress wildfire (Gorte 2011; NIFC 

2011a; NIFC 2011b). Although unpopulated wildlands account for the majority of the 

burned area, fire prevention and firefighting focus on areas where human assets and 

lives are in danger (Hammer et al. 2009c). These areas of housing development 

intermingled with - or adjacent to - vegetated areas are called the Wildland Urban 

Interface (WUI, Radeloff et al., 2005). Despite protection efforts, many WUI buildings 

are lost every year to wildfires, and these losses entail considerable social, economic and 

emotional costs. 
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Between 1999 and 2011, an average of 1,354 residences were lost to wildfire each year 

in the U.S. (NIFC 2011b), and on average two billion dollars were spent annually to 

suppress wildfires (NIFC 2011a; USDA 2011a; NIFC 2012). In the future, residential 

development is expected to further increase in rural wildland areas (Brown et al. 2005), 

and wildfires may become even more common due to climate change (Dale et al. 2000; 

Dale et al. 2001; Westerling et al. 2006), increasing the threat posed by wildfire to 

buildings in the WUI. 

Given the high cost of protecting buildings and the likelihood of increasing wildfires 

in the future, homeowners and local authorities face challenging questions after a fire 

occurs: should buildings lost to wildfire be rebuilt? If so, should they be rebuilt in the 

same location? Which materials and vegetation treatments should homeowners use? A 

heightened perception of fire risk after a fire has occurred may discourage rebuilding, 

but WUI homeowners have in general widely varying attitudes, behaviors, and 

perceptions regarding fire, making it difficult to predict how fire occurrence may affect 

them. Instead, the combination of a person’s previous experience with fire, aesthetic 

preferences, and knowledge and beliefs about fire behavior will influence the decision 

to rebuild (Cohn et al. 2008; McCaffrey et al. 2011). Social and economic characteristics 

of a WUI community also shape the homeowner’s receptiveness to changing the 

characteristics of their buildings and surrounding landscape, their ability to carry out 

mitigation work, and their perceptions of risk (Collins and Bolin 2009). Hence, many 

factors encourage homeowners to rebuild, though rebuilding rates depend on the social 
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and economic characteristics of the region affected (Lyons et al. 2010; Daly and Brassard 

2011; Fillmore et al. 2011; Fujimi and Tatano 2012). 

Rebuilding after wildfires is problematic, because the fact that a building has burned 

indicates that the site is prone to future fire risk once vegetation has regenerated 

(Syphard et al. 2012). Firewise and similar programs have worked with residents and 

community leaders to mitigate fire risk by managing vegetation and structural 

characteristics. However, the placement of a building on the landscape also affects risk, 

and factors such as slope and terrain are important contributors to property loss (Bar-

Massada et al. 2009; Syphard et al. 2012). For example, in the Witch and Guejito Fires in 

southern California, buildings near the edges of subdivisions were more likely to be 

destroyed by fire than those in the center, even when Firewise practices were used, and 

more than half of the buildings on properties with slopes greater than 20% were 

destroyed or damaged (Maranghides et al. 2013). Unfortunately, while building 

materials and landscaping can make the rebuilt building more defensible and less likely 

to burn, its position on the landscape is not easily altered once a building is in place, 

and even when rebuilding, the possibility to build in a less fire prone location within 

the lot is limited to those homeowners who have larger lots. This is why it is important 

to understand how building location affects risk, since the fire risk related to location 

(e.g. slope and elevation) cannot be changed after a building is built. 

Wildfire is not the only disaster that destroys buildings, and rebuilding patterns after 

other natural disasters suggests that homeowners commonly rebuild (Ingram et al. 

2006; Fillmore et al. 2011). Prior research on post-disaster rebuilding has focused on 
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hurricanes and earthquakes that destroy extensive areas and multiple neighborhoods. 

