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1 Introduction 

The overarching goal of my dissertation was to contribute to a better understanding of the 

consequences of land use change for wildlife. My dissertation consists of three chapters based 

on coarse-resolution satellite images, remote sensing (RS), and geographic information systems 

(GIS). In my first chapter, I tested a novel Land Use Land Cover Change (LULCC) 

classification method to map agricultural land abandonment using broad-scale imagery, 

exemplifying the method in the northwestern part of Eastern Europe with MODIS imagery. In 

my second chapter, I applied this method to map abandoned agricultural land and examined 

agro-ecological constraints across Eastern Europe. In the third chapter I analyzed the 

relationship between land abandonment, and resulting changes in landscape patterns, with 

brown bear (Ursus arctos arctos) populations in European Russia. 

The Earth is a dynamic and complex system, nature and humans are completely interdependent. 

The actions we take to modify the environment in order to obtain goods and services have often 

unintended consequences in nature and feedbacks are affecting human well-being (Reid et al. 

2006). In the last century it has become clear that human activities increasingly affect the 

Earth’s natural systems (Vitousek and others 1997) to the point that ecosystems ability to 

support human needs in the future may be compromised (Reid et al 2006). 

Both the impacts of human activities on the Earth’s system and the consequences of these 

changes for human well-being justify the need to improve our knowledge of the 

transformations in human and natural systems (Sanderson,et al 2002). Our understanding of the 

complexity of impacts that human activities pose over each natural system are still in its 
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infancy (Brashares 2010). Furthermore, there is increasing awareness that changes in 

biodiversity will affect ultimately human well being (Faith et al 2010). 

More than a half of the world’s surface area has been converted to human dominated 

ecosystems (Ellis and Ramankutty 2008; Foley and others 2005; Vitousek and others 1997). 

Agriculture has been the dominant land cover change of the Earth’s history (Ramankutty and 

Foley 1999). As of 2007, up to 38% of the Earth’s land cover has been dedicated to agriculture 

(Food and Agriculture Organization of the United Nations 2010). The pace of LULCC has been 

particularly rapid in the last 30 years (Lambin and Geist 2006; Leff, Ramankutty, Foley 2004; 

Lepers and others 2005), and it is the main cause of habitat loss (Matson and others 1997), and 

subsequent loss of biodiversity (Butchart and others 2010, Harding and others 1998; Reidsma 

and others 2006; Zebisch, Wechsung, Kenneweg 2004) through extinctions and population 

declines (Kruess and Tscharntke 1994; Pimm and Raven 2000). 

However, agricultural land use has also decreased in extension, primarily in areas that are only 

marginally suited for modern agriculture (Beddow and others 2010; Lambin and Geist 2006; 

Rudel and others 2005), with concomitant increases in forested area (Kauppi and others 2006). 

It is well documented that expansion and intensification of land use resulted in major 

biodiversity changes, especially in the last decades (Hansen, DeFries, Turner 2004). Less 

understood are the effects of other land cover changes on biodiversity such as agricultural land 

abandonment (Ramankutty and others 2007). 

Understanding the relation between land cover changes and biodiversity requires developing 

tools to assess promptly and accurately the extent of agricultural changes in both directions: 

expansion and intensification on one hand, and abandonment and de-intensification on the 

other. Mapping land cover changes on land abandonment is at least equally important as 
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assessing agricultural land expansion, given the strong implications on biodiversity, soil 

stability (Tasser, Tappeiner, Cernusca 2005), carbon sequestration (Ramankutty and others 

2007; Vuichard and others 2008), water quality (Scanlon and others 2007), and nutrient cycles 

(Stoate and others 2001). Unfortunately, current data on agricultural abandonment is poor and 

methods to inventory abandonment accurately for large areas are lacking. 

Agricultural land abandonment is a process, and abandoned agricultural land a land cover type, 

that can vary in appearance in space and time making it difficult to define it. An accurate and 

consistent definition to map agricultural land abandonment is necessary as well as a method 

that allow us to assess that process. The use of remote sensing and new mapping methods can 

help to find an operative definition that quickly allow mapping agricultural abandonment across 

large areas. Furthermore, developing a method to map agricultural land abandonment over 

large areas will allow us to better focus conservation and management efforts and improve 

actions to revert the negative effects of land abandonment. The first goal of this dissertation 

was to develop and test a method to map abandoned agricultural land. 

Eastern Europe represents a prime example of rapid land cover change where several studies 

reported widespread agricultural land abandonment since 1990 (Baumann in press, Brooks and 

Bruce 2004; Gobulev and Dronin 2004; Hostert in preparation, Ioffe, Nefedova, Ilya 2006; 

Lerman and Csaki 2004; Kuemmerle 2008, Müller 2006, Prischepov in preparation, Unwin 

1997), including, in some cases, reforestation (Taff and others 2010). Both a trend towards less 

intensive farming systems and land abandonment after the collapse of the Soviet Union 

occurred, the latter particularly on marginal land (Dutch National Reference Center for 

Agriculture and others 2005; Swinnen, Van Herck, Vranken 2010). However, to date a 

comprehensive assessment of abandoned agricultural land across Eastern Europe is lacking 
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(Lepers and others 2005) and only a small set of case studies have mapped and analyzed its 

pattern. 

Agricultural land abandonment is a complex process that may be driven by both socioeconomic 

factors and biophysical conditions (Lambin and others 2001). A particularly important role is 

played by institutions and governmental policies that have control over inputs for agriculture, 

which in turn have direct effects on land use change. On the other side, biophysical conditions 

define the natural capacity of the land, and changing biophysical conditions may predispose 

areas for land use change (Turner and others 2007). The challenge is to disentangle which of 

these factors matter most in a given place, because agricultural land use change in general, and 

land abandonment in particular, is typically gradual, and not amenable to scientific 

experiments. In the second chapter of this dissertation I conducted a classification of MODIS 

images across Eastern Europe to map agricultural abandonment. The goal was to examine 

agricultural abandonment patterns and agro-ecological constraints across Eastern Europe to 

assess if biophysical factors or national policies played the main role on the agricultural 

abandonment pattern. 

The extent and degree of biodiversity changes that resulted from set aside lands is not well 

known yet. Currently there are only a handful of efforts that assess the consequences of 

agricultural land abandonment to biodiversity; efforts are especially focused on birds (Sirami 

and others 2008). Large predators are key elements in many ecosystems (Morrison and others 

2007). They play a critical role on trophic cascades as top-down force to regulate terrestrial 

ecosystems (Terborgh and others 2001). Large predators usually have wide home ranges, often 

requiring large areas (Maehr, Noos, Larkin 2001). They are also particularly vulnerable, at 

species and population levels, and indeed less than 21 % of the earth‘s terrestrial surface still 
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contain all of the large mammals (>20 kg) it once held (Morrison and others 2007). Given the 

ecological importance of large mammals and in particular of top predators, it is necessary to 

analyze the relationship between land abandonment and top predators (Carroll, Noss, Paquet 

2001; Niemi and McDonald 2004; Simberloff 1998; Simberloff 1999). One of the main large 

carnivore population recoveries in recent decades probably occurred in Eastern Europe. Brown 

bears (Ursus arctos arctos) registered a large expansion of their geographical range in the 

European part of Russia from 1960 to 1989 (Chestin and others 1992). My third chapter 

explored how land cover change, human disturbance and environmental conditions influenced 

brown bear range expansion and habitat use in European Russia after 1990. 

The remainder of my thesis is structured in three main sections (Chapters I-III) that build upon 

each other, and address the specific goals outlined above. All three chapters were written as 

standalone manuscripts to be published in international peer-reviewed journals. Each chapter 

was structured accordingly, with background, study area, methods, results, and discussion. 

1. Chapter I. Mapping abandoned agriculture using coarse-resolution multi-temporal 

MODIS satellite imagery. 

2. Chapter II. Patterns of abandoned agriculture across Central and Eastern Europe after 

the breakdown of the USSR derived from multi-temporal MODIS NDVI, and 

phenology data. 

3. Chapter III. Effects of land-use and land cover changes and fragmentation on brown 

bear (Ursus arctos arctos) populations in Russia. 

In my first chapter I conducted and compared twenty one alternative classifications to map 

abandoned land for one MODIS tile in Eastern Europe (~1,236,000 Km2) were abandoned 

agriculture was widespread. Input data was NDVI and reflectance bands (~250-m pixel /size), 
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as well as phenology parameters calculated with TIMESAT. The data were classified with a 

support vector machine. Training data were derived from several Landsat classifications of 

abandonment in the study area and validation was conducted using independently collected 

data. My goal for the first chapter was to test methods to map abandoned agriculture at broad 

scales with coarse-resolution (MODIS) satellite imagery. Specifically, my questions were if 

abandoned agriculture was more accurately detected with: 

a) Near-Infrared (NIR) and Red reflectance data, or with Normalized Difference Vegetation 

Indices (NDVI) data; 

b) A specific best year of data, or if any year results in an equally accurate classification; 

c) The entire year of data or just data for the growing season; 

d) Data for one year, or for multiple years; 

e) NDVI time series, phenology measures (e.g., start, end, length, amplitude, and maximum of 

the season) or the combination of them? 

My results demonstrated that it is feasible to map agricultural land abandonment consistently 

using coarse resolution imagery. Support vector machines applied to growing season NDVI 

data for multiple years, plus phenology information captured in six parameters provided the 

highest classification accuracy when mapping abandoned land from MODIS data. 

In my second chapter, I assessed for the first time, abandoned agricultural land across Eastern 

Europe including European Russia. The main goal of second chapter was thus to assess 

agricultural land abandonment across Central and Eastern Europe including the European part 

of Russia. My objectives were: 

a) To map abandonment from satellite data wall-to-wall across the region; and  
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b) To compare abandonment rates among countries and among agro-ecological zones as a 

first exploration into potential drivers of abandonment. 

I demonstrated in this chapter that the method developed on the first chapter is extensible to 

other areas and allows to compare abandonment across countries. I conducted a supervised 

classification using a Support Vector Machine as our classifier, 250-m resolution 2004 – ’06 

MODIS NDVI data, and TIMESAT phenology indices. Training and validation data were 

derived from Landsat classifications from the late 1980s and the mid 2000s. The main finding 

was that abandoned agricultural land was widespread across Central and Eastern Europe. 

Countries differed strongly in terms of their abandonment rates, but differences among agro-

climatic regions were less pronounced. This suggests that agricultural abandonment after the 

collapse of the USSR was more closely associated with socioeconomic factors than with 

biophysical conditions. 

In the third chapter I analyzed the relationship between the documented land abandonment in 

the second chapter, and resulting changes in landscape configuration with brown bear 

populations in European Russia. My goal was to explore how land-cover change, human 

disturbance and environmental conditions influenced brown bear range expansion and habitat 

use in European Russia after 1990. Specifically, I conducted an analysis at two scales: 

1) I analyzed general population trends from 1991 to 2007 throughout European Russia; 

and  

2) I analyzed habitat use in the areas where brown bear’s geographical range expanded 

recently. 

In my analysis of habitat use, I examined in particular: 

a) environmental factors, 
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b) human presence, 

c) land cover, landscape changes, and land cover fragmentation, and last but not least 

d) the effects of dispersal distances. 

The third chapter showed that brown bears have expanded their distribution southwards, that 

habitat use was strongly affected by human disturbance, and that bears selected against 

agricultural land abandonment. Additionally, I evaluated two relatively new methodologies 

each to measure a) dispersal and b) fragmentation. To measure brown bear dispersal I tested the 

use of Euclidean distances versus Cost-path analysis and included both measures alternatively 

in multivariate linear regression models. Surprisingly, Cost-path analysis did not show the 

expected strength to justify its use instead of the use of Euclidean distances. In the case of the 

measurement of fragmentation I implemented a modified version to map morphological 

features on the landscape such as patch, edge, interior, gap and exterior of suitable habitat. 

Again I was surprised to see that image morphology did not show differences when included in 

the multiple linear regression compared to forest abundance, but it provided interesting insights 

regarding the different habitat uses by the brown bears. 

My dissertation does make contributions in three main areas: a) basic science, b) methodologies 

and c) conservation and management. In my first chapter I developed a new approach to map 

agricultural land abandonment; the main contribution here was thus the development and 

refinement of remote sensing methods, by complementing the toolbox on mapping land cover 

changes that currently focus especially on agricultural intensification and extensification. To 

map the opposite trend of land abandonment, and less intensive agricultural use can elucidate 

the impacts and feedbacks between land cover change and other ecosystem's components such 

as biodiversity; soil stability, carbon sequestration, water quality, and nutrient cycles. 
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In my second chapter I made contributions in two dimensions: basic science and 

methodologies. My contribution on basic science here was to establish that institutions and 

policies can be the main driver of LULCC and that socioeconomic disturbances (such as the 

collapse of the Soviet Union) can occur rapidly and have large effects on LULCC. My 

methodological contribution was to provide a new dataset on agricultural land abandonment 

across Eastern Europe, a region that has not been studied well before, and that experienced 

widespread land abandonment. By providing this map across a large region I open the 

possibility to focus on specific regions where land abandonment happened at large allowing a 

systematic comparison to determine drivers sensu Lambin and Geist (2006), to model 

trajectories of land use change sensu Verburg et al. (2009), and to refine forest transition theory 

(MacDonald and others 2000; Rudel and others 2005) and land use transition theory (DeFries, 

Foley, Asner 2004; Foley and others 2005). 

In my third chapter I made contributions to all three dimensions: basic science, methodologies, 

and conservation and management. My basic science contribution was to provide a better 

understanding of bear habitat use at the range-scale. My methodological contribution was to 

analyze a Brown bear population not yet well known in the current peer review literature and to 

test new methodologies to measure dispersal and fragmentation. My contribution for 

conservation and management was to show potential areas of human-wildlife conflicts and the 

inclusion of a model to identify areas of opportunity for bear population recovery. 

Humans are changing the Earth very rapidly, and it will take concerted efforts to protect 

wildlife species, and to ensure their long-term population viability in the face of these changes. 

The overarching goal of my dissertation was to contribute to a better understanding of the 

consequences of land use change for wildlife. As such, I think that it is critical to do both, 
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monitor the changes that are occurring better, and quantify the effects of these changes on 

wildlife populations. Hopefully, the research presented here will provide others with the tools 

to do so in other areas, and the joint insights provided by my dissertations and other projects 

will contribute to the conservation of biodiversity upon which we all depend. 
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2.1 Abstract 

Agriculture is generally expanding and intensifying, but agricultural abandonment is also 

becoming more common, especially in temperate regions. Unfortunately, data on agricultural 

abandonment is poor and methods to inventory abandonment accurately for large areas are 

lacking. Remote sensing may be able to fill this gap, but past efforts to map abandonment relied 

mainly on Landsat data, making it hard to map large regions, and limiting opportunities to use 

phenology to identify abandoned land. Our objective here was to test methods to map 

abandoned agriculture at broad scales from coarse-resolution (MODIS) satellite imagery. We 

classified abandoned land for one MODIS tile in Eastern Europe (~1,236,000 Km2) were 

abandoned agriculture was widespread. Input data were NDVI and reflectance bands (NASA 

Global MODIS Terra and Aqua 16-Day vegetation indices for the years 2003 through 2008, 

~250 m. pixel /size), as well as phenology parameters calculated with TIMESAT. The data 

were classified with a support vector machine. Training data were derived from several Landsat 

classifications of abandonment in the study area and validation was conducted using 

independently collected data. Our results showed that it is possible to map abandoned 

agriculture for large areas from MODIS 250-m resolution data with overall accuracies of 

around 65%. Abandoned agriculture was widespread in our study area (15.1% compared to 

29.6% agriculture). We found strong differences in the MODIS data quality for different years, 

with data from 2005 resulting in the highest classification accuracy (42.8% producer’s 

accuracy). MODIS NDVI data performed almost as well as a combination of red and near-

infrared reflectance data. MODIS NDVI data from the growing season alone performed as well 

as data for the full year. Using multiple years of MODIS data did not increase classification 

accuracy. Last but not least, six phenological parameters derived with TIMESAT from the 
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MODIS NDVI time series (2003-2008) were by themselves insufficient to detect abandoned 

land, but improved classification accuracies when used in conjunction with NDVI time series 

by more than 8%.We identified approaches here to map land abandonment and proposed 

methods that facilitate the mapping of abandoned agriculture at broad scales. Our results are 

promising and suggest that mapping of abandoned agriculture at broad scales is possible.  

Keywords: abandonment, agricultural abandonment, accuracy assessment, change 

detection, Eastern Europe, Soviet Union, farmland, land use, land cover change, MODIS, 

Landsat, multi-date, multi-seasonal, old fields, support vector machines, SVM 

2.2 Introduction 

More than half of the earth has been transformed by humans through land-use and land-cover 

change (LULCC) (Ellis and Ramankutty 2008; Foley and others 2005; Vitousek and others 

1997). Assessing rates and spatial patterns of LULCC is important for both policy making and 

the scientific understanding of the earth system (Lambin and others 2001). Remote sensing can 

monitor LULCC and thereby improve land management and decision making (Boyd and 

Danson 2005; Cohen and Goward 2004; Laurance, Albenaz, Da Costa 2001; Nepstad and 

others 1999), but different aspects of LULCC need different remote sensing approaches. 

