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Overview 

 
The overarching goal of the proposed project is to understand broad-scale patterns of species 
biodiversity (hereafter biodiversity). My research addresses three main questions: 
 - How is avian biodiversity related to habitat heterogeneity (i.e., vegetation structure, 
habitat texture, and landscape pattern)? 
 - At which spatial scale does habitat heterogeneity shape avian biodiversity?  
 - What remote sensing tools can map broad-scale patterns of avian biodiversity? 

Understanding patterns of biodiversity is one of the main concerns of ecologists and 
biogeographers (Storch et al., 2005; Dirzo & Loreau, 2005). For decades researchers have sought 
to identify patterns of biodiversity, and the underlying ecological variables. From MacArthur’s 
(1972) work, we know that habitat heterogeneity, in terms of habitat structure, is one of the main 
drivers of biodiversity. Changes in land-use substantially modifies wildlife habitat heterogeneity 
at fine- and broad-scales, and contributes to species extinction (Vitousek, 1994; Sala et al., 
2000). The severe decline in global biodiversity that results from land-use change is cause for 
growing concern. More than a fifth of global avian populations have been lost as a result of 
human land-use (Gaston et al., 2003). Understanding and mapping broad-scale patterns of 
biodiversity is becoming increasingly important. I propose to study how habitat heterogeneity 
affects patterns of avian biodiversity, and build predictive maps for species occurrence and 
abundance. For the purpose of this study, I consider habitat heterogeneity to encompass 
vegetation structure, habitat texture, and landscape pattern. I selected birds as study organisms 
because they respond strongly to vegetation structure (MacArthur, 1961) and landscape pattern 
(Luoto et al., 2004).  
 Understanding and mapping broad-scale patterns of biodiversity is not an easy task. The 
challenge is to find tools that are concurrently powerful (i.e., strong predictors) and flexible (i.e., 
suitable for a variety of ecosystems). Remote sensing offers promising tools because it covers 
broad spatial extents with fine resolution (Wulder, 1998). Monitoring biodiversity using remote 
sensing is done by mapping species occurrence directly (e.g., king penguin (Guinet et al., 1995), 
or linking landscape indices calculated from classified imagery to measures of biodiversity (e.g., 
bird species richness (Luoto et al., 2004)) (Nagendra, 2001). The problem with the latter is that it 
assumes that patches are discrete with low within-habitat heterogeneity and clearly defined 
boundaries; high within-habitat heterogeneity can lower classification accuracy (Wagner & 
Fortin, 2005) and thus affect further ecological inference. The analysis of raw remote sensing 
data addresses some of the aforementioned limitations (Laurent et al., 2005). One promising tool 
for quantifying patterns of biodiversity using raw remote sensing data is image texture, because 
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it acts as a surrogate for habitat heterogeneity (St-Louis et al., 2006). I propose to use image 
texture analysis to predict and map avian biodiversity using raw remotely sensed data.  

Predictive maps of biodiversity are important for identifying hotspots, and evaluating the 
potential impact of habitat loss on species extinction (Brooks et al., 2002). Occurrence and 
abundance maps are created from satellite imagery using either classical statistical approach 
(Pidgeon et al., 2003), or Bayesian methods (Aspinall & Veitch, 1993). The latter addresses 
problems associated with avian point-count data such as observer and temporal variability 
(Thogmartin et al., 2004). It also allows for obtaining spatially explicit error estimates on maps 
of the probability of occurrence (Hepinstall & Sader, 1997). I propose to develop a Bayesian 
approach to model and map patterns of bird occurrence and abundance.  

The study system where I will address these questions is the northern part of the 
Chihuahuan desert, located in south-central New Mexico. Semi-arid ecosystems are of particular 
interest for studying patterns of avian biodiversity. From a scientific perspective, understanding 
the scale(s) at which habitat heterogeneity shapes avian biodiversity is important. Vegetation 
structure and landscape pattern both influence avian biodiversity (e.g., Wiens, 1974; Gutzwiller 
& Barrow, 2001). However, tools for quantifying landscape pattern overlook within-habitat 
variability. The latter is an important structural component of semi-arid ecosystems, and a 
potential driver of avian biodiversity that operates at an intermediate spatial scale. This creates a 
unique research opportunity for developing tools for quantifying within-habitat heterogeneity 
using image texture analysis, and evaluating it strength as a predictor of avian biodiversity. From 
a conservation point of view, developing appropriate tools for monitoring patterns of avian 
biodiversity is critical. The Chihuahuan desert of New Mexico is subject to increasing pressure 
by cattle grazing and climate change, which substantially alters habitat heterogeneity (Huenneke 
et al., 2002). The consequences of these changes are cause for growing concerns. 
 
 
Objectives 
 
The overarching question of my research is: What explains broad-scale patterns of avian 
biodiversity? I will first develop a remote sensing approach to quantify birds’ response to 
habitat heterogeneity. In that section, I will establish a set of measures for quantifying habitat 
heterogeneity, evaluate how well these tools predict bird species richness (chapters 1 and 2), and 
characterize their relevance for capturing characteristics of habitat heterogeneity in different 
scenarios (chapter 3); these tools will be used to answer ecological questions in the second and 
third parts of my research. Secondly, I will develop a series of questions to understand spatial 
patterns of bird occurrence, abundance and nesting success in semi-arid ecosystems (chapters 4 
and 5). In the third section, I will develop statistical tools using a hierarchical modeling 
framework to cope with variability in point count data (chapter 6). 