Studies show recovery follows a process, where typically: 1) rebuilding occurs on the 

same site; 2) the availability of large external sources, innovative leadership, existence of 

prior plans, community consensus and wide dissemination of information speeds 

rebuilding; 3) ongoing urban trends (eg., housing growth) accelerate after the disaster; 

4) the recovery process is not egalitarian; and 5) comprehensive re-planning is rare 

(Haas et al. 1977; Olshansky 2005). 

Rebuilding after fire may share some of these characteristics. Homeowners who are 

attached to their lot, lifestyle, and community are motivated to rebuild in the same 

location (Norris et al. 2008; Cutter et al. 2008; Mockrin et al. 2015). Various federal loans 

and grants are available to help communities rebuild or repair essential services and 

facilities (e.g., water, sewage treatment, communications), and while homeowners bear 

the burden for rebuilding private residences, they may receive insurance payments to 

cover much of the cost. In addition, local governments may facilitate the permitting 

process (Mockrin et al. 2015) and ease regulations both to assist homeowners, and to re-

establish their property tax base (Becker 2009). Local governments lose tax revenues if 

homeowners move and their lot is not rebuilt (Becker 2009), which is why local 

governments are inclined to assist homeowners to rebuild (Mockrin et al. 2015).  

The broader post-disaster recovery literature provides a basis for our research, but 

fires are somewhat unique, in that they typically tend to destroy only a small fraction of 

all the buildings within a fire perimeter. However, in a given neighborhood a large 

portion of buildings can burn as was the case in Majestic Drive and Courtney Court 
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communities within the Waldo Canyon fire in Colorado, 2012. More information about 

post-fire rebuilding is needed though, as Federal and local fire managers shift emphasis 

away from expectations of fire suppression, towards communities becoming more fire 

adapted (see www.fireadapted.org). Understanding the rebuilding process can help 

clarify what role local and state governments play in wildfire regulation and policy, 

specifically regarding residential construction and reconstruction. Information on 

rebuilding patterns needs to be region-specific though, given ecological and economic 

differences (Agee 1993; Busenberg 2004), but also because different states, counties and 

municipalities have different building codes, some of which were changed after major 

fire events. For example, in Boulder Colorado new building codes were adopted after 

the Black Tiger fire (1989, 850 ha), to reduce wildfire damage (Mockrin et al. 2015).  

In terms of the ecological differences in fire regimes, they are strongly related to 

landscape characteristics (vegetation, fuel load, topography), climate, and weather 

conditions (Flatley et al. 2011). Ecoregions encompass areas with similar characteristics 

with regard to geology, physiography, vegetation, climate, soils, land use, wildfire and 

hydrology, and are critical for structuring and implementing ecosystem management 

strategies (Omernik 1987; McMahon et al. 2001). Ecoregions also represent the 

ecological environment to which homeowners or their communities must adapt. 

Examining patterns of loss and rebuilding across ecoregions can reveal variations in 

post-fire adaptive response; regions with fire intervals of one hundred years or more, 

such as Northern Hardwoods in Maine (Lorimer 1977) or the Great Lakes Region 
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(Cardille and Ventura 2001; Sturtevant and Cleland 2007), may exhibit very different 

patterns than regions with short fire-return intervals where future risk is higher. 

Similarly, social institutions vary markedly by state and county, including regulations 

regarding development before and after wildfires. Such social factors can eclipse the 

effects of ecological patterns, and if that is the case, then rebuilding patterns will be 

strongly related to political boundaries. For this reason, we examined rebuilding rates 

also at the state and county levels. Because information on buildings’ presence, absence, 

loss, and reconstruction is not part of fire (or any other public) records, it has not been 

possible to analyze post-fire recovery. We turned to a new resource, satellite images 

compiled by Google, to fill this information gap, developing protocols to extract and 

analyze these data. 