Agricultural change is a key component of LULCC (Foley and others 2005; Goldewijk and 

Ramankutty 2004; Haberl and others 2007; Leff, Ramankutty, Foley 2004; Tilman and others 

2001). More than 38% of the earth’s land surface was either covered by crops or grazed in 2005 

(Food and Agriculture Organization of the United Nations 2010). Cropland alone has increased 

exponentially during the last centuries, occupying 3 - 4 million km2 in 1700 and 15 – 18 million 

km2 in 1990 (corresponding to about 12% of the land surface of the globe) (Lambin and Geist 
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2006; Leff, Ramankutty, Foley 2004). However, in the last 50 years agricultural area has 

stabilized or even decreased in several regions of the world, especially in the temperate zone 

(Lambin and Geist 2006), resulting in agricultural land abandonment, and sometimes 

concomitant increases in forest area (Kauppi and others 2006; Millennium Ecosystem 

Assessment 2005; Rudel and others 2005). 

Agricultural expansion, and concomitant deforestation have been widely monitored and well 

documented (Lambin and Geist 2006), raising concerns about long-term sustainability and 

environmental consequences (Stoate and others 2001; Tilman 1999). Less attention has been 

paid to the monitoring and environmental consequences of agricultural abandonment both in 

temperate and tropical forest (Aide and Grau 2004; Cramer, Hobbs, Standish 2008; 

Vandermeer and Perfecto 2007; Wright 2005). Agricultural abandonment is not a new 

phenomenon though. Expansion and contraction of the agricultural land area has been common 

throughout history (Ellis and others 2010, Ramankutty and Foley 1999). However, recently 

land cover has suffered dramatic changes at the global scale, and there has been a substantial 

increase of agricultural land abandonment (Kauppi and others 2006), for instance, in parts of 

the United States (Hart 1968), Europe (Dutch National Reference Center for Agriculture and 

others 2005; Ministerial Conference on the Protection of Forests in Europe - Liason Unit 

Warsaw, United Nations Economic Commission for Europe, Food and Agriculture 

Organization of the United Nations 2007) and South America (Aide and others 1995; Farley 

2007). Most land abandonment has occurred in temperate ecosystems, though abandonment has 

also been reported in tropical countries such as Puerto Rico (Grau and others 2003), Mexico 

(Klooster 2003), Ecuador (Farley 2007), Honduras (Redo, Joby Bass, Millington 2009), 
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Panama (Sloan 2008), and Vietnam (Meyfroydt and Lambin 2008). However, although 

abandonment is not uncommon, reliable data on abandonment are missing for most countries. 

This lack of data on abandonment is unfortunate because abandonment has strong implications 

for soil stability, carbon sequestration, water quality and nutrient cycling (MacDonald and 

others 2000; Moreira and Russo 2007; Ramankutty and others 2007; Stoate and others 2001). 

Environmental benefits of abandonment includes less pollution by agricultural chemicals 

(Lesschen and others 2008), and the creation of new wildlife habitat (Chauchard, Carcaillet, 

Guibal 2007; Russo 2007). However, abandonment can also increase the risk of natural hazards 

(Romero-Calcerrada and Perry 2004) and alter water resources (Poyatos, Latron, Llorens 

2003). In economic terms, land abandonment decreases food production, and threaten 

traditional landscapes, their cultures and the biodiversity connected to these landscapes (Dutch 

National Reference Center for Agriculture and others 2005). 

The environmental and socioeconomic implications of land abandonment make it necessary to 

improve our ability to monitor abandonment as a process, and abandoned agriculture as a land 

cover type. Satellite imagery can provide independent and consistent data to map LULCC such 

as abandoned agriculture (Lu and others 2004, Fassnacht, Cohen, Spies 2006). In the United 

States of America remote sensing has been used to map abandoned farmland resulting from the 

Conservation Reserve Program (Egbert and others 1998; Egbert and others 2002; Park and 

Egbert 2008). In Europe, abandoned farmland was successfully mapped from satellite imagery 

in Italy (Falcucci, Maiorano, Boitani 2007), Denmark(Kristensen, Thenail, Kristensen 2004), 

Estonia (Peterson and Aunap 1998), Belarus and Lithuania (Prischepov and others 2010), and 

the Carpathians (Kuemmerle and others 2008; Kuemmerle and others 2009). In Asia a study 

mapped abandoned agriculture in the Siberian part of Russia (Bergen and others 2008). All 
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these studies used Landsat imagery from multiple dates, separated at least by three years, an 

employed some form of change detection to identify areas that were initially in agricultural use, 

and later in various stages of succession. 

While these Landsat-based studies highlight that agricultural abandonment can be accurately 

mapped with satellite imagery, they also point to some shortcomings of current approaches. 

First, past efforts to map agricultural abandoned were spatially limited to a single Landsat 

scene, and cannot be easily compared because of different change detection algorithms, class 

catalogs, abandonment definitions, and images dates (Prishchepov and others in preparation). 

Second, past efforts used typically one or two Landsat images for a given year. This is 

unfortunate, because differences in phenology can help separate abandoned agriculture from 

agricultural areas still in use. Test show that three images per year both pre- and post-

abandonment are necessary to achieve classification accuracies up to 80%, but sufficient cloud 

free images are simply not available for most locales (Prishchepov and others in preparation). 

Landsat imagery may thus not be the best data source to map abandoned agriculture for large 

areas. In contrast coarse-resolution satellite imagery may offer advantages in terms of both 

spatial and temporal coverage with their ability to capture phenology, but their ability to map 

abandoned agriculture has not been tested. 

The most common satellite sensors used to map LULCC at broad scale have been AVHRR, 

SPOT-VGT, and MODIS (Friedl and others 2002, Fensholt and Sandholt 2005). Phenological 

parameters, such as start, end, middle and length of the season over broad scale images have 

been used to map land cover with good results (Jacquin, Sheeren, Lacombe 2010; White and 

others 2008; Xiao and others 2006; Zhang and others 2003). Land cover classifications from 

coarse-resolution imagery are most accurate when using non-parametric, machine-learning 
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algorithms such as neural networks (Justice and others 2002), or decision trees (Friedl and 

Brodley 1997). Among the machine learning algorithms, support vector machines have shown 

particular promise when applied to Landsat data (Hermes and others 1999) (Kuemmerle and 

others 2009) including for mapping agricultural abandonment (Kuemmerle and others 2008, 

Prischepov and others, 2010). For broad scale mapping SVM has been used successfully to 

predict Gross Primary Production (GPP) for the conterminous U.S. (Yang and others 2007). 

However, land cover classification with Support Vector Machines are rare, although a case 

study classifying land cover from MODIS in Portugal shows promises (Goncalves and others 

2005). 

Our goal here was to test methods to map abandoned agriculture at broad scales with coarse-

resolution (MODIS) satellite imagery. Specifically, we asked if abandoned agriculture was 

more accurately detected with: 

f) Near-Infrared (NIR) and Red reflectance data, or with Normalized Difference Vegetation 

Indices (NDVI) data; 

g) A specific best year of data, or if any year results in an equally accurate classification; 

h) The entire year of data or just data for the growing season; 

i) Data for one year, or for multiple years; 

j) NDVI time series, phenology measures (e.g., start, end, length, amplitude, and maximum of 

the season) or the combination of them 
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2.3 Methods 

2.3.1 Eastern Europe study area 

We classified different MODIS datasets from 2003 to 2008 with Support Vector Machines to 

detect abandoned agricultural land in the Baltic countries, Belarus and Poland (Figure 1). The 

study area encompassed 12,364,340 km2, the extent of one MODIS scene (Tile h19-v03) 

covering the entire area of Lithuania, Latvia, Estonia and Belarus, 77.4% of Poland, 18.4% of 

Ukraine, 8.4% of Czech Republic and only 2.1% of Russia (However, this included the entire 

Kaliningrad region and the equivalent of more than 110% the land area of Poland). This part of 

Eastern Europe provides an ideal study because abandoned agriculture became widespread after 

the breakdown of the USSR ((Kuemmerle and others 2008, Prishchepov and others 2010, 

Charles 2010; Dutch National Reference Center for Agriculture and others 2005; Nikodemus 

and others 2005; Peterson and Aunap 1998). 

FIGURE 1. APPROXIMATELY HERE 

The entire study area was glaciated several times and the Last Glacial Maximum was 

approximately 20,000 years ago. As a result, topographic variation is low (0 – 292 m) (Zeeberg 

1998). The dominant soils in the study area are arenosols, phaeozems, fluvisols, cambisols and 

luvisols. Podzols, which are poorly suited for agriculture, are common throughout the study 

area, especially in the north. The climate in the study area is characterized by moist, cloudy, 

and cool summers and relatively mild winters. Frost free periods range from 150-179 days in 

the northeast to 210-240 days in the south. Average temperatures in July are 20 to 25 °C and 

average temperature in January is-3 to -5 °C. Annual precipitation ranges from 500 mm in the 

central Poland to 900 mm in the mountains between Poland and Czech Republic. Forests are 
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boreal in the north (dominant tree species include Pinus sylvestris, Picea abies, and Betula 

spp.) and temperate in the south (dominant tree species include Quercus spp, Pinus sylvestris, 

and Picea abies). 

The majority of the agricultural abandonment in the study area occurred during the 1990s, right 

after the breakdown of the USSR (Prischepov and others 2010). MODIS data is only available 

after 2001, and can thus not be used for actual change detection (i.e., the mapping of areas that 

were farmed during socialist times and covered by secondary succession later). Instead, we 

used the MODIS data to map abandoned agriculture, i.e., areas covered by secondary 

succession such as grasses that were neither mowed nor grazed, shrubs, and in some cases 

young trees. Whether or not these areas were indeed farmed during socialism (pre-1991) was 

verified with Landsat imagery which was analyzed to provide validation data (see below). The 

operative definition of abandoned agriculture that we used for this paper is thus all former 

agricultural land (including both plowed fields and managed grasslands) that is no longer used 

for agriculture. Thus our goal was to map abandoned agriculture as a land cover class, rather 

than the process of agricultural abandonment. 

2.3.2 Input data for the classifications 

We based all of our classifications on the two NASA Global MODIS Vegetation Indices 

datasets Terra and Aqua (MODIS VI) 16-Day L3 Global Collection 5.0 (MOD13Q1 and 

MYD13Q1) from January 1, 2003 to December 31, 2008 (231.65 m pixel size or 5.36 

hectares). Data was retrieved from the Land Processes Distributed Active Archive Center (LP 

DAAC) on August 31, 2009 (http://lpdaac.usgs.gov). The combined MODIS VI dataset 

includes weekly reflectance, NDVI, and quality data. We analyzed 250-m 16-day red 
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reflectance data, 250-m 16-day near infrared reflectance data, and 250-m, 16-day NDVI data, 

each of which is available for 46 dates per year, including both Terra and Aqua datasets. 

To identify the best year or years for our analysis, we examined the amount of MODIS NBAR 

data available in different quality classes in each year for the red and infrared bands (Science 

Data Sets for MODIS Terra+Aqua BRDF/Albedo Quality 16-Day L3 Global 500m SIN Grid 

V005, MCD43A2). Results showed that high-quality data prior to 2003 was very sparse (Figure 

2). For example, in 2005, there were 19 MODIS images with more than 90% usable data in 

each image (Categories 1 -3 of MCD43A2: “best quality, full inversion”, “good quality, full 

inversion” and “Magnitude inversion, number of observations >=7“), versus only four of such 

images in 2001. Because of limited availability of usable data, we used only data from 2003 to 

2008 in our analysis. Initial results also showed that 2006 provided the highest single-year 

classification accuracies (see below), and since 2006 was also among the years with the most 

reflectance data in the ‘best’ quality category, we focused in some of our tests on 2005 and 

2006. 

FIGURE 2. APPROXIMATELY HERE 

Phenology information can improve land cover classifications from coarse-resolution satellite 

imagery (Jacquin, Sheeren, Lacombe 2010; White and others 2008; Xiao and others 2006; 

Zhang and others 2003). We calculated eleven phenological indices for each year (Start of the 

growing season, end of the growing season, length of the growing season, base level, middle of 

the growing season, largest data value for the fitted function during the growing season, 

growing seasonal amplitude, rate of increase at the beginning of the growing season, rate of 

decrease at the end of the growing season, large growing seasonal integral, and small growing 

seasonal integral) from the 2003 – 2008 NDVI time series. We used the Savitsky-Golay 
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algorithm included in the program TIMESAT (Jonsson and Eklundh 2004). We defined the 

growing season as starting on day 129 (May 9th, or May 8th on leap years) and ending on day 

297 (October 24th, or October 23th in leap years) based on initial TIMESAT results. 

2.3.3 Training data for the classifications 

Training data was extracted from land cover maps that had been previously derived for three 

Landsat scenes. Two of the Landsat land-cover maps captured land abandonment between 1989 

and 1999 in parts of Lithuania and Russia (Prishchepov and others in preparation). The third 

Landsat scene mapped abandonment between 1986 and 2000 around Chernobyl, Ukraine 

(Hostert and others 2010). The classification scheme included 8 classes (Abandonment, 

Cropland, Grassland, Deciduous Forest, Needle-leaved Forest, Regrowth, Water, and Other 

Classes). We summarized the percentage of each land cover class in grid cells within 500 m 

resolution. The 500-m cells fully encompassed one 250-m pixel, leaving 125 m around the 

edges to account for location uncertainty in the MODIS data (Tan and others 2006). For 

training purposes, we used 1,459 cells with at least 90% dominance in one land cover class. 

Training data was grouped into four classes: abandoned (157 cells), agriculture (444, both 

plowed fields and managed grasslands), forest (307, including deciduous, coniferous and 

mixed), and other (551, including water, urban areas, and wetlands). 

2.3.4 Classification algorithm, and classification tests 

All land cover classes exhibited multi-modal or non-normal distributions in our training data. In 

the case of abandoned agricultural land, for instance, multi-modal distributions represented 

areas covered by grasses versus young trees. We thus applied a non-parametric classifier: 

Support Vector Machines (SVM) (Huang, Davis, Townshend 2002) to classify the MODIS 
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data. The software package that we used was ImageSVM, programmed in IDL (Janz and others 

2007). SVMs are highly accurate classifiers, but computationally demanding. We therefore 

evaluated five questions to assess what input dataset results in the most accurate maps of 

abandoned agriculture: 

a) Our first question was if near-infrared and red reflectance data was better suited than NDVI 

data to map abandoned land. This test was conducted with single-year data for the growing 

season only for both 2005 and 2006. We derived two classifications for each year (one with 

red and near infrared data as input, one with NDVI) and compared their classification 

accuracies (see below). 

b) Our second question was which year of MODIS data provided the best classification 

results, and we classified growing-season-only NDVI data for each single year from 2003 

to 2008. 

c) Our third question was if data for a whole year is necessary or if it suffices to classify data 

for the growing season. We conducted four classifications: two of red and near-infrared 

reflectance data and two with NDVI data for 2006, two using all 46 images, and two with 

22 images for the growing season only. 

d) Our fourth question was if with data for one year sufficed, or if data from multiple years 

resulted in higher accuracies. We conducted six classifications with growing season NDVI 

data. The first three were with data for 2004, 2005 and 2006 only, the fourth with data for 

both 2005 and 2006, the fifth with data for 2004 and 2006 and the sixth with data for 2004, 

2005 and 2006. 

e) Our fifth and last question was if phenology metrics by themselves, or used in conjunction 

with time series data would result in higher classification accuracies. We conducted eight 
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classifications that include different datasets of phenology metrics. The first classification 

was based on six years of the eleven phenology metrics parameterized with 2003-2008 

MODIS-NDVI data: Classifications two and three included the six years of eleven 

phenology metrics parameterized with 2003-2008 MODIS NDVI data, combined with 2005 

and 2006 growing season NDVI data, respectively. Classifications four and five included 

the eleven phenology metrics for one year each (2005 and 2006), parameterized with 2003-

2008 MODIS NDVI data. Classification six and seven included three years of eleven 

phenology metrics parameterized with 2004-2006 MODIS NDVI data, combined with 2005 

and 2006 growing season NDVI data, respectively. Classification eight include only three 

years of five phenology metrics parameterized with 2004-2006 MODIS NDVI data, 

combined with 2005 growing season NDVI data. 

2.3.5 Validation data 

Independent validation data was collected for a stratified random sample over five Landsat 

footprints within the study area (Figure 1). Two Landsat images for each footprint were 

obtained from United States Geological Survey (http://glovis.usgs.gov), the first for the late 

1980s and the second for either 2005 or 2006. To select pixels for validation, we used a grid of 

MODIS pixels with 2,500 m distance between pixels to minimize spatial autocorrelation. Using 

the 2005 MODIS land cover classification for stratification we selected 99 MODIS pixels for 

each of the four land cover classes. The resultant MODIS pixels were interpreted visually using 

the two Landsat images and, where available, high-resolution QuickBird images in 

GoogleEarthTM. We recorded for each pixel the dominant land cover class in 2005/06, and in 

the case of abandoned agriculture also if the pixel was actively farmed in the late 1980s. 
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We generated an area adjusted confusion matrix (Card 1982; Stehman 1996) for each 

classification and calculated the overall accuracy expressed by the kappa coefficient of 

agreement, the proportion of pixels correctly allocated, and the user’s and producer’s accuracy 

for each class. The statistical significance of the observed differences in the mean classification 

accuracies was evaluated with McNemar tests (De Leeuw and others 2006; Foody 2004; Foody 

2009). Based on the statistical significance of the differences among classifications, we derived 

a hierarchical clustering distance dendrogram. 

2.4 Results 

The best classification resulted from the growing season data for 2005 plus all phenological 

parameters from 2003 to 2008; with an overall accuracy (69.0%), the lowest omission and 

commission errors (57.2% and 59.1 % respectively), and the best producer’s (42.7%) and 

user’s (40.9%) accuracy for agricultural abandonment. Based on this classification the land 

cover class distribution was 29.6% agriculture, 33.8% forest, 15.1% abandoned agriculture, and 

21.5% in other land covers (Figure 3, Table 1). 

TABLE 1. APPROXIMATELY HERE 

FIGURE 3. APPROXIMATELY HERE 

FIGURE 4. APPROXIMATELY HERE 

2.4.1 Classification tests 

In terms of the twenty one tested input datasets, the differences in the resulting classifications 

were small in many cases. When we compared red and near-infrared reflectance data versus 

NDVI data to the two years compared, (2005 and 2006), both comparisons had opposite but 

inconclusive results. For the year 2005 the use of NDVI performed better than using red and 
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near-infrared reflectance data (Figure 5 A). For the 2006, the inclusion of NDVI had slightly 

lower kappa values than the use of red and near-infrared reflectance data (Table 2 and Figure 

6), but there was not enough evidence to state a difference on the use of NDVI and red and 

near-infrared reflectance data (Figure 5 Error! Reference source not found.). 

TABLE 2. APPROXIMATELY HERE 

FIGURE 5. APPROXIMATELY HERE 

TABLE 3. APPROXIMATELY HERE 

Classification of either red and near-infrared reflectance data or NDVI time series for the entire 

year (2006) of data versus data from the growing season showed also minor differences. Kappa 

values for the growing season were slightly higher for either red and near-infrared reflectance 

data or NDVI data (Table 2, Figure 5 B), but there were not significantly different from each 

other (Table 2). Classifications for 2005 were part of the same McNemar cluster (Figure 6, 

cluster 4) whereas classifications for 2006 were part of a different McNemar cluster (Figure 6, 

cluster 2). 

FIGURE 6. APPROXIMATELY HERE 

When we compared classification accuracies for different years based on the growing season 

NDVI data, all yearly classifications had kappa values over 61% but 2004. In the case of years 

2003, 2005 and 2007 classification accuracy was good (around 60% overall accuracy, 27% 

producer’s, and 33% user’s accuracy), but the best years were 2005 and 2008 (Table 2, Figure 

5 C). Comparing individual McNemar differences we found that these two classifications were 

not significantly different from each other, but there were weak differences between 2004 and 

2006 and between 2004 and 2008 (Table 2). 
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When we added 2005 growing season NDVI data to the NDVI data for 2004, classification 

accuracy was similar, but the use of 2004 plus 2006 data improved the classification. Adding 

three years, from 2004 to 2006, the classification did improve classification accuracy compared 

to the use of only two years of data (Table 2, Figure 5 D) but they were not significant 

differences (Table 2). All classifications involving multiple NDVI years were part of the same 

McNemar cluster (Figure 5, cluster 4). 

Our experiments with phenological information showed that the worst classification 

performance obtained was based on phenological information alone. However, combining 

phenological information with NDVI bands for the growing season did improve the 

classifications substantially. Classifications that included NDVI and phenology yielded five out 

of the six best classifications. Indeed the best performing out of all the 21 classifications 

conducted included all the phenology parameters from 2003 to 2008 plus the NDVI series for 

2005. However, classifications that included phenology for only one year based on a time series 

from 2003 to 2008 did not improve the performance of the classifier significantly. The 

inclusion of phenological parameters based on data from 2004 to 2006 did show a minor 

improvement. Last but not least, the inclusion of all eleven phenological parameters versus the 

use of only five parameters did result on almost identical maps (Table 2, Figure 5 E). 

2.4.2 Mapping agricultural abandonment 

In terms of the spatial patterns of the land cover classes all eight countries fully or partially 

covered by this study, exhibited agricultural abandonment (0). Four countries had around 50% 

of the land covered by forest (Estonia (52.6%), Latvia (52%), and the portions mapped of 

Russia (51.4%) and Czech Republic (49.4%)). Three countries had around 30% of the land 
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covered by forest (Belarus (36.3%), Lithuania (31.5%), and Ukraine (29%)). In contrast, 

Poland had only 21.3% of the land covered by forest. 

Regarding the area mapped covered by agriculture we found that Poland stands out with 66.8% 

, Lithuania 48.3%, Ukraine 45.5%, Czech Republic 38.6% and Belarus had 32.1%. Finally, 

Latvia and Estonia were the countries with the least agriculture (24.4% and 18.0% 

respectively). 

In the case of abandoned agriculture, Russia and Belarus had the largest shares of abandoned 

agriculture with 27.6% and 20.8% respectively. Three countries had around 14% of abandoned 

agriculture (Ukraine (16.9%), Latvia (12.4%), and Estonia (11.7%)). And three countries had 

less than 10% of the surface covered by abandoned agriculture (Lithuania (9.5%), Czech 

Republic (4.6%), and Poland (4.0%)) (0). 

2.4.3 Validation 

Based on the validation data, 51 out of 67 sampling points labeled as abandoned agriculture 

(76.12%) were indeed farmed in the late 1980s and in a successional stage by 2005/2006. Only 

16 data points out of the 67 (23.88%) were not agriculture but covered by shrubs already in the 

late 1980s. 

All conducted classifications had kappa values above 51% (Table 2, Figure 4). Using the 

McNemar test as distance metric for a hierarchical clustering, we found four significantly 

different clusters of classifications (Figure 6,Table 3). The best performing classification was in 

cluster one, which included only one classification (2005 NDVI growing season data plus 

phenology information from 2003 to 2008). Cluster two included ten classifications with 

intermediate results, subdivided into two subgroups: one with four classifications based on data 
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from 2006 and one with data from 2008 and the second subgroup had five classifications, all of 

them including phenology data (Figure 5, Figure 6). The classification with best performance 

for group two included red and near infrared 2006 data for the whole year (Kappa value equal 

to 66%)  

Cluster three, with one map, had the worst accuracies. This classification included only 

phenological parameters from 2003 to 2008 (Figure 5, Figure 6). Cluster four was composed by 

nine classifications with kappa values from 59.8 to 63.1% (Figure 5, Figure 6). Within cluster 

four, were included four classifications based on growing season of NDVI data for one year 

(years 2003, 2004, 2005, and 2007) plus all three classifications that included NDVI data for 

two and three years (2004, 2005, 2006 and the combinations among them). In comparison with 

the eight classifications included on cluster four, the classification conducted using year 2005 

of NDVI growing season had slightly better results, followed by the growing season NDVI data 

for year 2003 and the growing season NDVI data for years 2004-2006. The last two 

classifications for cluster four utilized first, red and near-infrared reflectance data for the 2005 

growing season and second, NDVI data for 2006 plus phenological based on data from 2004 

to2006 (Figure 5, Figure 6).  

2.5 Discussion 

Our results showed that it is possible to map agricultural abandonment for large areas from 

MODIS 250 m data with overall accuracies around 65%. This result is similar to the accuracy 

reported of other MODIS-based land cover classifications (Tan and others 2006). Abandoned 

agriculture was widespread in our study area, covering approximately 15% of the land. 

Compared this number to the remaining 30% of land in agriculture, we deduct that about 45% 
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of the area was farmed in the 1980s and a third of those areas were abandoned. Our validation 

data showed that a clear majority (> 75%) of the areas mapped as abandoned were indeed 

actively farmed during the 1980s, highlighting how rapid the abandonment process was in the 

first two decades after the breakdown of the USSR. 

Our results are in close agreement with more localized studies that have used Landsat images 

or other data sources to map abandoned agriculture. In Russia, the reported declines of arable 

land reached 20% due to the transition to the market economy (Ioffe and Nefedova 2004). Of 

the 127 million hectares of farmland in the early 1980s, 20 to 30 million were no longer used 

by 2000s (Franks and Davydova 2005; Ioffe, Nefedova, Zaslavsky 2004; Ioffe 2005). 

Similarly, the Landsat based classifications of abandonment covering 5% of our study area had 

37.5 % agriculture, 33.4% forest, and 18% abandonment respectively (compared to 30% 

agriculture, 34% forest, 15% abandoned agriculture, and 21% other land covers that we found 

for the entire MODIS tile). 

We conducted numerous tests to identify the optimal input data for mapping abandoned lands 

and these tests provided interesting results. The use of near-infrared and red reflectance data 

instead of NDVI data did not make a significant difference for the final classification accuracy. 

Reflectance bands were slightly better than NDVI, but this finding was not statistically 

significant according to the McNemar tests. In other words NDVI captured the information 

necessary to classify abandoned farmland as well as the near-infrared and red reflectance data. 

Since there was no significant difference on the maps obtained from NDVI and near-infrared 

and red reflectance data, we recommend the use of NDVI bands to conduct classifications on 

land abandonment, reducing the data volume by 50%. 
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We also did not find a clear best specific year to map agricultural abandonment, nor a clear 

pattern across the six individual years from 2003 to 2008. The early years (2003-2004) had 

lower accuracies, but that may be due to the sources used for training and validation. The fact 

that there was not clear best year to map agricultural abandonment was encouraging. Ultimately 

we recommend the use of the year with the best data that corresponds more closely to the dates 

of the training and validation datasets. In our case the best year was 2005. 

The use of data for all year instead of only data from the growing season did not make a 

significant difference in our results. All-year data had better overall accuracies than only 

growing season, but this finding was not statistically significant according to the McNemar test. 

We recommend the use of growing season bands to conduct classifications on land 

abandonment reducing the data volume to 22 bands for a growing season instead of the 46 of 

the whole year. 

The inclusion of a second year of MODIS data did improve classification accuracies, and it did 

matter if the two years were contiguous. We recommend the inclusion of at least two years of 

NDVI data around the validation and training data to conduct classifications on land 

abandonment. If only two years are included, we recommend to have a separation of a year 

around the validation and training data (in our case 2004, and 2006) 

The use of phenology parameters alone did not provided a good basis for a classification (our 

worst classification resulted from using only phenology) but coupled with NDVI growing 

season data, the phenology metrics resulted in our best classification (the best map produced 

includes growing season for 2005 and phenology metrics). We thus recommend the inclusion 

of phenology when mapping agricultural land abandonment. Only five phenological parameters 

captured the information necessary to classify abandoned farmland as well as the eleven 
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phenology parameter data. Classifications resulting from both phenology datasets were 

identical. Since there was no significant difference on the maps obtained from eleven and five 

parameter datasets, we recommend the use of only six parameters (End of the season, start of 

the season, base level, maximum level, length of the season and middle of the season) coupled 

with NDVI data to conduct classifications on land abandonment, reducing the data volume by 

40%. 

The limited number of statistically significant different classifications highlights the importance 

of including McNemar test when comparing multiple maps. Hierarchical cluster dendrograms 

offer an easy way to visualize multiple McNemar comparisons, which facilitate the analysis 

and selection of classifications to be used for other purposes. 

In terms of the patterns of abandoned agriculture, our mapped area covered eight countries 

situated in Eastern Europe. Lithuania, Latvia, Estonia and Belarus were completely mapped 

and more than 75% of Poland was mapped, making possible to compare them. In the case of 

Poland, it was clear that abandonment was rare after the breakdown of the USSR. Current 

abandoned agriculture areas correspond mainly with Natural Protected Areas in the north of the 

country and a shifting in the economical activities from agriculture to industry in the south of 

the country. In the case of Latvia and Estonia abandonment agriculture was widespread, 

covering in 2005 about 39% of what was agriculture in the 1980s. Given similar historical 

processes for all three Baltic countries, it was somewhat surprising that Lithuania had less 

abandoned agriculture than Latvia and Estonia (only 16% of what was formerly agriculture was 

abandoned agriculture in 2005). However, both Latvia and Estonia had more forest than 

Lithuania. The economic growth is different among the three countries; Lithuania had one of 

the fastest growing economies of the European Union, compared with Latvia which is one of 
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the poorest economies of the European Union. Both Latvia and Estonia have been hit 

particularly by recent economic crises that started in 2008-2009. Those economical differences 

apparently were reflected on land cover and resulted in less abandoned agriculture in Lithuania 

compared to Latvia and Estonia. In the case of Belarus, abandoned areas reached also more 

than 39% of the areas that were agriculture back in the 1980s. However Belarus’ economy is 

still state controlled, industrial production plunged in early 1980s because of decreases in 

imported inputs, in investment, and in demand for exports from traditional trading partners. On 

the other side, the mapped area of Russia showed widespread agricultural abandonment. More 

than 75% of the areas who were used for agriculture are now abandoned.  

Our findings confirmed that land abandonment in Eastern Europe is widespread and current 

work will extend the classification to map all of Eastern Europe, but abandonment is not unique 

to Eastern Europe. It is necessary to make worldwide studies regarding land abandonment 

spatial configuration and its environmental, social and food production implications. Land 

abandonment can be a consequence of the socio-economic situation at different levels as well 

as the exposure to hazards, technology and the loss of nutrients in the soil. The reasons for land 

abandonment can range from changes in land tenure to the simple “recovery” that a landowner 

decides to give to a field. At the individual scale land abandonment can be due to the 

introduction of new technologies, changes in agricultural practices, new land tenure policies, 

and/or economic change. The process of land abandonment can be abrupt, in which case the 

land is no longer used, or gradual, when grazing replaces the production of crops. After 

abandonment, different successional pathways can occur depending on prior land uses, and the 

environmental conditions of the land. 
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Reductions in agricultural production can be viewed in a negative sense, mainly because of the 

large number of people who leave the land abandoned and moved to the cities, but it also can 

be viewed as an opportunity for conservation and environmental protection(Young and others 

2005). Given the strong ramifications of agricultural abandonment on the environment, 

economy and societies mapping and monitoring should be a top research priority. Current 

efforts are promising, but unfortunately it still hard to conduct accurate mapping on land 

abandonment using coarse resolution. 

We identified approaches here to map land abandonment and proposed methods that facilitate 

the mapping of abandoned agriculture at broad scales. 
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2.8 Tables 

Table 1. Accuracies of the classification with the best kappa errors (NDVI for 2005, plus phenology data for 2003-2008). *TAP:True Area Proportion, PA: Producer's accuracy, 
UA: User's accuracy, O: Error of omission, C: Error of commission. 
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Table 2. Accuracy assessment for the 21 MODIS classifications. Results are organized by McNemar significance test. There is no significant difference within each hierarchical 
cluster (McNemar). 
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2.9 Figures 

 

Figure 1. Study area, light gray box represents the classified area, dark gray areas represent the training Landsat-based 
classifications and the intermediate gray areas represent the validation Landsat scenes. The map is displayed in Sinusoidal 
projection 
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Figure 2. MODIS NBAR Band 2 Quality data tile h19-v03. 
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Figure 3. Land cover class distribution of the best classification resulted from the growing season NDVI data for 2005 plus all the phenological parameters from 2003 to 2008. 
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Figure 4. Best classification based on growing season data for 2005 and all phenological parameters from 2003 to 2008. 
Yellow areas represent agriculture, green areas represent forest, brown areas represent abandoned agriculture and grey areas 
represent other classes
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Figure 5. Classification accuracies (Kappa values) for the classifications stemming from different datasets. A. NDVI vs. Red Near-infrared. B. Growing season vs. all year. C. 
Individual years. D. Multiple years, E. Including phenological data. 
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Figure 6. Hierarchical clustering using McNemar test as distance metric. Gray lines divide McNemar Cluster Group 
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3.1 Abstract 

Land use and land cover changed rapidly in Central and Eastern Europe after the collapse of the 

USSR in the early 1990s. Prior case studies reported widespread land abandonment, but 

abandonment rates differed widely among studies. A comprehensive and consistent assessment 

of abandoned agricultural land across Eastern Europe is lacking. Our goal here was to map 

abandoned agricultural land across Central and Eastern Europe; including European Russia, 

and to compare abandonment rates among countries and among agro-ecological zones because 

both national policies and environmental constraints can affect abandonment. We conducted a 

supervised classification using a Support Vector Machine as our classifier, 250-m resolution 

2004 – ’06 MODIS NDVI data, and TIMESAT phenology indices. Training and validation data 

were derived from Landsat classifications from the late 1980s and the mid 2000s. Abandoned 

agricultural land was widespread across Central and Eastern Europe, representing 24.4% of our 

study area, compared to 21.8% agricultural land. Assuming that all areas mapped as either 

agricultural land or abandoned agriculture in the mid-2000s, were farmed in Soviet times, this 

translates into an abandonment rate of 52.9%. Countries differed strongly in terms of their 

abandonment rates, but differences among agro-climatic regions were less pronounced. This 

suggests that agricultural abandonment after the collapse of the USSR was more closely 

associated with socioeconomic factors than with biophysical conditions. Our results also 

suggest that agricultural abandonment can be very rapid, which may provide opportunities to 

improve water quality; nutrient cycles, biodiversity, and carbon sequestration, but also 

threatens livelihoods, socioeconomic conditions, and rural cultures. 



70 

 

Keywords: abandonment, agricultural abandonment, Land-cover change, Europe, 

Central Europe, Eastern Europe, Soviet Union, farmland, land use, MODIS, multi-date, 

multi-seasonal, old fields, support vector machines, SVM  



71 

 

3.2 Introduction 

Land Use and Land Cover Change (LULCC) accelerated greatly in both extent and magnitude 

over the last century, and especially so in recent decades (Ellis and others 2010; Foley and 

others 2005). The results have been declines in ecosystem services and biodiversity, degraded 

soils, water and air pollution, and LULCC is also partially responsible for climate change 

(DeFries, Foley, Asner 2004). At this point, land use and the utilization of ecosystem services 

in general may have reached a point where the resulting environmental changes are 

compromising ecosystems’ ability to support human needs in the future (Millennium 

Ecosystem Assessment 2005). 