Our goal was to characterize the pattern of buildings destroyed by wildfire, and the 

rebuilding and new development patterns across the conterminous United States for all 

fires that occurred from 2000 to 2005. Our specific objectives were to:  

• Assess rebuilding rates across the conterminous U.S., at the fire/county, 

the state, and the ecoregion levels. 

• Compare rebuilding rates to rates of new development at each of the three 

levels of analysis. 

• Compare the rate of new housing development within fire perimeters to 

the rate of new housing development in the surrounding county. 
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By answering these questions we identify when and where homeowners decide to 

rebuild or build new houses in areas that suffered a wildfire. We provide the 

information on rebuilding and new construction after wildfires for the years 2000 to 

2010, and this information can assist national fire policy development, and local land 

use planning, since future rates of rebuilding and new development within fire 

perimeters are likely to be similar to those in the first decade of the 2000s. 

Methods  

Data collection 

We identified all burned and rebuilt buildings within 2000-2005 fire perimeters from 

the Monitoring Trends in Burn Severity (MTBS, www.mtbs.gov) dataset, across the 

conterminous U.S., using Google Earth imagery. We chose the 2000-2005 time frame 

because it contains the housing boom peak (Weller 2006; Haughwout et al. 2012), and 

because satellite imagery from this period that was available from Google Earth was of 

high enough resolution to assess whether or not a building was burned by fire. The 

MTBS project provides consistent, 30-m resolution burn-severity data and fire 

perimeters (USDA Forest Service 2011b). We used the National MTBS Burned Area 

Boundaries, downloaded in September 2011 using the ESRI Shapefile/Metadata option. 

We analyzed the fire perimeters in a geographic information system (ArcGIS 10 - ESRI, 

2011) and intersected them with 2010 U.S. decennial census block-level housing density 

data (www.silvis.forest.wisc.edu), adjusted for public land boundaries (Radeloff et al. 

2010), to exclude fires that did not contain any buildings within their perimeters. Out of 
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a total of 4,078 fire perimeters from 2000 to 2005, 2,318 had a housing density greater 

than zero. 

We use the term “building” (instead of ‘home’ or ‘house’) because we could not 

distinguish between houses, barns, and sheds in the Google Earth images. However, we 

were able to distinguish buildings from other structures such as roads, antennas, 

bridges, etc., and that is why we did not use the more generic term ‘structures’. 

 

For each fire perimeter, we digitized: 1) each building within the fire perimeter that 

was present prior to the fire, and that was not burned to the ground i.e., a surviving 

building, 2) each building burned to the ground, 3) each building rebuilt within five 

years after the fire, 4) new buildings built within five years after the fire, and 5) 

buildings present in the images, but for which either the time between images in Google 

Earth was too long, or the resolution of the images too coarse to determine the origin or 

fate of the building (called unknown). We could not distinguish damaged from 

undamaged buildings using satellite images, except when the building burns to the 

ground, (2), see Fig. 12). Hereafter, “burned building” refers to those that burned to the 

ground, and we acknowledge that some surviving buildings may have sustained 

damage in the fire. 

Data were collected between September 2011 and December 2012 by four people. The 

lead author conducted training and frequently checked for errors, both visually, and by 

comparison with ancillary data. Google Earth imagery came from different sources (e.g. 

LANDSAT, SPOT Image, GeoEye-1, IKONOS, etc.) and presented several challenges. 
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When using the historical imagery tool and going backward and forward in time, there 

were spatial shifts in the images of up to several meters. To overcome this problem, we 

analyzed images in a chronosequence with the fire-year period as the central point of 

reference. Depending on the best image available after the fire, we always digitized on 

the same image to avoid spatial shifts. To determine if a building was rebuilt, we 

analyzed all the available images up to five years after the fire event and we assumed 

that the building was rebuilt in the earliest year for which it was present in imagery. For 

example: a fire destroyed a building, and then there was a new building in the same 

location depicted in an image from 2004. In this case, we labeled the building as 

“rebuilt”, because it was rebuilt within five years. However, if the first images in which 

a new building is present dated from 2008, then we did not digitize the new building, 

because more than five years had passed. 