Among the different land uses, agriculture has transformed the largest portion of the Earth’s 

terrestrial area. As of 2007, up to 38% of the Earth’s land cover has been dedicated to 

agricultural use (Food and Agriculture Organization of the United Nations 2010). Agriculture 

intensified greatly during the 20th century, and expanded into new areas as well (Foley and 

others 2005). However, agricultural also contracted, primarily on marginal lands that are not 

suitable for modern agriculture (Beddow and others 2010; Lambin and Geist 2006; Rudel and 

others 2005), with concomitant increases in forested area (Kauppi and others 2006). 

The problem is that in-depth studies of LULCC patterns and processes have typically focused 

on land use intensification, such as tropical deforestation, dryland degradation, agricultural 

intensification, and urbanization (Lambin and Geist 2006). The opposite process of agricultural 

abandonment and subsequent forest regrowth has been studied much less (Ramankutty and 

others 2007). This is unfortunate, because agricultural land abandonment has strong effects on 

soil stability (Tasser, Tappeiner, Cernusca 2005), carbon sequestration (Ramankutty and others 

2007; Vuichard and others 2008), water quality (Scanlon and others 2007), nutrient cycles 
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(Stoate and others 2001), and biodiversity (MacDonald and others 2000; Sirami and others 

2008). 

Agricultural abandonment is caused and mediated by both, socioeconomic factors, and 

biophysical conditions (Lambin and others 2001). Among the socioeconomic factors, 

institutions play a particularly critical role, and so do government policies that affect access to 

land, labor, capital, technology, and access to information, which all have direct effects on land 

use change. On the other side, biophysical conditions define the natural capacity of the land, 

and changing biophysical conditions may predispose areas for land use change (Turner and 

others 2007). Agricultural land use is thus related to the productive capacity of the land, which 

is set by climate, soil, landforms, by technology, markets, and land management (Fischer and 

others 2002). The challenge is to disentangle which of these factors matter most in a given 

place, because agricultural land use change in general, and land abandonment in particular, is 

typically gradual, and not amenable to scientific experiments. 

A particular case was the collapse of the USSR, which caused rapid land use change in Eastern 

Europe, and especially widespread land abandonment (Beddow and others 2010; Brooks and 

Bruce 2004; Gobulev and Dronin 2004; Unwin 1997, Ioffe, Nefedova, Ilya 2006; Lerman and 

Csaki 2004) (Table 3), including, in some cases, reforestation (Taff and others 2010). Both a 

trend towards less intensive farming systems and land abandonment, have been reported, the 

latter particularly on marginal lands (Dutch National Reference Center for Agriculture and 

others 2005; Swinnen, Van Herck, Vranken 2010). However, the patterns, rate and extent of 

that agricultural decline have not yet been comprehensively studied (Lepers and others 2005). 

TABLE 3 APPROXIMATELY HERE 
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After the collapse of the USSR, the region went through radical economic and political 

reforms. In the early 1990s, the dissolution of the Soviet Union allowed countries to gain 

independence, and to transform centralized state-economies into market economies, often 

accompanied by land de-collectivization (Dekker 2006; Lerman 2001). The result was that 

most Eastern European countries reduced the land used for agriculture between 1990 and 2005 

(Food and Agriculture Organization of the United Nations 2010). There was also a sudden 

decline in agricultural output, particularly in the livestock sector, in most countries in the early 

1990s (Liefert and Swinnen 2002). 

Declines in agricultural production after the breakdown of the USSR were not uniform across 

Eastern Europe though. Different policies, cultures, and land use traditions in each country 

affected rates of abandonment. Unfortunately though, previously reported abandonment rates 

cannot be easily compared due to differences in the temporal and spatial scale among studies, 

as well as the method utilized to assess agricultural abandonment (Table 3, Prishchepov et al. 

2010b). Similarly, agricultural statistics in Russia and other Eastern European countries differ 

widely in their spatial and temporal characteristics, limiting their relevance for regional 

comparisons (Filer and Hanousek 2002; Goldewijk and Ramankutty 2004). This means that to 

date a comprehensive assessment of abandoned agricultural land across Eastern Europe is 

lacking, and only a small set of case studies have mapped and analyzes its pattern (Table 3). 

The main goal of this paper was thus to assess agricultural land abandonment across Central 

and Eastern Europe including the European part of Russia. Our objectives were first, to map 

abandonment from satellite data wall-to-wall across the region; and second, to compare 

abandonment rates among countries and among agro-ecological zones as a first exploration into 

potential drivers of abandonment. 
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3.3 Study Area 

Our study area encompassed thirty countries in Central and Eastern Europe and the Balkan 

Peninsula (6.4 million km2, Figure 7). Sixteen countries were entirely mapped; two countries 

were almost entirely mapped (more than 95% of their surface), for four more countries more 

than 50% of their surface was mapped, and for seven additional countries we mapped less than 

50% of their surface. This last group included Russia, for which we mapped only 18.4%, but 

this area alone corresponded to approximately half of our study area, encompassed most of 

European Russia, and eleven of its twenty largest cities, including the capital, Moscow, and 

Saint Petersburg. 

TABLE 4 APPROXIMATELY HERE 

FIGURE 7 APPROXIMATELY HERE 

The study area exhibits strong climate gradients from north to south (Figure 8). The north is 

characterized by low temperatures (a mean temperature around 6 °C) and yearly precipitations 

around 600 mm. The south has mean temperatures around 16 °C and low precipitation (around 

100 mm per year). However, the study area also included areas with high precipitation (for 

instance Slovenia with more than 1,300 mm) and dry areas (The three countries with the lowest 

annual precipitation are Turkmenistan, Uzbekistan and Kazakhstan with less than 130 mm) 

(Figure 8). 

FIGURE 8 APPROXIMATELY HERE 

The study area does not have many topographical features, containing only four mountainous 

chains: the Ural Mountains in the northeast, the Carpathians in the west, the Dinaric Alps in the 

southwest, and the Caucasus in the southeast. Ecologically, the study area is diverse, and 

contains more than 40 biomes. The north is covered by boreal forest (mainly Spruce and Fir, 
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but pine and larch can occur as well). Mixed forest dominate the northwest and southwest 

(Dominated by birch, aspen and gray alder), but the Dinaric Alps are covered by deciduous 

forest (mainly oak, lime, ash, maple, and elm). The interface between boreal and mixed forest 

has some large patches of pine forest (Scotch pine dominated, usually mixed with spruce, birch, 

and aspen). Montane forest is present in the Urals, and mixed forest in the Carpathians and the 

Caucasus. The southeast of the study area is arid, and the Caspian depression is covered mainly 

by grasslands and xeric scrublands. 

Agriculture is most common in the western and southwestern portions of our study area. In 

terms of the land’s suitability for agriculture, as assessed by the UN Food and Agriculture 

Organization (FAO) (Fischer and others 2002), the majority of the study area has constraints 

for agriculture (62.3%), only 23.3% of the area has very few or no constraints, and 13.8% is 

undefined. 

3.4 Materials and methods 

3.4.1 Input data 

Satellite image classifications were based on two Terra and Aqua NASA Global MODIS 

Vegetation Indices data products: MODIS VI 16-Day L3 Global Collection 5.0 (MOD13Q1 

and MYD13Q1) from January 1st, 2003 to December 31st, 2009 (231.65 m pixel size, 5.36 

hectares), tiles h19/v3, h19/v4, h20/v3, h20/v4, h21/v3, and h21/v4. Data was retrieved from 

the Land Processes Distributed Active Archive Center (LP DAAC) on August 7th, 2010 

(http://lpdaac.usgs.gov). The combined MODIS VI dataset included weekly reflectance, NDVI, 

and quality data. 
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To summarize abandonment rates by country and by administrative regions, we downloaded 

the international administrative boundaries and the first level of administrative subdivisions 

from Natural Earth (Free vector and raster map data @ naturalearthdata.com) on September 

19th, 2010, and complemented the data with ESRI maps (Environmental Research Systems 

Institute (ESRI) 2008). 

To characterize the suitability of the land for agriculture, we used the Global Agro-ecological 

Assessment for Agriculture for the year 2000 (GAEZ) (Fischer and others 2002). The variables 

included in the assessment were climate, soil, and terrain slope constraints. The GAEZ 

provided a ranked measure of the severity of the constraints that agriculture faces in a given 

location, and we used this measure to examine if environmental constraints affected 

abandonment rates. 

3.4.2 Training data 

Training data for the MODIS image classification was derived via an automated selection of 

representative polygons of each land cover class from Landsat image classifications, obtained 

from six different land abandonment studies (Figure 7). The automated selection method was 

developed in chapter I. Landsat classifications were located in Poland, Latvia, Lithuania, 

Belarus and Russia (Prishchepov and others in preparation), Romania (Müller and others 2009), 

Ukraine (Baumann and others in press), Chernobyl region (Hostert and others in preparation), 

and the border region of Poland, Slovakia and Ukraine (Kuemmerle and others 2007; 

Kuemmerle and others 2008).  
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We recoded all the classifications to one of four classes: Agriculture (including pastures), 

Forest (coniferous, mixed and deciduous forest), Abandoned agricultural land, and Other 

classes (including water, urban areas, sand, and wetlands). 

To obtain training pixels, we used a stratified sampling design and applied it to a grid of 

MODIS pixels with 2500 m distance between pixels of the same class to minimize spatial 

autocorrelation. Using the Landsat classifications we randomly selected 1000 MODIS pixels 

within the grid for each of the four land cover classes with the constraint that at least 90% of 

the MODIS pixel had to be within the same Landsat land cover class (Figure 7). 

3.4.3 Classification algorithm 

In chapter I, we showed that Support Vector Machines (SVM) applied to growing season 

NDVI data for multiple years plus phenology information captured in six parameters provided 

the highest classification accuracy when mapping abandoned land from MODIS data. We used 

the results from chapter I and classified the MODIS data for our larger study area here 

accordingly. Our classification used the MODIS NDVI data from 2004, 2005, and 2006, plus 

phenology data; parameterized with 2003-2009 MODIS NDVI data. The entire satellite dataset 

was classified with imageSVM v2.0.1 (Janz and others 2007), an IDL tool for SVM 

classification for remote sensing based on LIBSVM (Chang and Lin 2001). 

To obtain phenology data, we analyzed the MODIS NDVI time-series from 2003-2009 using 

the Savitsky-Golay algorithm included in the program TIMESAT 2.3 (Jönsson and Eklundh 

2004). Within TIMESAT, we chose the following options: a) spikes were defined as values in 

the time-series that were larger than two standard deviations; b) small changes were interpreted 

as a change in the phenological cycle (this resulted in the expected six yearly cycles for the 
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entire time-series); c) curves were fitted with three fitting steps with window sizes of 5, 6, and 

7; and d) normal strength of adaptation. The phenology indices that we calculated were: End of 

the season, start of the season, base level, maximum level, length of the season, and middle of 

the season (resulting in 42 metrics total, six for each year). The six phenology metrics for the 

seven years were calculated independently for each of the six MODIS tiles and mosaicked for 

the classification. 

We conducted the classification for 108 bands, including the growing season NDVI data for the 

years 2004, 2005, and 2006 (66 bands in total, 22 for each year), and the six phenology metrics 

for seven years. We defined the growing season for MODIS NDVI data as starting on day 129 

(May 9th, or May 8th on leap years) and ending on day 297 (October 24th, or October 23th in leap 

years) based on initial TIMESAT results. We rescaled each band to values from 0 to 1 prior to 

the SVM classification. 

Following the general recommendations for training SVM for remote sensing (Foody 2009a), 

the total number of training points was 4,000. To parameterize the SVM, we used a Maximum 

probability approach with an automatic parameterization. Our resultant Gaussian kernel (g) 

value was equal to 0.1 and a regularization parameter (C) value equal to 25.6. The performance 

measure was the Kappa value estimated via a three-fold cross validation. We used a “one-

against-one” approach for the multi-class SVM to avoid unbalanced classifications reported for 

the “one-against-all” approach (Melgani and Bruzzone 2004). 

3.4.4 Validation 

The classification was evaluated with independently collected validation data obtained from 77 

Landsat images recorded for eighteen random Landsat footprints within the study area (Figure 
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7). Four Landsat images for each footprint were obtained from GLOVIS 

(http://glovis.usgs.gov): two for summer and fall images, each centered on the years of 1990 

and 2005 (we used only cloud-free imagery; and images within one year of either 1990 or 2005 

were included when necessary. Five Landsat 7 SLC-off within two months of these target dates 

were included because Landsat 5 data was unavailable for the selected date). Five Landsat 

footprints overlapped one of the agricultural abandonment Landsat classifications (Prishchepov 

and others in preparation). 

The validation dataset was collected using a stratified random sample. To select pixels for 

validation, a new grid of MODIS pixels with 2500 m distance between pixels was built, to 

minimize problems with spatial autocorrelation. Using a preliminary MODIS map, classified 

with SVM for the NDVI bands for the growing season of 2005 season (22 dates) for 

stratification, 120 MODIS pixels for each of the four land cover classes were selected. A 

second layer of stratification was added to assure that 20 sampling points for each class were 

selected per MODIS tile. The resultant MODIS pixels were interpreted visually using the two 

Landsat images, and, where available, high-resolution QuickBird images in GoogleEarthTM. 

The dominant land cover class in 2005 was recorded for each MODIS pixel. Additionally, we 

evaluated the accuracy of each of the six MODIS tiles separately. 

A second accuracy assessment was performed using 396 validation pixels from the assessment 

conducted in Chapter 1 for the only tile analyzed in that chapter (h19v03). This independent 

analysis had the goal to determine the performance of our classification for all six MODIS tiles 

relatively to the classification of one tile in Chapter 1. We calculated confusion matrices for the 

entire study area and for each MODIS tile, and adjusted the area estimates based on the user’s 

and producer’s accuracy for each class (Card 1982; Foody 2009b; Stehman 1996).  However, 
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these area adjustments could only be conducted for the study area as a whole, and not for each 

country and agroecological zone, because we lacked country-specific accuracy assessments. 

3.4.5 Patterns of abandoned agricultural land  

To summarize the amount of land abandoned in Central and Eastern Europe, we calculated a) 

the percentage of abandoned agricultural land compared to all land, b) the percentage of 

abandoned agricultural land compared to the sum of agriculture and abandoned agricultural 

land in 2005. Assuming that all areas classified as abandoned had been previously farmed, this 

second measure provides an estimate of the rate of abandonment. The two measures were 

calculated for each of the countries in our study area and for each agro-climatic constraint class 

(Fischer and others 2002). 

Country-level summaries are valuable, but can obscure regional variability, especially in large 

countries such as Russia. This is why we also summarized land abandonment by administrative 

units (provinces). The challenge was that administrative units at the first level below the nation 

can vary greatly in size, and such scale differences can distort the results. We took account of 

the large differences in the size of the first level of administrative division by considering some 

small countries as a province. The criterion for “small countries” was that they did not have 

province-level administrative units (‘oblasts’) during Soviet times. These countries were: 

Albania, Armenia, Azerbaijan, Bosnia, Croatia, Estonia, Georgia, Kosovo, Latvia, Lithuania, 

Macedonia, Moldova, Montenegro, Serbia, Slovenia, Czech Republic, and Slovakia. 
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3.5 Results 

3.5.1 Patterns of abandoned agriculture 

For our entire study area, 21.77% ±3.35% was estimated as agriculture and pastures, 30.28% ± 

3.44% as forest, 24.41% ± 4.17% as abandonment, and 23.54% ± 3.98% as other classes 

according to our adjusted area estimates based on the observed user’s and producer’s 

accuracies. The northern and north-eastern parts of our study area had large amounts of 

abandoned agricultural land, often at the interface between forest and agriculture (Figure 9). 

The west side of the Ural Mountains, Kaliningrad region, and the northern foothills of the 

Caucasus also had abundant abandoned agricultural land. In the north and in mountainous areas 

the dominant land cover was forest. Agriculture prevailed in the plains with the exception of 

northern Ukraine and the west side of the Volga basin where forests were common. ‘Other’ 

land cover classes, which were mainly inland water, wetlands, and urban areas, were scattered 

throughout the area, and only dominating in the southeast where xeric shrubs and deserts were 

classified as well as ‘other’. 

FIGURE 9. APPROXIMATELY HERE 

The area mapped as abandoned was larger than the area in active, and this is an important 

comparison, because it suggests that the abandonment rate was 52.9% in 2005, if we assume 

that all land mapped as agriculture and abandoned was farmed previously. However, there were 

some interesting regional variations. 

Nine countries, comprising 67.6% of the study area, contained 92.3% of the mapped 

agricultural abandonment, and all had abandonment rates above 20% (unadjusted area 

estimates, Table 5), assuming that all land mapped as agriculture and abandoned was farmed 
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previously. Six out of those nine countries (Belarus, Russia, Lithuania, Ukraine, Moldova and 

Latvia) had abandonment rates of 30% of more (Table 5). Countries with a particularly large 

share of abandoned agricultural land were Belarus (23%) and Ukraine (23%) (Table 5). 

Agricultural abandonment also was common in two other countries: The portion of Russia in 

our study area, and Lithuania with 21 and 20% of the land area respectively. In Russia, 

agricultural abandonment rate reached 43%. Two Baltic countries, Latvia and Lithuania also 

had high proportions of abandoned land 15% in Latvia and 20% in Lithuania, representing 

abandonment rates of 43% and 34% respectively. Moldova and Latvia had also large shares of 

areas classified as abandoned agricultural land with 17% and 15% respectively, and 

abandonment rates of 30% and 43% respectively. Three other countries showed shares of 

abandoned agricultural land above 10% (Czech Republic, Poland, and Kosovo). In contrast, 

however, twenty one countries, occupying 32.4% of the study area, presented only 8% of less 

of their area classified as abandoned agriculture had and abandonment rates equal to or lower 

than 20% (Table 5). 

TABLE 5 APPROXIMATELY HERE 

FIGURE 10. APPROXIMATELY HERE 

Summarizing our classifications by administrative regions showed that agricultural 

abandonment was widespread but some regions showed particularly high agricultural 

abandonment rates; especially in the western part of European Russia, the northern Ukraine, 

eastern Belarus, central Romania, northern Bulgaria, and the countries of Lithuania, Latvia, and 

Moldova (Figure 11). 

Within Russia, abandonment was concentrated in the provinces of Tula, Oryol, Kaluga, 

Bryansk, and Smolensk, located along the border with Ukraine and Belarus and south-
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southwest from Moscow. Three additional regions within Russia presented large shares of 

abandonment: The first was Kaliningrad province, a Russian enclave between Poland and 

Lithuania. The second was in the east side of the Ural Mountains (Sverdlovsk province) and the 

third was the province of Karachi, in the Caucasus. In Ukraine the provinces with largest 

amount of abandonment were in the northern areas of the country (especially Ternopil and 

Khmelnytskyi provinces). The six central provinces of Romania had also high abandonment 

rates with more than 15% of each region classified as abandoned agricultural land (Alba, 

Brasov, Covasna, Harghita, Mures, and Sibiu). 

FIGURE 11 APPROXIMATELY HERE 

When we summarized agricultural abandonment rates by agro ecological constraints in each 

country, we found three different patterns (Table 6). First, twenty countries had similar 

abandonment rates along the agro-ecological gradient within each country, which means no 

trend towards or against abandonment in areas more suitable for agriculture. Second, Lithuania, 

Moldova, Romania, Kazakhstan and Armenia showed surprisingly a trend towards higher 

agricultural abandonment rates in areas that were more suitable for agriculture. And third, 

Georgia, Serbia and Macedonia showed higher abandonment rates in not-suitable areas, and 

Kosovo that abandoned agricultural land only in not-suitable areas. 

TABLE 6 APPROXIMATELY HERE 

3.5.2 Accuracy  

The accuracy assessment of our MODIS classification found an overall area-adjusted Kappa 

accuracy of 46% ±4.3%, derived from a contingency table with 480 sampling points (Table 7 

and Table 8). Forested areas had high user’s accuracies (80.9% ±7.3%) and producer’s 
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accuracies (62%±6%), whereas abandoned agriculture class had user’s accuracies of 41% ± 

10% and producer’s accuracies of 25%±6%. The map proportions and the estimated 

proportions for all classes showed differences ranging between 7% and 9% (Table 8).  

TABLE 7 APPROXIMATELY HERE 

TABLE 8 APPROXIMATELY HERE 

For MODIS tile h19v03, located in the northwest side of the study area, we found an overall 

accuracy of 60.2% ±4.7%, with user’s accuracies for agricultural abandonment equal to 

28.87%±9%, agriculture 78.7% ±7.3%, forest 66.4% ±8.9%, and other 33.9% ± 11.6% and 

producer’s accuracies for agricultural abandonment of 30.4%±9%, agriculture 54.8%±5.9%, 

forest 69.7%±6.7% and other classes 83.5% ± 7.6% when we estimated the classification 

accuracy with the independent validation dataset collected for Chapter 1. This means that our 

classification for all six tiles had slightly lower accuracies for this northwestern tile than the 

previous classification of this tile alone. Regarding the other tiles, we found that the best 

performance to map agricultural abandonment was in tile h20v03 in the north of the study area, 

followed by h19v04, h19v03, h20v04, h21v03 and h21v04, which means the northwest side of 

the study area had higher accuracies than the southeast. Visual assessments of 1990s Landsat 

images showed that up to 62% of the validation points labeled as agricultural abandonment 

were areas that had agriculture in the late 1990s and were abandoned in the mid 2000s; the 

remaining 38% had some successional stage in late 1990s and remained as scrublands by the 

mid 2000s. 
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3.6 Discussion 

The key findings from our study are that abandoned agricultural land covered about 24% of our 

study area in 2005, seven countries contained the majority of the abandoned agricultural land in 

the region (Estonia, Latvia, Belarus, Russia, Lithuania, Montenegro and Ukraine), and there 

was no a clear relationship between agro-climatic conditions and agricultural abandonment 

rates in twenty out of the thirty countries that we studied. This suggested that agricultural 

abandonment was driven mainly by socioeconomic factors rather than by biophysical 

conditions. 

When comparing the countries, we found five distinctive groups. The first was represented by 

Russia, which had a large amount of abandoned agricultural land, and moderated shares of 

agriculture, forest and ‘other ‘classes. Second, Belarus and Lithuania, were dominated by 

agriculture and forest, had low proportion of ‘other’ classes and a large proportion of 

abandoned agricultural land. Third, Ukraine and Moldova had large proportions of agriculture, 

low proportion of forest and ‘other’ classes, and a large proportion of abandoned agricultural 

land. Fourth, Latvia was dominated by forest and had a large proportion of abandonment. And 

fifth, Poland, Czech Republic, Kosovo and Armenia, were dominated by agriculture and had 

only moderate amounts of abandonment. Extreme cases when a country had large proportion of 

forest or large proportion of other classes showed almost no abandonment. 

The accuracy assessment results were consistent with Chapter I and the nature of the data 

source, mainly due to mixed pixels confusion (active croplands and ‘other’ classes were 

confused with agricultural abandonment). Despite the fact that we found relatively low user’s 

and producer’s accuracies, we suggest that the general pattern of abandonment and analysis 

provided here are acceptable, especially when summarizing our results by countries or 
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administrative units. Our proportion estimate for agricultural abandonment, was about 

24.4%±4.2, but our map showed only 15.1% mapped agricultural abandonment (the difference 

was due to the area adjustment). This suggests that our map represented a conservative estimate 

of the amount of abandoned agricultural land in the region. Our results by country were in close 

agreement with more localized studies that use Landsat imagery to map abandoned agriculture 

(Table 3). For instance, in Estonia our map reported an abandonment rate of 29% and Peterson 

and Aunap (1998) found an abandonment rate of 32%. In southern Romania abandonment rates 

were 21% (Kuemmerle and others 2009) and our map predicts an abandonment rate of 18%. In 

Albania, our map reports an abandonment rate of 13% and Müller and Sikor (2006) report a 

rate of 27% for the southeast of the country; for the mapped portion of Russia our results 

showed abandonment rate of 43% while and Prischepov and others (in preparation) reported an 

abandonment rate of 37%. In Poland abandonment rates were 13.9% (Kuemmerle and others 

2008) in the Carpathians and about 15% in the northeast of the country (Prischepov and others 

in preparation) while our map reports an agricultural abandonment rate of 17%. The remaining 

differences between these Landsat classifications and our classification are well within the 

confidence interval of our mapping, and could also be caused by the fact that the Landsat 

classifications only cover portions of the countries being compared. Additionally, the 

classification for the area mapped with the tile h19v03 (Northwest of the study area) yield an 

accuracy equivalent to the classifications conducted in the chapter 1 (accuracies around 60%). 

This is encouraging because it means that we were successful in mapping a very complex land 

cover class (i.e., abandoned agricultural land) over a large and diverse area. 

Another factor to consider when interpreting our accuracy assessment results is that coarse 

spatial resolution data are limited by the spatial configuration and spectral features of the class 
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to be mapped. Gridding artifacts and resolution discrepancies limit accurate mapping, 

especially at coarse resolutions (Tan and others 2006). The relation between the object to be 

mapped and the pixel size as well as the thematic resolution also determined the accuracy 

(Latifovic and Olthof 2004). The achieved accuracies may be due also to the wide variety of 

class-patch sizes (Woodcock and Strahler 1987). If the average size of parcels varies widely, 

there can be biases underestimating or overestimating areas (Ozdogan and Woodcock 2006). 

Another source of error might have been that we trained the classifier with data from six 

different case studies across Eastern Europe, all with high but different accuracies, and not all 

of them have the same definition of agricultural abandonment. Additionally, our class of 

interest (abandoned agricultural land) is often a mixture of fallow land, shrub, and early-

successional forest lands. However, the method developed here demonstrated that it is possible 

to map agricultural land abandonment using MODIS data using Landsat thematic maps given 

the nature of the classifier employed. 

Irrespective of the accuracy of our classification, it is clear that abandoned agricultural land was 

very widespread throughout our study area. Market disruption and limited access to capital 

resulted from a lack of governance on the first years after the breakdown of the Soviet Union 

(Estrin and Wright 1999). Competing on global markets required the use of new technologies 

to improve yields but the scarcity of equipment and technical support made yield increases 

challenging (Liefert and Swinnen 2002), especially for small farmers without formal education 

(Dutch National Reference Center for Agriculture and others 2005).  

By 2005 the different countries in our study area had diverged considerably along the path of 

market reforms from a common institutional and organizational heritage and the so-called 

Soviet model of agriculture. Land ownership in particular differed greatly among countries, and 
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land ownership has strong effects on farming efficiency and productivity (Lerman and Csaki 

2004), and hence be an underlying cause for the observed pattern of abandoned agricultural 

land in the study area. 

The two most relevant aspects of land ownership were the privatization of land in the law and 

disposition of the socialized land after the collapse of the Soviet Union (Dijk 2003; Lerman 

2001). Once the laws had changed, there were two main procedures to dispose the socialized 

land: restitution to former owners and distribution to workers. However some also followed a 

mixed strategy: land was restituted to former owners and also distributed without payment to 

agricultural workers in the interest of social equity (Csaki and others 2003; Lerman 2001). 

The changes in land ownership were accompanied by a near elimination of agricultural 

subsidies in the former Soviet Union, price liberalization, sudden competition on the global 

markets in the newly independent countries, change of governments, and change of institutions 

(Liefert and Swinnen 2002). Furthermore, several countries (e.g., Poland, Lithuania, Latvia, 

and Estonia) were integrated to the European Union after 2000 and gained access to EU 

agricultural subsidies (Dutch National Reference Center for Agriculture and others 2005).  

Both, land use transition theory (DeFries, Foley, Asner 2004; Foley and others 2005) and forest 

transition theory (MacDonald and others 2000; Rudel and others 2005) aim to explain forest 

regrowth after initial deforestation, which is a fairly common pattern as countries develop. 

Three alternative explanations for this so-called ‘forest transition’ have been proposed. First, 

expansion in the forest extent is attributed to shifts in market forces due to the urbanization of 

societies and the globalization of forest products markets (Market-based explanation) (Rudel 

and others 2005). Second, political decisions to retain or regain ecosystem services that the 

forest provides may lead countries to promote forest regrowth (Ecosystem service explanation) 
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(Rudel 2008; Satake and Rudel 2007). And third, arid conditions or deforestation may cause 

forest product scarcity, leading to a response of planting trees (Forest scarcity explanation) 

(Rudel 2008; Satake and Rudel 2007). Forests are indeed regrowing on many if not all of the 

abandoned agricultural lands that we mapped. However, there were no political decisions based 

on ecosystem services to promoted forest, and neither did forest scarcity cause planting of 

forests. The southeastern part of the study area was dominated by arid conditions but 

abandonment rates were lower than in the northern more humid areas. The reason for the 

increase in forest cover was instead a shift in market forces, but this shift was not due to 

urbanization but rather due to globalization and triggered by social change rather than national 

decisions promoting reforestation. Forest transition theory thus needs to be refined to apply to 

post-Soviet Eastern European. 

Agricultural land abandonment has many negative consequences for many people but there 

were positive aspects too (Benayas and others 2007; Höchtl, Lehringer, Konold 2005). Some of 

the negative aspects of agricultural land abandonment were that land was not in production, 

abandonment results in a loss of agricultural landscapes, and potentially changes and declines 

in local biodiversity. Abandoned agricultural lands can be prone to fires because of fuel build 

up, and as rural populations loose work, they may cause problems in nearby cities that lack 

employments for the people. 

Positive aspects of agricultural abandonment are though generally improved ecosystem 

services, including higher carbon sequestration, a significant reduction of erosion, as well as the 

preservation and restoration of the soils. Wildlife populations may recover since agricultural 

abandonment increases habitat connectivity (Sirami and others 2008), and lower fertilizer use 

can cause a reduction of eutrophication levels (Cramer, Hobbs, Standish 2008). And ultimately, 
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when agricultural land is abandoned there is an opportunity to restore historical vegetation 

states (Bellemare, Motzkin, Foster 2002). Analysis like the one presented here can provide the 

information necessary to seize such opportunities. 
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3.9 Tables 

Table 3. Prior studies on post-Soviet agricultural land abandonment in Central and Eastern Europe 

 
Abandonment 
Rate(%) 

Classification 
Method 

Data 
Time 
span 

Reference 

Albania (Southeast)  27 
Visual 
interpretation 

Landsat TM and 
ASTER(30 m) 

1988‐
2003 

(Müller and 
Munroe 2008) 

Czech Republic  12 

Principal 
Component 
Analysis plus 
Maximum 
Likelihood 

Landsat 
TM/ETM+ (30 m) 

1991‐
2001 

(Václavík and 
Rogan 2009) 

Estonia  32 
Principal 
Component 
Analysis 

Landsat MSS (30 
m) 

1990‐
1993 

(Peterson and 
Aunap 1998) 

Kazakhstan 
“widespread 

agriculture de‐
intensification” 

3 statistical test for 
Growing degree 
days and NDVI 

AVHRR (1 Km) 
1985‐
1999 

(de Beurs and 
Henebry 2004) 

Latvia, Vidzeme Uplands  50 
Visual 
interpretation 

Ortho‐photos, 
and official 
statistical 
surveys (<30cm) 

1990‐
2000 

(Nikodemus 
and others 
2005) 

Romania (Southern)  21 
ISODATA plus 
Maximum 
Likelihood 

Landsat 
TM/ETM+(30 m) 

1990‐
2005 

(Kuemmerle 
and others 
2009) 

Ukraine (Western)  56    
Landsat 
TM/ETM+(30 m) 

1987‐
2008 

(Baumann and 
others in press) 

Ukraine, Chernobyl  64.5 and 63 
Support Vector 
Machines 

Landsat 
TM/ETM+(30 m) 

 1986‐
1992 
and 
1992‐
1999 

(Hostert and 
others in 
preparation) 

Carpathian border region 
of: 
Poland 
Slovakia 
Ukraine 

13.9 
20.7 
13.3 

Support Vector 
Machines 

Landsat 
TM/ETM+(30 m) 

1988‐
2000 

(Kuemmerle 
and others 
2008) 

NE and NW Belarus 
SE Latvia 
East Lithuania 
NE Poland 
Russia, 6 provinces 

12 
42 
28 
15 
37 

Support Vector 
Machines 

Landsat 
TM/ETM+(30 m) 

1989‐
2000 

(Prischepov and 
others in 
preparation) 
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Table 4 Countries included 

Name 
% of the 
Country 

% of the area 
mapped 

Ukraine  100.0  9.3 
Romania  100.0  3.7 
Belarus  100.0  3.2 
Bulgaria  100.0  1.7 
Hungary  100.0  1.4 
Serbia  100.0  1.2 
Georgia  100.0  1.1 
Lithuania  100.0  1.0 
Latvia  100.0  1.0 
Bosnia and Herzegovina  100.0  0.8 
Slovakia  100.0  0.8 
Estonia  100.0  0.7 
Moldova  100.0  0.5 
Macedonia  100.0  0.4 
Montenegro  100.0  0.2 
Kosovo  100.0  0.2 
Albania  95.9  0.4 
Croatia  95.0  0.8 
Armenia  88.7  0.3 
Poland  84.5  4.1 
Slovenia  67.5  0.2 
Azerbaijan  64.5  0.9 
Czech Republic  44.3  0.5 
Austria  39.6  0.5 
Turkmenistan  36.3  0.1 
Greece  32.7  0.7 
Turkey  28.7  3.5 
Kazakhstan  28.6  11.9 
Italy  19.5  0.9 
Russia  18.4  47.7 
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Table 5 Land-cover class distribution per country and agricultural abandonment rates 

   A
g.
 A
ba
nd

on
m
en

t 

A
gr
ic
ul
tu
re
 

Fo
re
st
 

O
th
er
 C
la
ss
es
 

Ra
te
 o
f 

ab
an
do

nm
en

t (
A
g.
 

ab
an
d 
/(
A
g+
A
g.
 

ab
an
d)
 

Belarus  23  25  38  14  47 

Ukraine  23  46  14  18  33 

Russia  21  28  25  25  43 

Lithuania  20  39  31  11  34 

Moldova  17  41  8  34  30 

Latvia  15  20  52  12  43 

Czech Republic  13  47  32  8  22 

Poland  12  56  23  10  17 

Kosovo  11  40  38  12  21 

Bulgaria  8  44  32  16  16 

Romania  8  35  36  21  18 

Armenia  8  44  9  39  15 

Estonia  7  19  58  16  29 

Albania  7  43  15  35  13 

Hungary  6  48  21  25  12 

Slovakia  6  34  50  10  15 

Macedonia  6  38  27  28  13 

Serbia  5  31  39  26  14 

Georgia  5  24  45  26  16 

Austria  5  28  54  13  14 

Turkey  4  30  19  47  11 

Greece  3  38  19  40  8 

Montenegro  3  30  54  14  10 

Azerbaijan  2  25  9  63  9 

Croatia  2  31  46  21  7 

Bosnia and Herzegovina  2  22  67  9  9 

Italy  2  36  13  49  5 

Kazakhstan  1  8  0  91  9 

Slovenia  1  13  76  10  5 

Turkmenistan  0  0  0  100 

Total  15.1  29.7  23.2  32  33.6 
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 1 

Table 6 Agricultural abandonment rates by country and by agro-ecological constraints 2 

   Country 

Ru
ss
ia
 

Be
la
ru
s 

La
tv
ia
 

Li
th
ua
ni
a 

Es
to
ni
a 

U
kr
ai
ne

 

M
ol
do

va
 

Cz
ec
h 
Re

pu
bl
ic
 

Ro
m
an
ia
 

Ko
so
vo

 

Ka
za
kh
st
an

 

Po
la
nd

 

Sl
ov
ak
ia
 

A
rm

en
ia
 

Bu
lg
ar
ia
 

A
us
tr
ia
 

G
eo

rg
ia
 

H
un

ga
ry
 

A
lb
an
ia
 

Tu
rk
ey
 

Se
rb
ia
 

M
ac
ed

on
ia
 

M
on

te
ne

gr
o 

Cr
oa
tia

 

Bo
sn
ia
 a
nd

 H
er
ze
go
vi
na

 

G
re
ec
e 

A
ze
rb
ai
ja
n 

It
al
y 

Sl
ov
en

ia
 

No Constraints  20 
       

14 
 

17 
       

26 
   

14 
       

0 
     

0 
 

2  0 
 

Very Few 
Constraints 

44 
       

36  33  18  17 
   

19  19  26  14  15  11  13  12  17  7  7  11  17  7  8  9  0  1 

Few Constraints  43  48  43  43  33  30  31  21  14 
 

22  20  15  16  17  13  10  12  14  11  10  8  9  9  9  7  7  4  4 

Partly with 
constraints 

54  42  43  50  32  41  26  21  21  24  26  17  13  14  15  15  15  10  14  12  15  13  10  8  10  8  6  5  3 

Frequently severe 
constr. 