Another issue that we encountered was that there was sometimes a gap of several 

years between images. For example, for some of the earlier fires (in 2000 and 2001), the 

pre-fire image was recorded as early as 1992 or 1994, and the post-fire image was from 

2003 or later. If a building occurred only in the 2003 images, then we digitized the 

buildings, and labeled it as ‘unknown’ because the image dates made it impossible to 

discern if the building had been built before the fire (and survived it), or if it 

represented new development. In total, these ‘unknown’ buildings represented only 7% 

of all the buildings we digitized (3,185). Furthermore, this problem disappeared from 

2002 on since the image records in Google Earth were much more complete thereafter. 
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Data analysis 

We used the total number of surviving plus burned buildings as the denominator 

when calculating the percentage of both burned and new buildings, because this is the 

total number of buildings that were within the fire perimeter at the time of the fire (eq. 1 

and 2). To calculate percentage rebuilt, we divided the number of rebuilt buildings by 

the number of burned buildings within the fire (eq. 3). 

1) % ������ =  
234567 839:795;<

=34>9>95;?234567
 

2) % @�� =  
A6B 839:795;<

=34>9>95;?234567
 

3) % C������ =  
D6839:E 839:795<<

234567 =E43FE346<
   

In order to compare the new development rates inside and outside fire perimeters we 

compared post-fire development rates to county-level data on housing growth from the 

2000 and 2010 U.S. decennial census (United States Census Bureau 2001; United States 

Census Bureau 2011). For each fire where we recorded new development, we calculated 

an annual development rate based on the total number of new buildings inside the fire 

perimeter, divided first by the fire area, and second by the number of years that had 

elapsed since the fire, resulting in the number of buildings built/year/km2. When a fire 

spanned multiple counties, then we compared the within-fire perimeter development 

rate to the development rate for the county that contained the majority of the fire’s area. 

The county’s development rate was based on the difference between the total number of 

housing units in 2000 and 2010, minus the number of buildings inside fire perimeter, 

divided by the county area and by 10 years. We then compared annual development 
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rates inside and outside the fire perimeters, to determine the difference. Differences 

≥|0.1| (new buildings/km2) were considered different rates of development. Because 

we analyzed all the fires that occurred during our time frame (a complete enumeration 

and not a sample), we did not test for statistical significance in differences. 

Results 

Of the selected 2,318 fires that occurred between 2000 and 2005 across the 48 

contiguous states, 931 contained buildings, and 106 contained buildings that burned to 

the ground. We analyzed a total of 42,724 buildings, of which 3,604 were burned, 1,881 

were rebuilt within 5 years of the fire, and 34,836 survived (Table 10). Concomitantly, 

2,403 new buildings were built inside the fire perimeters within 5 years of the fire. This 

means that there were more buildings within fire perimeters five years after the fire 

than before, and that by the five year post-fire anniversary, the number of new 

buildings within the fire perimeters was greater than the number of rebuilt buildings 

(Table 10). 

Among the fires for which Census data indicated a potential presence of buildings 

(2,318), 40% contained buildings within their perimeters (931 of 2,318). Among the fires 

with buildings, 11% (106 of 931) contained buildings that burned ground, and 4% (39) 

contained buildings that were rebuilt (Table 11). However, post-fire new development 

was more common, occurring in 14% (130) of fires (Table 11). We found a moderate 

correlation (Spearman’s correlation r = 0.514) between fire size and the number of 

buildings lost. 
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Overall, the percentage of burned buildings relative to all buildings within fire 

perimeters was low, and so were rebuilding percentages. Over the six-year study 

period, the percentage of burned buildings within fire perimeters ranged from 0.4% to 

20.4% per year (average of 5.9%, Table 12). For each fire year, the percentage of 

buildings rebuilt within five years varied from 6.2% to 63.8% (average of 25.3%, Table 

12). The percentage of new buildings within fire perimeters also varied among years 

from 1.4% to 10.3% (average of 4.4%, Table 12). Inter-annual variation was very high 

partly because 2003 was a severe fire year with exceptional large number of fires. The 

number of burned buildings in 2003 was an order of magnitude larger than for all other 

years combined (20.4% of burned buildings), and had the highest rebuilding rate 

(63.8%) (Table 12). 

Analyzing our data at the level of individual fires, there were only 10 fires that burned 

all of the buildings within their perimeter during the six-year period that we studied, 

and those fires contained only two to five buildings each. For each fire year, the rate of 

rebuilding varied considerably, with 2003 being a unique year, especially in California, 

in that rebuilding rates were very high. However, even in 2003 there was not one fire 

perimeter in California within which all buildings were rebuilt. Only Colorado, Kansas, 

Louisiana, and Arizona had fire perimeters within which all buildings were rebuilt, but 

in those four fires the total number of burned buildings ranged from one to four. 

Indeed, only 11.3% of all fires that burned buildings, had a rebuilding rate > 50% (12 

out of 106 fires). 
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Buildings lost to wildfires were concentrated in the Western and Central states (Fig. 

13a). However, fires that burned more than 25% of the buildings within their perimeters 

occurred mainly in the Central Great Plains, Pacific Northwest, and Southwestern states 

(Fig. 13a). High rebuilding rates often coincided with high percentages of burned 

buildings, and such fires were concentrated in California, Texas and Oklahoma (Fig. 

13b). Rates of new development inside the fire perimeters had no particular geographic 

patterns (Fig. 13c). 

Summarizing data by state, California was the top-ranked state in terms of the 

number of buildings within fire perimeters, and of burned, rebuilt and new buildings 

(Fig. 14a,c,e,g). After California, Texas, Arizona and Washington had the highest 

number of burned buildings (Fig. 14a). However, California, Arizona, and Wisconsin 

had the highest percentages of burned buildings (Fig. 14b). Rebuilding rates were low in 

general (less than 40% in 10 states) but highest in Kansas followed by California, 

Nevada, and Wisconsin (Fig. 14d). The greatest numbers of rebuilt buildings were in 

California and Arizona (Fig. 14c). Finally, the greatest number of new buildings were 

built in California, Oklahoma, and Texas (Fig. 14e), but rates of new housing 

development were highest in Michigan, followed by California, Missouri, Georgia, and 

Alabama (Fig. 14f). Oklahoma, Kentucky, and West Virginia also had a high total 

number of buildings (surviving plus burned buildings) within fire perimeters (Fig. 14g). 

Variability among ecoregions was also high (Fig. 15a). The ecoregions with the most 

buildings within fire perimeters (surviving plus burned) were the Ozark/Quachita-
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Appalachian Forests, and Mediterranean California (Fig. 15h). Mediterranean California 

had the most burned buildings, followed by the South Central Semiarid Prairies, and 

the Western Cordillera (Fig. 15b). In terms of percentage of burned buildings, 

Mediterranean California was highest, followed by Western Sierra Madre Piedmont 

and the Mixed Wood Plains (Fig. 15c). While rebuilding numbers were low, 

Mediterranean California had the most rebuilt buildings (Fig. 15d), and together with 

the Mixed Wood Plains the highest rebuilding rates (Fig. 15e). The most new buildings 

were in Mediterranean California and the Ozark/Ouachita-Appalachian Forests (Fig. 

15f). Mediterranean California had the highest rate of new development within fire 

perimeters (25% new buildings on average within five years after a fire, Fig. 15g). 