51  52  48  24  45  38  32  23  20  16  10  16  19  16  18  17  14  12  13  10  21  11  10  5  8  9  10  5  4 

Very frequent 
severe constr. 

45  49  11  33  54  56  26  19  12  20  18  17  12  20  14  12  18  13  15  17  14  16  12  8  5  7  9  6  9 

Unsuitable for 
agriculture 

32  48  39  25  26  11  26 
 

30 
 

6  17  12  3  12  11  22  12 
 

3  11 
   

13  4 
 

5  5 
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Table 7 Contingency table. 

  Map 
R

ef
er

en
ce

    Agriculture Forest
Ag. 

Aband Other Total
Agriculture 52 4 13 32 101
Forest 18 89 24 16 147
Ag. Aband. 46 7 42 28 123
Other 
Classes 37 10 23 39 109

  Total 153 110 102 115 480
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Table 8 Results of our accuracy assessment* 

  
Map 
proportions 

Estimated 
proportions 

Producer's 
accuracy 

User's 
accuracy 

Agriculture 29.75% 
21.77% ± 
3.35% 

46.45% ± 
8.29% 

33.99% ± 
7.51% 

Forest 23.23% 
30.28% ± 
3.44% 

62.05% ± 
6.15% 

80.91% ± 
7.34% 

Ag. Aband. 15.08% 
24.41% ± 
4.17% 

25.44% ± 
5.70% 

41.18% ± 
9.55% 

Other  31.95% 
23.54% ± 
3.98% 

46.02% ± 
8.21% 

33.91% ± 
8.65% 

Overall 
accuracy 45.95% ± 4.26%      

* Area adjusted calculations with 95% confidence intervals derived from maximum likelihood estimation suggested by Card 
(1982) for stratified random sampling.  
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Figure 10. Agricultural abandonment rates per country compared to their share of agriculture in the late 1980s (i.e., the total area of agricultural land and abandoned 
agricultural land in 2005). 
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4.1 Abstract 

Rapid land-cover and land-use change (LCLUC), mainly in the form of agricultural land 

abandonment, occurred since the early 1990s in European Russia. European Russia is also were 

one of the world’s largest brown bear populations (Ursus arctos arctos) exhibited population 

changes and potentially range expansions recently. Our goal here was to examine the response 

of brown bear population to the recent LCLUC in European Russia in order to gain general 

insights about the management and the conservation of large mammals. We analyzed brown 

bear population trends from 1991 to 2007, and then focused on the area where brown bear’s 

geographical range expanded with a more detailed analysis of bear habitat use. Single and 

multiple linear regressions quantified the relationship of environmental variables, human 

disturbance, land cover, fragmentation, and dispersal (explanatory variables) with brown bear 

densities in 2005 (response variable). Our results showed that brown bears in European Russia 

slightly increased in numbers and expanded their range southwards from 1991 to 2007 after a 

sharp population decline between 1991 and 1995. Our habitat use models performed well and 

indicated strong evidence that brown bear populations in the south were linked to northern 

source populations via dispersal. Multivariate models captured two thirds of the variation in 

bear abundance and showed that abundance was mainly driven by proxies of human 

disturbance and the presence of forest, but we found negative correlations with agricultural 

abandonment. Interestingly, bear abundances were not strongly associated with environmental 

conditions (topography and climate). Brown bear abundance patterns in the European part of 

Russia are probably the result of a long history of interactions with human populations. 
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4.2 Introduction 

One of the largest brown bear (Ursus arctos arctos) populations in the world is located in 

European Russia (Chestin 1999; Servheen, S., B. 1999). Rapid land-cover and land-use change 

(LCLUC), mainly resulting from agricultural land abandonment, occurred in the same region 

after the collapse of the USSR (Chapter 2). Agricultural land abandonment has strong impacts 

on biodiversity (Benayas and others 2007; Höchtl, Lehringer, Konold 2005; Moreira and Russo 

2007; Russo 2007; Sirami and others 2008), but it is unknown how the Russian agricultural 

land abandonment affected brown bears at a broad scale. Here we examined the response of 

brown bear populations to the recent LCLUC in European Russia to gain general insights about 

the management and the conservation of large mammals. 

Large mammals are particularly vulnerable to human presence at species and population levels 

(Cardillo and others 2005; Davidson and others 2009). Humans can cause large mammal 

extirpation directly, through hunting and extermination programs (Bennet and others 2002), but 

also indirectly, by modifying their habitat, mainly due to LCLUC (Foley and others 2005; 

Ojima, Galvin, Turner 1994; Sala and others 2000; Sanderson and others 2002). Additionally, 

other human induced factors can contribute to large mammal extinctions, such as climate 

change (Walther and others 2002), disease spread (Pedersen and others 2007), and the 

introduction of invasive species (Clout and Russell 2008). In modern times, large mammals 

have been extirpated from many areas, less than 21 % of the earth‘s terrestrial surface still 

contains all of the large mammals it once held (Morrison and others 2007), and up to 39% of 

large mammals living today are threatened by extinction as of 2008 (Vié, Hilton-Taylor, Stuart 

2009). 
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Unfortunately, brown bears have endured the same fate as other large mammals and, especially, 

carnivores (Van Valkenburgh and Wayne 2010). Brown bears’ range has been greatly reduced, 

and bears almost disappeared from large portions of the northern hemisphere by the beginning 

of the 20th century, including North America (Woodroffe 2000), and Western Europe 

(Breitenmoser 1998). However, recently there has been a change in public attitudes, a new 

awareness of the real possibility of the species’ extinction, and the consequences of their 

disappearance (Linnell, Swenson, Anderson 2001). Several initiatives to protect endangered 

brown bear populations and to reintroduce them in area when they had been extirpated started, 

albeit with highly variable rates of success (Clark, Huber, Servheen 2002; Servheen, S., B. 

1999; Swenson, Sandegren, Soderberg 1998). Nevertheless, one of the main large carnivore 

population recoveries in recent decades probably occurred in Eastern Europe in the case of 

brown bears, where Chestin reported a large expansion of the brown bear geographical range in 

the European part of Russia from 1960 to 1989 (Chestin and others 1992). 

Since 1989, Russia has changed greatly, and the collapse of the USSR caused rapid and 

widespread land cover change, especially the abandonment of agricultural areas, which reverted 

to shrublands, and may ultimately become forests (Chapter 2). The question is how these 

changes may have affected bear populations. In general, brown bears use environments 

dominated by forest as their habitat, but they also occupy a wide variety of land covers at 

different times of the year (Apps and others 2004; McLellan and Shackleton 1988). In 

particular, bears include clearcuts and other early-successional areas in their habitat selection 

(Ciarniello and others 2007a; Martin and others 2010; Nielsen, Boyce, Stenhouse 2004; Nielsen 

and others 2010; Nielsen and others 2004). Land abandonment encourages the dispersal of 

large carnivores such as wolves, lynxs and bears by increasing the availability of forests, 
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greater prey availability, and reduced human disturbance (Ciucci and Boitani 1998, 

Breitenmoser 1998). The large share of agricultural abandonment in European Russia by 2005 

thus may have increased the amount of available habitat for the brown bears, and potentially 

have resulted in further range expansion and population increases, but the extent to which this 

is the case is unknown. 

Habitat use and selection occurs at four spatial orders (Johnson 1980): first the physical-

geographic range of a species; second the home range within a geographic range; third, feeding 

sites within a home range; and fourth, specific foraging decisions. Most studies of brown bear 

habitat use and selection focus on second and third order. Here, we studied brown bears habitat 

use at the geographic scale of the Eurasian brown bear subspecies (Ursus arctos arctos). 

In general, brown bears habitat use depends mainly on food availability and human disturbance 

(Apps and others 2004; Ciarniello and others 2007a; Martin and others 2010), but bears’ habitat 

use differs between bears in stable populations, and those that are dispersing (Nellemann and 

others 2007; Støen and others 2006). In this chapter we investigated brown bear population 

changes from 1991 to 2007, first at the population level, where we looked at changes in range, 

number, and density, and second at the sub-population level, where we focused on the area 

were brown bears recently increased their geographical range, to assess the effects of 

environmental factors, human disturbance, land cover change, fragmentation, and dispersal on 

bear densities. 

Habitat loss, hunting, poaching, the removal of problematic bears, and defense for life and 

property by citizens account for as much as 90% of adult bears mortality (Schwartz et al. 2003). 

The European part of Russia has Russia’s highest population densities and most developed 

transport network. Areas with high human density and dense infrastructures are avoided by 
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brown bears at the landscape level (Nellemann and others 2007), although roadsides can be 

beneficial too, since they provide food and an easy means for travel and food (Ciarniello and 

others 2007a; Roever, Boyce, Stenhouse 2008a). Thus it is not clear how the dense road 

network in European Russia is affecting bears, and if effects differ among major and minor 

roads. 

The large increase in agricultural land abandonment in the last 20 years changed both, the 

amount of habitat that is available, and its spatial pattern. Those changes in spatial patterns may 

have affected bear’s habitat use. We used the map of agricultural abandonment developed in 

Chapter 2 to test if the brown bears used abandoned areas similarly to the way they use forest, 

by contrasting the landscape patterns of the forested area only with the patterns of the 

combined area of forest and agricultural abandonment. Currently, there are only a few studies 

that examined how different land cover types affect brown bears habitat use and selection and 

none of them analyzed landscape pattern effects on brown bears (Apps and others 2004; 

Ciarniello and others 2007a; Gibeau and others 2002; Singleton, Gaines, Lehmkuhl 2004). In 

terms of landscape patterns, features such as patches, edge, interior and gap may help to explain 

brown bear habitat use. 

In summary, the geographic range of populations is influenced by their ecological traits plus 

environmental conditions, habitat availability, and human disturbance. Large and rapid LCLUC 

occurred in Russia since 1990 and brown bear populations may be expanding their range. Our 

goal here was to explore how land cover change, human disturbance and environmental 

conditions influenced brown bear range expansion and habitat use in European Russia after 

1990. First, we analyzed general population trends from 1991 to 2007; and second, we focused 

on the change in brown bear’s geographical range. We analyzed how the population responded 
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to the changes in habitat in the area where bears expanded their range, and examined in 

particular: a) environmental factors, b) human presence, c) land cover, landscape changes, and 

land cover fragmentation, and last but not least d) the effects of dispersal distances. 

4.3 Study Area 

The area within which we analyzed general population trends encompassed 31 oblasts 

(provinces) in European Russia, covering about 2,835,000 km2 or 16.6% of Russia (Figure 12). 

The area where we conducted the habitat selection analysis was a subset, and encompassed 569 

rayons (or regions, corresponding to the second administrative level division, mean size 1900 

±400 km2) in 19 Oblast (Figure 13 and Figure 14, covering about 969,250 km2 or 5.7% of 

Russia). 

FIGURE 12 APPROXIMATELY HERE 

FIGURE 13 APPROXIMATELY HERE 

FIGURE 14 APPROXIMATELY HERE 

The study area exhibits a typical humid continental climate; classified as Dfc in the north and 

Dfb in the south according to the Köppen-Geiger climate classification, and is characterized by 

extreme variation in temperature with cold winters and hot summers (Peel, Finlayson, 

McMahon 2007). Both annual average temperatures and annual precipitation are low (Figure 

15), with a temperature gradient from northeast (-5.5 °C) to southwest (6.2 °C), and an annual 

precipitation gradient from north (707 mm) to south (268 mm). Ecologically, the study area is 

dominated by 4 biomes (Olson and others 2001). The north is dominated by the Scandinavian 

and Russian Taiga (25% of the study area) with Sarmatic Mixed Forest (17%), East European 

Forest Steppe (12%) and the Pontic Steppe (4%). The region contains also Ural Montane Forest 
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and Tundra (6%). The remainder of the study area represents the West Siberian Taiga and the 

Kazakh Forest Steppe in the east of the study area, the Kazakh steppe in the southeast, and the 

central European mixed forest in the southwest. The area where brown bear’s expanded their 

range is dominated by the Sarmatic Mixed Forest and the East European Forest Steppe. 

FIGURE 15 APPROXIMATELY HERE 

The European part of Russia had 25% of the area covered by forest in 2005. The majority of 

the tree species are characteristic of boreal biomes: spruce, and fir, with less dominance of pine 

and larch). Mixed forest is located westward of the study area (dominated by birch, aspen and 

gray alder). The interface between boreal and mixed forest has also large patches of pine forest 

(Scotch pine dominated, usually mixed with spruce, birch, and aspen). The southeast of the 

study area is dry, with the Caspian depression covered mainly by grasslands and xeric 

scrublands. The area was dominated by abandoned agricultural land; covering about 43%, 

surpassing the forest cover by 18% (Chapter 2). Agriculture is most common in the 

southeastern portion of our study area and abandoned agricultural land is mainly located at the 

interface between agriculture and forest in the northwest and east of the Ural Mountains 

(Chapter 2). 

4.4 Materials and methods 

4.4.1 Brown bear’s dataset 

We analyzed two scales of bear data, both collected by the Russian Ministry of Agriculture - 

Governmental Service of Game Animals' Calculation (Gosokhotuchet RSFSR). The first 

dataset included bear population data for 31 European Russia oblasts and spanned from 1991 to 

2007 (Figure 12). The second dataset encompassed bear population data at a finer resolution for 
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the year 2005 only, for 565 rayons along the southern edge of brown bears’ range in European 

Russia (Figure 13). Earlier Gosokhotuchet data at the oblast level had been analyzed by Sitsko 

(1983, reported by Chestin 1992, 1999) and Chestin (1999). 

The brown bear data were systematically collected, but their accuracy varied widely. Regular 

counts by wildlife scientists were limited to only a few oblasts (Chestin et al. 1992). In others, 

the main method of evaluation was the expertise of local wildlife managers. Data for some 

oblasts were subjectively corrected by a bear specialist working in that region. Our population 

estimates of brown bears for Russia relied mainly on data from Gosokhotuchet RSFSR, and to 

a lesser degree on data collected by Y.P. Gubar, which he obtained in communication with 

local experts. Local hunting management authorities reported numbers that were often averaged 

over time. Furthermore, data for less than 10 bears in single rayons were not always reported, 

because such small populations were not hunted and bear reports thus did not affect quota 

requests (Y.P. Gubar, personal communication). Despite these shortcomings, this bear database 

was the only systematic data collected across Russia over long time by a long-standing group 

of experts in hunting management. The fact that populations of less than 10 bears were not 

always reported may have underestimated the population size and the full range, but also 

ensured that reported bears were real, and provides a conservative estimate. However, given the 

nature of the data we decided to be conservative, analyzing only those rayons where bears had 

been reported, and excluding rayons with zeroes from the analyses. This yielded a sample size 

of 290 rayons. 
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4.4.2 Population numbers and geographical range changes 

To estimate the brown bear population dynamics in European Russia we summarized and 

plotted the total number of bears from 1991 to 2007. We reported hunting data per year and 

calculated bear density change relative to 1995. Additionally we fitted a logistic curve for the 

years between 1995 and 2007 to estimate their population growth rate. 

Changes in bear density over time were summarized to identify three area patterns: first, oblasts 

with consistently high density of bears (more than 30 bears/1000 km2) which we considered 

source areas for potential dispersal; second, oblasts that had variable or low brown bear 

densities, which we considered non source areas; and third, oblasts where bears occurred only 

recently to determine changes in the bears’ range. 