We compared annualized rates of housing growth for our study period (2000-2005) 

within the fire perimeters to the housing growth rates within the counties where fires 

occurred from 2000-2010 (Census count of housing units in 2010 - housing units in 2000, 

divided by 10). We found that fire and county growth rates were similar (Fig. 16), and 

only very few counties experienced a decrease in total housing units. Of all the fire 

perimeters, 29% had higher development rates and 25% had lower development rates 

than the surrounding county. The majority of fires (46%) had similar housing 

development rates to their surrounding county (difference between inside and outside 

rates between -0.1 and 0.1). In Kentucky and West Virginia, even though the 

surrounding counties experienced housing declines, the number of buildings within 

those fire perimeters increased. By contrast, California, Arizona, Colorado, Wisconsin, 
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and most of Utah experienced lower development rates within fires than in their 

surrounding counties (Fig. 16). 

Discussion 

The main goal of our study was to characterize rebuilding and new development 

patterns after wildfire across the conterminous United States. The fact that buildings are 

frequently located in fire-prone areas is a key aspect of the U.S. wildfire problem 

(Syphard et al. 2009), partly because there is a positive feedback loop in that building 

ignitions increase as more people build near wildland vegetation (Syphard et al. 2012). 

The homeowners’ response to losing their home, and whether they decide to move, 

rebuild, or even preferentially build new buildings in burned areas, is thus an 

important question for fire policy and management. One current national-level policy 

emphasis is on creating fire-adapted communities, where fire is expected to occur and 

communities are configured to survive fire (Winter et al. 2009; McCaffrey et al. 2012). If 

communities are to become “adapted” to fire, they must respond to the occurrence of 

fire, and choosing not to rebuild a burned building is one possible adaptive response. 

Our results showed that rebuilding was limited, and we found more new development 

than rebuilding. 

One emphasis of current national-level fire policy is to create more fire-adapted 

communities, where fires are expected to occur and communities are configured to 

survive these fires (Winter et al. 2009; McCaffrey et al. 2012). Concomitant to these 

national-level efforts are local-level changes in building codes that have often been 
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adopted in response to major wildfires. Examples of fires that prompted communities 

to adopted their fire-related building codes include the Black Tiger Fire in Colorado in 

1989 (DORA 2010); and the Cedar Fire in San Diego, California in 2003, which resulted 

in further refining of the existing codes 

(http://www.amlegal.com/sandiego_county_ca/). Changes in the codes included both 

building construction requirements, such as the use of non-combustible, ignition-

resistant materials in exterior wall, and fuel modification requirements, such as keeping 

the area located within 15 m (50 feet) of any structure cleared or planted with fire-

resistant plants, and reducing fuels within at least 30 m (100 feet) distance from 

buildings (http://www.sdcounty.ca.gov/pds/docs/pds664.pdf).  However, none of 

the building codes are retroactive, meaning that the buildings already in place would 

remain at risk to be lost in a wildfire. 

Ecoregions provide a proxy for vegetation, soils and climate (Bailey 2004), which in 

turn influence fire regimes (Bond and Keeley 2005). In our analysis, the Mediterranean 

ecoregion stood out as the area where a particularly large number of buildings were 

lost, and fires were frequent. The Mediterranean ecoregion contains unique ecosystems 

because of the combination of dry summers (typical of this climate), strong winds, and 

heat waves, together with a high human development pressure that contributes to a 

higher ignition probability (Vannière et al. 2010). Vegetation in the Mediterranean 

ecoregion evolved together with fire to a point where it is now fire dependent (Keeley 

and Fotheringham 2003; Montenegro et al. 2004; Goforth and Minnich 2007). However, 
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the Mediterranean ecoregion is also the region where past housing and population 

growth have been particularly rapid, growth is projected to continue in coming decades 

(Hammer et al. 2009c; United States Census Bureau 2011), and fire is projected to 

increase both in frequency and intensity due to climate change (Dale et al. 2000; Dale et 

al. 2001; Running 2006). A high demand for residential building sites to house a 

growing population provides incentive for rebuilding and for new development, but 

the risk of another loss due to fire is a disincentive. Despites this disincentive, our 

results showed that the occurrence of fire did not depress housing construction, and: 

both rebuilding and new development rates within the fire perimeters were highest in 

the Mediterranean ecoregion. This suggests that either homeowners were not aware of 

fire risk, or that a combination of non-ecological factors such as local regulations, 

personal experience, regional cultures, and insurance policies were more important 

determinants for people’s response to wildfires that the fire patterns themselves. 

Our results highlighted the importance of understanding fire damage and rebuilding 

in grassland/prairie ecoregions. In the Great Plains and Prairies (e.g., Oklahoma, Texas) 

a high number of buildings were burned. Similarly, in California a large percentage of 

structures lost to wildfires are in low fuel-volume grassland areas, which tend to burn 

quickly and then carry fire into shrublands or woodlands (Syphard et al. 2012). These 

shrublands and woodlands, turn, have a higher ability to produce embers and 

firebrands, which are a major cause of structure ignition (Cohen 2000; Blanchi et al. 

2011; Graham et al. 2012). A common perception of surface fires is that they do not pose 

as large a danger as crown fires. However, buildings are often lost to surface fires and 
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therefore, risk from surface fire should be taken into consideration when developing 

land use policies or helping communities adapt to fire in the Great Plains and Prairies. 

Indeed, the number of new buildings built after fires within their perimeters was high 

(between 100 and 500) in the Plains states. This may indicate that people are 

underestimating the risk of wildfire, maybe perceiving low risk since the vegetation 

was burned and there is no fuel for a subsequent fire in the short-term (Rowe and 

Wright 2001; Brewer et al. 2004; Champ et al. 2013). 

Our use of Google Earth imagery to map rebuilding patterns was a novel approach 

but it was not without limitations. First, the number of available images varied from 

region to region and there were gaps of one or more years between available images in 

some areas. This meant that in some situations it was not possible to determine a 

precise date of rebuilding. Second, we were only able to identify buildings that burned 

to the ground. Our count of buildings lost to fire excludes the many buildings that are 

partially damaged by the fire itself, or by smoke. Nonetheless, the dataset that we 

derived from Google Earth images is unique, and our mapping approach could be 

useful for other studies as well. 

Another caveat of our study is that the new development needs to be interpreted in 

the context of the housing construction boom, which peaked in 2005 (Weller 2006; 

Haughwout et al. 2012), the last year of our study. Housing construction started to 

decline after 2005, but many buildings were still being built in subsequent years. Our 

image analysis covered up to five years after a fire (i.e., new development up to 2010). 
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However, even during this period of rapid housing growth, we saw low to moderate 

rebuilding rates, and across the U.S., the rate of development inside fire perimeters was 

similar to housing development in the county at large (Fig. 16). The base rate of 

development also differed substantially across the country. In California development 

rates were generally very high, whereas the border area of Kentucky, Virginia and West 

Virginia witnessed little to no growth in housing. In summary, there were no clear 

patterns for new development after wildfires across the U.S.  Patterns differed by fire, 

and some mix of local, social, ecological, and political characteristics appeared to have 

determined the outcome. 

 

Conclusions 

The combination of housing growth in the WUI (Stewart et al. 2007; Radeloff et al. 

2010) and climate change, particularly a hotter and drier climate, is likely to increase the 

frequency and intensity of wildfires in many WUI areas. This means that despite fire 

prevention and suppression efforts, the rate at which buildings will be destroyed by 

wildfire will probably rise. Information on rebuilding and new development is 

important in order to anticipate future needs for fire management in the WUI, and to 

gain a deeper understanding of homeowner attitudes towards fire and perceptions of 

risk. 