4.4.3 Data sources 

A geographical information system was used to derive predictor variables from six data sources 

for the 290 rayons where we analyzed bear abundances and habitat use. The tabular and 

geographical data included: the land abandonment map for the year 2006 made in Chapter 2, 

based on MODIS VI data (~250-m resolution); the water class from ~500-km resolution 

MODIS 12 (Friedl and others 2010); the urban dataset from the Global Urban Areas dataset 

(Schneider, Friedl, Potere 2009) (~500-km resolution); main roads, unpaved roads, and 

railroads data obtained from CIRCA (Declassified Soviet Topographic Maps 1989; scale 

1:500,000); digital elevation model (~1-km2 resolution) (USGS and EROS 1996); mean annual 

temperature (°C), and annual precipitation (mm) from the WorldClim database (~1-km 

resolution) (Hijmans and others 2005); rural population density (1991 and 2000) derived from 

the Russian Federation Agriculture Census (tabular data). All land cover related datasets were 
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integrated into a single 250-m resolution map in order to calculate predictor variables. The rest 

of the digital maps and the bear dataset were resampled at 250-m resolution. All maps were 

reprojected to the Mercator equal-area projection. 

4.4.4 Predictor variables 

To explore factors that influenced brown bears distribution by 2005 we calculated 14 variables 

derived from the six sources described above. All variables that we considered had been 

previously reported to affect brown bear habitat use and dispersal (Apps and others 2004; 

Ciarniello and others 2007a; Ciarniello and others 2007b; Dahle, Stoen, Swenson 2006; 

Graham and others 2010; Kaczensky and others 2006; McLoughlin and others 2002; Nams, 

Mowat, Panian 2006; Nellemann and others 2007; Nielsen, Boyce, Stenhouse 2004; Nielsen 

and others 2008; Nielsen and others 2010; Nielsen and others 2004; Roever, Boyce, Stenhouse 

2008a; Roever, Boyce, Stenhouse 2008b; Singleton, Gaines, Lehmkuhl 2004; Støen and others 

2006; Wielgus, Vernier, Schivatcheva 2002). We divided our explanatory variables into four 

categories. The first category included environmental variables, the second category focused on 

human disturbance; the third included land cover composition and fragmentation, and the 

fourth on evaluating dispersal-related metrics (Table 9). 

TABLE 9 APPROXIMATELY HERE 

4.4.5 Environmental 

We evaluated environmental conditions by calculating the minimum, maximum, mean and 

variance of the elevation (m), slope (degrees), total annual precipitation (mm) and annual 

temperature (degrees Celsius), and distance to large water bodies (m) of each rayon. 
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4.4.6 Human presence and disturbance 

We evaluated human disturbance by calculating the minimum, maximum, mean and variance 

of the distance to urban areas (m) and distance to highways (m). Additionally we included the 

length of highways, railroads, unpaved road lengths (km), and rural human densities for 1990 

and 2005 (persons) of each rayon. 

4.4.7 Land cover composition and fragmentation 

We analyzed two main aspects regarding land cover and brown bear densities. The first was to 

test the habitat use of each land cover types by brown bears, especially forests and abandoned 

agricultural land. The second was to examine habitat’s spatial patterns and its effects on brown 

bear distributions. 

The importance of land cover composition for bears was evaluated by summarizing for each 

rayon the relative amount of each land cover type. To explore the importance of the spatial 

arrangement and landscape features for brown bears we conducted a modified version of the 

morphological characterization of the landscape (Vogt and others 2007; Vogt and others 2009) 

and calculated the area of seven habitat features that were used or avoided by bears, including: 

interior, null, exterior, patch, edge, gap and perforated in each rayon (Figure 16). 

Morphological features were calculated based on the land cover map recoded to three classes; 

first, suitable habitat (forest areas), second, unsuitable habitat (agriculture, urban, highways, 

and road areas), and third, null areas (neither considered suitable nor unsuitable habitat, 

including: water, wetlands, trails, and roads without pavement). Agricultural abandonment was 

considered in two different ways: we considered it both as unsuitable habitat and as suitable 

habitat, and ran the analyses twice. Image morphology features were calculated using a radius 
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of 250 m; which meant that interior habitat included all areas of suitable habitat that were more 

than 250 m from the edge; while exterior habitat included only unsuitable areas. Edge habitat 

included areas within 250 m from the border of exterior habitat. Patches were areas of suitable 

habitat areas too small to include interior habitat. Gaps were areas of non-suitable habitat 

within a matrix of interior (suitable) habitat and small enough so that all pixels of non-suitable 

habitat bordered suitable habitat. Last but not least, perforated areas represented suitable habitat 

within 250 m of the edge of a gap (Figure 16). 

FIGURE 16 APPROXIMATELY HERE 

4.4.8 Dispersal  

We used two approaches to measure potential dispersal limitations: the Euclidean distance from 

the source population and a cost-path analysis. Both approaches were based on the assumption 

that bears disperse from source areas. We identified population source areas by analyzing bear 

reports at rayon and oblast level from 1991 to 2007. Our first criterion was to select the 

contiguous administrative units (Rayons) with high bear densities (minimum density of 30 

bears/1000 km2) in 2005. Second, we selected additional oblasts north of the rayon-level data 

with consistently high bear densities. The oblasts selected as population source areas were 

Tver’, Yaroslavl’, Kostroma, Kirov and Udmurt, which included 53 rayons, plus Vologda, 

Komi and Perm’ oblasts to the north (Figure 14). 

Euclidean distances to the source were calculated in meters and averaged per rayon. Cost-path 

analysis was calculated via a travel cost-path algorithm. We defined travel cost-path as the 

movement from a population source area to the rayon were a bear numbers were recorded; it 

was related with the cumulative effects of landscape barriers that define routes and allow 
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movement. The assumption was that distance, land cover characteristics, and the likelihood of 

human disturbance together determined travel cost, which was captured in a cost surface map. 

The travel cost-path was calculated by assigning each cell a cumulative cost c represented by: 

ci= ci-1+d+L 

where ci-1 was the cumulative travel cost value of the nearest cell towards the source area, d 

was the traveled distance in cells from the nearest cell towards the source area (our value was 1, 

since we calculate cost dispersal values for the entire region), and L represented the weighted-

land cover of the current cell (i). 

The weighted-land cover (L) was estimated by taking account of both land cover characteristics 

and the likelihood of human disturbance. We based our values on prior literature and expert’s 

consultation. We assumed that the likelihood of human disturbance was related to the 

detectability of bears in a given land cover type, and this was measured in the field with two 

persons, one behaving as “the bear” and the other as “the human”. “The human” moved across 

different land covers, randomly approaching ”the bear”, and we recorded the distance at which 

“the human” was first visible. The experiment was repeated 10 times in different forest stand 

ages and different land cover types. Land cover characteristics and human disturbance were 

integrated into a single L value (Table 10). Finally we summarized the cost-path value of each 

pixel by rayon to include it as a predictor variable. 

TABLE 10 APPROXIMATELY HERE 

4.4.9 Statistical analyses 

Single and multiple linear regression analyses were conducted to analyze the relationship of 

environmental variables, human disturbance, land cover, fragmentation, and dispersal 
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(explanatory variables) with brown bear densities in 2005 (response variable). Several of these 

variables were not normally distributed, and we tested three transformations for each variable 

(logarithmic, squared root, and quadratic terms) and selected the transformation that best 

ensured that a given variable entered the models linearly. The response variable (bear density in 

2005) was log transformed and several explanatory variables required transformations as well. 

Variable selection for our multi-variate models occurred in two stages. First, we had different 

variants for many of our variables (such as maximum, minimum, mean, and variance of 

temperature) and among these variants we select the one with the strongest univariate 

relationship and the one that made the most biological sense. Second, we examined the 

correlation among explanatory variables and calculated a Pearson’s correlation coefficient 

matrix. Most variables were correlated below 0.60. When two explanatory variables were 

correlated above 0.60, then we removed the explanatory variable which had the most 

collinearity problems with other variables, and the one with a less clear biological relationship 

with the response variable. Table 9 shows the variables that were included in the final models 

and the transformations that were conducted. 

Some of our explanatory variables were highly correlated, but our research questions required a 

comparison of their relative explanatory power. Specifically, these were the forest abundance 

metric versus the suitable habitat morphology metrics, and the Euclidean distance versus the 

cost-path metric. We thus conducted four comparisons of the full model in a fully factorial 

design: 1) Cost-path metric and forest; 2) Euclidean distance and forest; 3) Cost-path analysis 

and selected morphological features (patch, interior and gap), 4) Euclidean distance and 

selected morphological features (patch, interior and gap), and selected one of these four models 

as our final multi-variate model. 
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For this final model, we conducted a best subset selection and hierarchical partitioning analysis 

to compare the importance of environmental variables, human presence, land cover 

composition and fragmentation, and dispersal for brown bear densities by 2005. Best subsets 

selection describes the frequency a variable enters in a set of models by conducting an 

exhaustive search for the models with highest goodness-of-fit measures (Miller 2002; Miller 

1984), while hierarchical partitioning calculates goodness-of-fit measures for the entire 

hierarchy of models by applying the Chevan and Sutherland (1991) algorithm to calculate the 

percentage of the variance explained when a variable enters in a set of models (Mac Nally 

2000; Mac Nally 2002). We used the adjusted R2 as our measure of fit to rank our models, and 

limited the number of explanatory variables to five to avoid overfitting. We assessed the effects 

of spatial autocorrelation in the final model prior to the hierarchical partitioning analysis and 

best subsets selection by analyzing the residuals to test model assumptions. Since we did not 

find spatial autocorrelation, it was not necessary to account for it in our model. 

4.5 Results 

4.5.1 Population numbers and geographical range changes 

There were about 49,300 brown bears in European Russia in 1991 (21.43 bears/1000 km2), and 

53,300 bears in 2007 (23.16 bears/1000 km2). Official hunting quotas were equivalent to 3.5% 

± 0.4% of the bear population per year in the period from 1998 to 2007. Brown bear population 

declined by 19% from 1991 to 1995 and steadily increased from 1995 to 2007. In 2005 the 

amount of bears surpassed the number reported by 1991 (about 51,880 bears). The estimated 

growth rate (λ) from 1995 to 2007 was 1.023 with a 95% confidence interval of 1.0199 < λ > 

1.0266 (Figure 17). 
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FIGURE 17 APPROXIMATELY HERE 

4.5.2 Expansion of the bear population in Russia 

The highest densities of brown bears in 2005 were located in the central oblasts of European 

Russia. Four oblasts held about 60% of the total brown bear population in European Russia, all 

with ≥ 39 bears/1000 km2  (these Oblasts were Arkangelsk (23%, 85.3 bears/1000km2), Kirov 

(11%, 47.6 bears/1000km2), Perm (12%, 39.0 bears/1000km2) and Vologda (13%, 46.2 

bears/1000km2)). Five oblasts had no bears in 1991, but reported bears by 1997, and four more 

oblasts reported bears for the first time by 2000 (Figure 13). Based on these data we focused 

our statistical analysis and habitat selection regarding land cover, morphology and dispersal on 

the bear’s expansion zone (highlighted by a blue border, Figure 13). The expansion zone had 

569 rayons with 13,444 bears distributed within 290 rayons in 2005 (about 28% of the total 

number of bears in European Russia). 

4.5.3 Environmental  

The environmental variable that had the strongest univariate relationship with brown bear 

densities was the maximum distance to water (r=0.21) followed by mean annual precipitation 

(r=0.17) and mean elevation (r=0.10). Elevation and slope had strong correlations between 

them (r=0.73) as did slope and precipitation (r=-0.66). For the multivariate models we selected 

only maximum distance to water and mean slope (Table 11). 

TABLE 11 APPROXIMATELY HERE 
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4.5.4 Human presence and disturbance 

Rural population densities in 1991 and 2001 had relatively strong negative univariate 

relationships with brown bear densities (r=-0.51 and r=-0.50). Maximum distance to urban 

areas and maximum distance to highways had relatively strong positive relationships with 

brown bear densities (r=0.51 and r=0.47), as did length of unpaved roads (r=0.43), and 

maximum distance to railways (r=0.26). Both rural population density measures were highly 

correlated (r=0.95) and the length of unpaved roads was highly correlated with maximum 

distance to highways (r=0.70). For the multiple linear regression models we included only 

length of unpaved roads, maximum distances to railways, maximum distance to urban areas, 

and rural population density for 2001 (Table 12). 

TABLE 12 APPROXIMATELY HERE 

4.5.5 Bears and land cover 

Single linear regressions for land cover composition showed consistently negative, low 

correlations with brown bears except for forest (r = 0.33). Agriculture and Forest were highly 

negative correlated with each other (r=-0.68). Abandoned agricultural land had a negative 

correlation coefficient (r=-0.18). For the multivariate analyses we decided to include only forest 

as an explanatory variable. 

TABLE 13 APPROXIMATELY HERE 
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4.5.6 Habitat fragmentation 

4.5.6.1 Morphology considering forest as suitable habitat 

Gaps had the highest correlation with brown bear densities (r=0.42); followed by perforated 

(r=0.39), exterior (r=-0.33), interior (r=0.30), and patch (r=0.25). Edge and null areas had very 

weak correlations with brown bear densities (edge r=-0.017, and null r=0.004). Interior and 

exterior habitat were strongly correlated with each other (r=-0.88). Exterior habitat was also 

strongly correlated with perforated areas (r=-0.74). Perforated areas were strongly correlated 

with interior (r=0.73), exterior (r=-0.74), and gap (r=0.93). For the multivariate analyses we 

included only patch, interior, and gap because they had a more clear relationship with the 

response variable (Table 14). 

TABLE 14 APPROXIMATELY HERE 

4.5.6.2 Morphology considering both forest and agricultural abandonment as suitable 

habitat 

Edge, interior, exterior and patch had the strongest correlations with brown bear densities (r=-

0.33, r=0.24, r=-0.21, and r=-0.18 respectively). Gap, perforated and null had very weak 

correlations with brown bear densities (r=-0.08, r=-0.06, and r=0.00 respectively). Exterior and 

patch had strong correlations among them (r=0.93); exterior showed strong correlations as well 

with interior (r=-0.88). Interior and patch were highly negatively correlated (r=-0.87). Finally, 

we found strong correlations between Gap and perforated as well (r=0.93) (Table 15). Due to 

the lower correlations of the metrics when we considered both forest and agricultural 

abandonment as suitable habitat compared with the same metrics considering only forest as 

suitable habitat we did not include any of those variables in the multivariate analyses. 
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TABLE 15 APPROXIMATELY HERE 

4.5.7 Dispersal 

Our univariate correlations for the two dispersal-related metrics and bear densities showed 

relatively strong inverse relationships (r=-0.60 for Euclidean distance and r=-0.66 for the cost-

path metric with bear densities. Both were also highly correlated (r=0.99). We thus compared 

two models where with only one of the two variables in each. 

4.5.8 Multiple linear models 

The four alternative multivariate models had between eight and twelve predictor variables 

(Table 16). In terms of the adjusted r-square, we found only minor differences among the four 

full models.  

TABLE 16 APPROXIMATELY HERE 

The simplest model using the six variables plus forest and Euclidean distance had an r-square = 

0.6058, the model using forest and cost-path had an r-square = 0.6324, the model using 

morphology and Euclidean distance had an r-square = 0.6159, and the model with Cost-path 

and morphology had the highest r-square (0.6386). Given that the explanatory power of all four 

models was so similar, we selected the simplest model as our final model (forest and Euclidean 

distance plus maximum distance to railroads, maximum distance to urban, maximum distance 

to water, mean slope, human rural density by 2001 and unpaved roads length) and analyzed 

spatial autocorrelation, and conducted the hierarchical partitioning analysis and best subsets 

selection only for this model (Table 17). We did not find spatial autocorrelation in our final 

model (Figure 18), thus, we proceeded to conduct hierarchical partitioning analysis and best 

subsets analyses. 
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TABLE 17 APPROXIMATELY HERE 

FIGURE 18 APPROXIMATELY HERE 

Brown bear densities in 2005 showed a strong association with dispersal and human presence 

and disturbance; these two predictor variables explained up to 72% of the variance that was 

explained in the model (Figure 19). Euclidean distance explained 48% of the variance and 

entered 20 of the 20 best subset models, and rural population density in 2001 explained 24% of 

the variation, and entered 16 out of 20 best models. Unpaved roads length and maximum 

distance to urban areas explained 17% and 15% of the variance respectively, and entered 9 and 

14 of the 20 best models. Surprisingly, forest percentage, while significant, explained only 9.3 

% of the variance and entered only 11 out of 20 best models. Environmental variables were 

weakly related to brown bear densities in 2005 (Slope explained only 2% of the variation and 

entered only 8 best subset models (Figure 19)). 

FIGURE 19 APPROXIMATELY HERE 

4.6 Discussion 

Brown bears in European Russia slightly increased in numbers from 1991 to 2007 after a sharp 

decline between 1991 and 1995. Despite an only moderate overall population increase, brown 

bears considerably expanded their range southwards. Official hunting did not affect brown bear 

populations negatively since 1997, but the collapse of the USSR and its substantial 

socioeconomic impacts caused widespread agricultural land abandonment (Chapter II). 

Interestingly though, abandoned agricultural land was negatively related to bear densities, and 

the fragmentation analysis that included abandoned agricultural land as suitable habitat 

performed worse than the fragmentation analysis based on forest alone. The reasons for the 
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range expansion are thus not clear. Brown bears exhibit an inversely density-dependent natal 

dispersal (Støen and others 2006), and the initial decline in brown bears suggest a possible 

relationship with their dispersal. 

Our habitat model performed well and provided strong evidence that brown bear populations in 

the south were linked to northern source populations via dispersal. Multivariate models 

captured two thirds of the variation and human disturbance was the most limiting factor for 

brown bears in European Russia. Elevation, slope, avalanche chutes and other landscape 

features have been reportedly important for bear’s habitat selection in other areas (Nams et al 

2006). In fact, they select for different features on the landscape over the year and time of the 

day (Martin 2010, Nelleman et al 2007). Interestingly though, we found that bears in European 

Russia were not associated strongly with environmental conditions. The distribution was 

mainly driven by proxies of human disturbance and the presence of forest. These results are 

similar to other studies that demonstrated that bears avoid humans (Apps and others 2004; 

Martin and others 2010; Nellemann and others 2007). 