Although community adaptation to wildfire is widely discussed, few suggestions 

have been put forward to evaluate such adaptations, in part because adaptation can 
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take many forms. For example, rebuilding with fire resistant materials, following 

defensible space and/or Firewise directives, and keeping the home ignition zone clean, 

is one form of adaptation, while not rebuilding in the same place would be another type 

of adaptation since building location greatly affects fire risk (Gibbons et al. 2012; 

Syphard et al. 2012). The fact that we found generally low rebuilding rates may thus 

indicate that people are adapting to fire by choosing not to rebuild. However, high rates 

of new development suggest the opposite and support the notion that homeowners are 

not aware of fire risk, or that amenities and other considerations outweigh the risk 

(Donovan et al, 2007). 

Although overall rebuilding rates were low, regional variability was high, suggesting 

that it is difficult to predict rebuilding responses to any individual fire. In general, we 

found little evidence though that homeowners or communities adapted to fire by 

changing the locations of buildings, or by lowering rates of new development after the 

fire. Given how much a home’s position on the landscape determines its fire risk 

(Gibbons et al. 2012; Syphard et al. 2012), rebuilding in the same location may expose 

the building to future fire risk once the vegetation has recovered. Rebuilding in the 

same location thus represents a missed opportunity to adapt to wildfire. 

Clarifying where and how much rebuilding occurs provides essential information for 

all of those involved with planning for future fires, and suggests that people will 

continue living in that area despite the occurrence of fire events. The insights that our 

study provides regarding new development within fire perimeters is important for WUI 
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communities considering fire-specific planning, zoning, codes, and infrastructures. The 

prevalence of new development inside fire perimeters within five years of a fire 

suggests that a proactive approach to fire policy is essential, because while the 

community is recovering from fire, development pressure will continue and may 

exacerbate future fire problems.  
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Fig. 12- Example of a rebuilt building after a fire in 2003 in Colorado (from left to right: 
2000, 2003, 2005). 

 

  



198 

 

 
 

 Burned Buildings 

a) 

 

 

 

 Rebuilt Buildings 

b) 

 

 

 

 New Development 

c) 

 

 

 

Fig. 13 - Fires that occurred between 2000 and 2005 and the respective percentages of a) 
burned buildings, b) rebuilt buildings, and c) new development within the fire 
perimeters. 
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Fig. 14 - Summary data for fires that occurred between 2000 and 2005 of a) burned 
buildings, b) % of burned buildings, c) rebuilt buildings, d) % of rebuilt buildings, e) 
New buildings, f) % of new buildings, and g) total number of buildings within states.  
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Fig. 15 - a) Map of Bailey’s Ecoregions for the U.S. (legend:10.1 Cold Deserts; 10.2 Warm 

Deserts; 11.1 Mediterranean California; 12.1 Western Sierra Madre Piedmont; 13.1 Upper Gila Mountains; 
15.4 Everglades; 5.2 Mixed Wood Shield; 5.3 Atlantic Highlands; 6.2 Western Cordillera; 7.1 Marine West 
Coast Forest; 8.1 Mixed Wood Plains; 8.2 Central USA Plains; 8.3 Southeastern USA Plains; 8.4 
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Ozark/Ouachita-Appalachian Forests; 8.5 Mississippi Alluvial and Souteast USA Coastal Plains; 9.2 
Temperate Prairies; 9.3 West-Central Semiarid Prairies; 9.4 South Central Semiarid Prairies; 9.5 Texas-

Louisiana Coastal Plain; 9.6 Tamaulipas-Texas Semiarid Plain), and summary data for fires that 
occurred between 2000 and 2005 of b) burned buildings, c) % of burned buildings, d) 
rebuilt buildings, e) % of rebuilt buildings, f) new buildings, g) % of new buildings, and 
h) total number of buildings within ecoregions.  
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Fig. 16 - Development rates within and outside fire perimeters 2000-2005, and housing growth 

by county for the whole U.S., 2000 - 2010. Bar plot shows States where fires occurred and if the 

average development rate was higher or lower inside the fire perimeters for that state 