Habitat selection is a hierarchical process that depends on scale, and this is true as well for 

bears (McLoughlin and others 2002). Bears select their habitat most strongly at the landscape 

scale (areas around 1,600 km2) (Nams, Mowat, Panian 2006) suggesting that the rayon level 

that we used is an appropriate scale to analyze brown bear populations. 

Surprisingly, the travel cost values did not yield a higher explanatory power compared to the 

simple Euclidean distance measurements. Cost-path analysis is biologically more meaningful, 

and in the univariate analysis the cost-path metric explained 46% of the variability of the bears, 

compared to 38% for Eucilidean distance. 8% more explanatory power is not a large difference, 

but does represent about a 5th of the explanatory power of the model, which is not trivial either. 
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However, in the multivariate models, the difference in the adjusted r-square of the two models 

with the two different distance metrics was negligible. One of the reasons for modeling species 

distributions is that it is hard to measure habitat use and habitat preferences directly and simple 

metrics can often explain a substantial part of the variation in habitat use. In cost-path analyses, 

one shortcoming is though that the metrics do not have unit, and are just a proxy for energy 

spent, disturbance, and avoidance. Other cost-path studies either assigned subjective values to 

land cover, or used resource selection functions (Chetkiewicz and Boyce 2009), weights of 

evidence (Kindall and Manen 2007) or expert opinion (Singleton, Gaines, Lehmkuhl 2004). 

Unfortunately, none of these studies compared cost-path metrics with plain Euclidean distance 

while accounting for other factors in a multivariate model. Our results here question the 

increased power of cost-path based metrics in multivariate models. 

Ultimately one can define travel cost-path as the movement from a population source area 

along the landscape that serve a bear to find a place to live, and such movements depend on 

both, natal dispersal ability and the cumulative effects of landscape barriers that define routes 

and allow movement. Cost-path analysis makes biological sense but unfortunately includes 

subjective components that need to be refined. For instance both avoidance and disturbance are 

parameters that can be measured in the field and translated into energy expenditure for an 

individual. At the population level, a killed or accidentally died individual represents a cost that 

can be translated to the amount of energy spent to breed a new individual. 

Regarding landscape composition, forest, particularly core forest, proved to be an important 

variable explaining bear densities. Morphology has been used to map functional connectivity 

and habitat use landscape (Vogt and others 2007; Vogt and others 2009) and our expectation 

was to find the strongest explanatory power for the multivariate models that included 
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morphology metrics. Again though, the higher explanatory power of the morphological metrics 

in univariate models disappeared when morphological metrics replaced forest in alternative 

multivariate models. Possible explanations are that landscape composition is a function of the 

scale that it is mapped but also it is a function of the species under consideration. 

Among the forest morphology metrics, we found that gaps (such as clearcuts) had the highest 

explanatory power. This supports other studies, which reported use of clearcuts by brown bears 

in Montana and British Columbia (Martin and others 2010; Nielsen, Boyce, Stenhouse 2004; 

Nielsen and others 2008; Roever, Boyce, Stenhouse 2008a; Wielgus, Vernier, Schivatcheva 

2002). The second most important predictor among the morphology metrics was interior forest 

and that is also supported by other studies that demonstrate bears select interior forest at 

broader scale but young and logged forest at the finest scale (Apps and others 2004). 

In terms of our human disturbance proxies, we were surprised to find that unpaved roads’ 

length explained 17% of the variance, appeared in 9 out of 20 models, and was positively 

correlated with brown bear densities. This may be the result of the fact that bears use unpaved 

or low traffic roads to travel (Graham and others 2010; Mace and others 1996), or that the roads 

were placed in bears’ preferred habitats and motivated by food availability nearby the roads 

(Roever, Boyce, Stenhouse 2008a). Another interesting finding was that bears responded 

differently to different types of road. While they did not avoid unpaved roads we found that 

they did select against highway length and in favor of maximum distance to highways and 

those findings coincide with other studies (Ciarniello and others 2007a; Mace and others 1996; 

McLellan and Shackleton 1988; Wielgus, Vernier, Schivatcheva 2002). The use and avoidance 

of roads varies widely among other vertebrate species, but large carnivores in general have 

negative response to roads (Fahrig and Rytwinski 2009). On the other hand, all our other 
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human disturbance variables showed negative correlations, highlighting bears’ avoidance of 

humans, and selection of areas, for example, far from urban centers, which is also supported by 

other studies (Nellemann and others 2007). 

Dispersal, human avoidance, and forest cover explained the most variance in our models and 

we demonstrated that measuring brown bear habitat was both important, and computationally 

feasible, following the approach outlined here. Based on our bear density models, we can now 

at least speculate about the effects of potential further rural population declines, and forest 

succession on abandoned farm fields for future bear populations in European Russia. Increasing 

forest cover on abandoned farm fields may provide additional bear habitat reduce travel costs 

and increase dispersal in the future. Ultimately, socio-economic changes and resulting 

agricultural abandonment offers new opportunities for conservation. 

The surprising population increases and range expansion of brown bear distribution in 

European Russia were not known previously and have important implications for the species. 

From a conservation standpoint, brown bears declined in the early 1990s but recovered 

surprisingly fast. From a management perspective, the range expansion creates new challenges 

because the presence of Brown bears in areas with people raises the likelihood for human-

wildlife conflicts. 

In general, large mammals are particularly vulnerable to human presence at species and 

population levels (Cardillo and others 2005; Davidson and others 2009). Our results confirm 

this pattern. Despite the fact that the bear population increased, their distribution was still 

heavily influenced by human disturbance proxies. Brown bears are highly adaptable animals 

that are capable of transmitting knowledge that is important for survival to their next 

generations. Brown bears’ distribution in the European part of Russia is probably the result of a 
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long history of interactions with human populations and the fact we found negative correlations 

with agricultural abandonment may reflect that long bear-human interactions. 
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4.9 Tables 

Table 9. Predictor variables considered for statistical analysis of brown bear densities in the European part of Russia, 
2005. l Logarithmic transformation, s Square root transformation; q Quadratic transformation;* Variables include on 
the multiple regression models 

 

I Environmental 
III Land cover and 
fragmentation  IV Dispersal 

*s Maximum distance to water  a) Land cover composition    s Mean dispersal cost 

*   Mean slope  *Forest 
*s Mean Euclidean distance to 
source 

II Human presence and 
disturbance    Agricultural abandonment 
*s Maximum distance to urban 
areas    Forest and agricultural abandonment 
*s Maximum distance to rail 
roads    Other classes 

  s Highway's length  b) Morphology of forest 
  s Rail road's length    Patch 
*s Unpaved road's length    Edge 
  l Rural density 1991    Interior 
*l Rural density 2001    Exterior 

  Gap 
  Null 
c) Morphology of forest and 
agricultural abandonment 
  Patch 
  Edge 
  Interior 
  Exterior 
  Gap 

     Null    
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Table 10. Weighted-land cover values (L) assigned from land cover characteristics and human disturbance for the cost-
path analysis. Land cover sources: * Chapter II, ** (Schneider, Friedl, Potere 2009),***MODIS12 (Friedl and others 
2010),**** CIRCA 1989 

 
Land cover class L (cost 

distance) 

Agriculture* 25 

Forest* 5 

Abandoned agriculture* 15 

Water ** 100 

Urban *** 100 

Railway **** 70 

Embankments and dredges**** 80 

Trail**** 40 

Road**** 100 

Other classes* 30 
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Table 11. Pearson correlation coefficients for environmental factors and bear densities in 2005. 
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Bear density  1.00  0.12 0.10 0.17 0.21
Mean slope  0.12  1.00 0.73 ‐0.7 0.17
Mean Elevation  0.10  0.73 1.00 ‐0.4 0.09
Mean total precipitation  0.17  ‐0.7 ‐0.4 1.00 ‐0.1

Maximum Distance to Water  0.21  0.17 0.09 ‐0.1 1.00
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Table 12. Pearson correlation coefficients for human disturbance factors and bear densities in 2005. 
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Bear density  1.00 0.47 ‐0.31 0.27 0.00 0.43 0.51  ‐0.51  ‐0.50
Maximum distance to highways  0.47 1.00 ‐0.52 0.33 0.16 0.70 0.61  ‐0.56  ‐0.54
Length of highways  ‐0.31 ‐0.52 1.00 ‐0.23 0.27 ‐0.09 ‐0.37  0.28  0.29
Maximum distance to railways  0.26 0.33 ‐0.23 1.00 ‐0.52 0.37 0.50  0.00  0.01
Length of railways  0.00 0.16 0.27 ‐0.52 1.00 0.26 ‐0.03  ‐0.24  ‐0.23
Length of unpaved roads  0.43 0.70 ‐0.09 0.37 0.26 1.00 0.47  ‐0.49  ‐0.50
Maximum distance to urban  0.51 0.61 ‐0.37 0.50 ‐0.03 0.47 1.00  ‐0.47  ‐0.46
Rural human density 1991  ‐0.51 ‐0.56 0.28 0.00 ‐0.24 ‐0.49 ‐0.47  1.00  0.95

Rural human density 2001  ‐0.50 ‐0.54 0.29 0.01 ‐0.23 ‐0.50 ‐0.46  0.95  1.00
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Table 13 Pearson correlation coefficients for land cover classes and bear densities in 2005. 
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Bears density  1.00  ‐0.18 0.33 ‐0.18 ‐0.17
Agriculture  ‐0.18  1.00 ‐0.68 ‐0.22 0.02
Forest  0.33  ‐0.68 1.00 ‐0.42 ‐0.33
Abandoned agriculture  ‐0.18  ‐0.22 ‐0.42 1.00 ‐0.07

Other classes  ‐0.17  0.02 ‐0.33 ‐0.07 1.00
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Table 14. Pearson correlation coefficients for morphological features considering only forest as suitable habitat and 
bear densities in 2005. 

 
   Be

ar
s 
de

ns
ity

 

Pa
tc
h 

Ed
ge
 

Pe
rf
or
at
ed

 

In
te
ri
or
 

Ex
te
ri
or
 

G
ap

 

N
ul
l 

Bears density  1.00  0.25  ‐0.02  0.39 0.30 ‐0.33 0.42 0.00
Patch  0.25  1.00  0.28  0.05 ‐0.34 0.26 0.23 ‐0.08
Edge  ‐0.02  0.28  1.00  0.24 0.23 ‐0.22 0.30 ‐0.34
Perforated  0.39  0.05  0.24  1.00 0.73 ‐0.74 0.93 ‐0.18
Interior  0.30  ‐0.34  0.23  0.73 1.00 ‐0.88 0.58 ‐0.32
Exterior  ‐0.33  0.26  ‐0.22  ‐0.74 ‐0.88 1.00 ‐0.67 ‐0.14
Gap  0.42  0.23  0.30  0.93 0.58 ‐0.67 1.00 ‐0.07

Null  0.00  ‐0.08  ‐0.34  ‐0.18 ‐0.32 ‐0.14 ‐0.07 1.00
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Table 15. Pearson correlation coefficients for morphological features considering both forest and agricultural 
abandonment as suitable habitat and bear densities in 2005. 
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Bears density  1.00  ‐0.18  ‐0.33  ‐0.06 0.24 ‐0.21 ‐0.08 0.00
Patch  ‐0.18  1.00  0.59  ‐0.25 ‐0.87 0.93 0.02 ‐0.02
Edge  ‐0.33  0.59  1.00  0.28 ‐0.55 0.50 0.47 ‐0.17
Perforated  ‐0.06  ‐0.25  0.28  1.00 0.29 ‐0.36 0.93 ‐0.33
Interior  0.24  ‐0.87  ‐0.55  0.29 1.00 ‐0.88 0.03 ‐0.39
Exterior  ‐0.21  0.93  0.50  ‐0.36 ‐0.88 1.00 ‐0.14 ‐0.02
Gap  ‐0.08  0.02  0.47  0.93 0.03 ‐0.14 1.00 ‐0.25

Null  0.00  ‐0.02  ‐0.17  ‐0.33 ‐0.39 ‐0.02 ‐0.25 1.00
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Table 16. Pearson correlation coefficients between predictor variables and bear densities in 2005 for the variables included in the multiple linear regression models. 1, 
2, 3, and 4 highlight variables included in each of our four alternative models. 
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Bears density1234  1.00 0.21 0.12 0.43 0.26 0.51 ‐0.50  ‐0.60 ‐0.66 0.33 0.25 0.30 0.42
Maximum distance to water1234  0.21 1.00 0.17 0.27 0.13 0.37 ‐0.23  ‐0.13 ‐0.12 0.07 0.09 0.07 0.02
Mean slope1234  0.12 0.17 1.00 0.30 0.45 0.15 0.26  0.04 0.06 ‐0.47 0.28 ‐0.46 ‐0.17
Length of unpaved roads1234  0.43 0.27 0.30 1.00 0.37 0.47 ‐0.50  ‐0.03 ‐0.09 0.16 0.28 0.14 0.38
Maximum distance to railways1234  0.26 0.13 0.45 0.37 1.00 0.50 0.01  ‐0.18 ‐0.17 ‐0.30 0.16 ‐0.27 ‐0.09
Maximum distance to urban1234  0.51 0.37 0.15 0.47 0.50 1.00 ‐0.46  ‐0.35 ‐0.38 0.21 0.10 0.19 0.26
Humans rural density by 20011234  ‐0.50 ‐0.23 0.26 ‐0.50 0.01 ‐0.46 1.00  0.20 0.27 ‐0.56 ‐0.20 ‐0.50 ‐0.52
Euclidean distance to source13  ‐0.60 ‐0.13 0.04 ‐0.03 ‐0.18 ‐0.35 0.20  1.00 0.99 ‐0.17 ‐0.11 ‐0.14 ‐0.25
Cost‐Path24  ‐0.66 ‐0.12 0.06 ‐0.09 ‐0.17 ‐0.38 0.27  0.99 1.00 ‐0.24 ‐0.15 ‐0.20 ‐0.33
Forest12  0.33 0.07 ‐0.47 0.16 ‐0.30 0.21 ‐0.56  ‐0.17 ‐0.24 1.00 ‐0.26 0.96 0.62
Patch/Forest34  0.25 0.09 0.28 0.28 0.16 0.10 ‐0.20  ‐0.11 ‐0.15 ‐0.26 1.00 ‐0.34 0.23
Inter/Forest34  0.30 0.07 ‐0.46 0.14 ‐0.27 0.19 ‐0.50  ‐0.14 ‐0.20 0.96 ‐0.34 1.00 0.58

Gap/Forest34  0.42 0.02 ‐0.17 0.38 ‐0.09 0.26 ‐0.52  ‐0.25 ‐0.33 0.62 0.23 0.58 1.00
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Table 17. Coefficients for the full multiple linear regression for bear density in 2005. Residual standard error: 0.9413 on 
280 degrees of freedom. Multiple R2: 0.62, Adjusted R2: 0.61. F-statistic: 56.31 on 8 and 280 DF, p-value: < 2.2e-16. 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 
  Estimate Std. Error t value Pr (>|t|)   
Intercept 1.62E+00 5.85E-01 2.769 0.005997 ** 
Maximum distance to water -1.00E-03 9.46E-04 -1.057 0.291255 
Mean slope 6.20E-01 1.39E-01 4.478 1.10E-05 *** 
Length of unpaved  roads  3.48E-02 1.29E-02 2.688 0.007608 ** 
Maximum distance to railroads 1.83E-03 1.93E-03 0.95 0.343028 
Maximum distance to urban areas  4.18E-06 3.65E-06 1.146 0.252779 
Rural density by 2001  -6.05E-01 1.28E-01 -4.728 3.60E-06 *** 
Mean Euclidean distance to source  -3.35E-03 2.75E-04 -12.15 < 2.00E-16 *** 

Forest percentage 1.28E-02 3.62E-03 3.54 0.000469 *** 
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4.10 Figures 

 

Figure 12. Our study area as defined by the oblast (provinces) in European Russia that reported Brown bears from 1991 to 2005. 
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Figure 13. Brown bear expansion zone in blue. Light gray polygons represent regions with brown bear reports from 1991 to 2005. Dark gray polygons are regions with 
first time reports of bears by 1997 and black polygons are regions with first time reports of bears in 2000. Brown bears have still been reported in both the dark gray 
and the black areas until 2007. Green polygons are regions with large and increasing densities of bears since 1997. 

Arkhangelsk 

Perm 
Vologda 

Kirov 
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Figure 14. Brown Bear (Ursus arctos arctos) densities (Bears/1000 km2) in the expansion zone of the European Russian (in blue). Red outlined, and green shaded areas 
were defined as our source area for the dispersal analysis. Data collected by Russian hunting authorities (Y.P. Gubar) 
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a) b)  

c) 
 

d) 

e) 

 

Figure 15. Environmental conditions in the study area: a) Annual average temperature (°C), b) Annual total precipitation (mm), c) Ecoregions, d) Land cover change, 
e) infrastructure. 



 

Figure 16. An exammple of the landscappe morphological feaatures included as hhabitat selection predictor variable. 
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Figure 17. Brown bear density changes in European Russia based on bear reports for 31 Oblast (1 administrative level division) (Russian Ministry of Agriculture 
2009). 
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Figure 18. Semivariogram of the residuals of the final selected model. 
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