 The specific questions that I will address in my six chapters are: 
1- How does species richness relate to measures of habitat heterogeneity from high-

resolution imagery? 
2- How does species richness relate to measures of plant productivity and habitat 

heterogeneity from moderate-resolution satellite imagery? 
3- What is the ecological relevance of image texture? 
4- At which spatial scale does habitat heterogeneity determine components of avian 

biodiversity? 
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5- What habitat attributes influence nest success? 
6- How can we cope with variability in point count data for building predictive 

maps of occurrence and abundance? 
 

The outcomes of this research are threefold. From an ecological perspective, this research will 
contribute to understanding the relationships between avian biodiversity and measures of habitat 
heterogeneity at different spatial scales. From a technical perspective, it will provide alternative 
methods to the traditional use of classified imagery for quantifying habitat heterogeneity. Lastly, 
from a statistical perspective, it will provide an analytical framework for point count data and for 
mapping biodiversity components across a range of spatial scales.     
 
 
Background 
 
Understanding species biodiversity  
Understanding patterns of species biodiversity implies a thorough understanding of species 
occurrence and abundance (Bestelmeyer et al., 2003). There is a clear link between biodiversity 
measures, such as richness and diversity, and species occurrence and abundance. Species 
richness is defined as the number of species in a given area; therefore, rare and abundant species 
contribute equally. On the other hand, measures of biodiversity such as the Shannon’s diversity 
index incorporate species’ relative abundance. Equally rich habitats may consequently have 
different diversity values as a function of community structure (i.e., how the total number of 
individuals in the community is distributed among species). In order to understand patterns of 
biodiversity we must, therefore, understand why species occur where they do and what 
determines their abundance.  
 Birds select habitats from a series of cues operating at different spatial scales (Hutto, 
1985). Innate behaviors determine broad-scale decisions such as migration routes and breeding 
ground, whereas the choice of habitat and microhabitat depends on information about habitat 
quality, predation risk, presence of conspecifics, and probability of finding a mate (Hutto, 1985). 
Habitat heterogeneity plays a major role in this multi-scale process. It ranges from determining 
movement patterns among habitat patches (Belisle et al., 2002) and patch occupancy (Heikkinen 
et al., 2004), to determining the extent to which a site satisfies a species’ niche requirements 
(Brown et al., 1995).  

The emergence of the niche theory in the middle of the 20th century sheds some light on 
what shapes species co-occurrence patterns (Hutchinson, 1957). A species’ niche can be defined 
as a hypervolume composed of many axes representing, for example, food, temperature, and 
time of activity. Niche-based theories such as the theory of biodiversity provide insights into the 
factors that explain patterns of species biodiversity. The theory of biodiversity proposed by 
MacArthur (1972) states that there are three main factors affecting biodiversity: habitat 
heterogeneity, climate stability, and productivity. Other factors influencing patterns of 
biodiversity include disturbance (Connell, 1978), latitudinal gradient (Hawkins & Diniz, 2004), 
and climatic gradient (Cueto & Casenave, 1999) . These factors all influence biodiversity to a 
certain degree and at a certain spatial scale (Currie, 1991).  

There is a clear link between the habitat heterogeneity component and niche theory; 
heterogeneous habitats support a greater diversity of species because they encompass a wider 
range of niches. The relationship between habitat heterogeneity and species diversity has been 
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confirmed for different taxons, including birds (MacArthur & MacArthur, 1961; Wilson, 1974; 
Roth, 1976; Luoto et al., 2004), butterflies (Kerr et al., 2001), and mammals (Kerr & Packer, 
1997); these studies cover a broad range of spatial scales, from local to landscape to continental. 
Vegetation structure (MacArthur & MacArthur, 1961) and landscape pattern (Luoto et al., 2004) 
influence avian biodiversity.  

Species richness responds to increased primary productivity in a linear or unimodal 
fashion. This discrepancy stems from the fact that richness-productivity relationships vary across 
spatial scales (Chase & Leibold, 2002). High productivity may result in higher species richness 
because more productive habitats have more resources available  (MacArthur, 1972). However, 
at high productivity, competitive exclusion may also reduce the number of species (Huston, 
1979). This results from one or several resources becoming excessively abundant within a habitat 
to the detriment of others, leading to very few but abundant species (MacArthur, 1972).   
 
Special case of semi-arid ecosystems 
Bird species’ co-existence patterns in forests are closely related to vertical structure. In semi-arid 
ecosystems, however, fine- and coarse-scale habitat heterogeneity can be much more subtle—
understanding resource partitioning in desert birds is thus challenging. In grasslands, which 
constitute an important part of semi-arid ecosystems (Dick-Peddie, 1993), habitat heterogeneity 
is often characterized by horizontal rather than vertical structure (Wiens, 1974). However, tall 
Torrey’s yucca (Yucca torreyi), soaptree yucca (Yucca elata), and cane cholla (Cylindropuntia 
spinorior) occur sporadically, and appear to be an essential resource for some species (St-Louis, 
pers. obs). The increased vertical structure provided by these plants offers perches from which to 
ambush flying insects, as well important nest substrates and singing posts. Understanding the 
factors that determine avian biodiversity and the scale(s) at which they operate remains very 
challenging. This is partly due to a lack of methods for adequately quantifying heterogeneity 
characterized by subtle changes between and within habitat types. 

 
Methods of monitoring biodiversity  
Two main methods are used to predict components of biodiversity using remote sensing: 1) 
direct mapping of species, and 2) indirect mapping of habitat (Nagendra, 2001). Although each 
of those methods has been successfully used in many studies, they all present some limitations 
for mapping bird species richness. The direct mapping of species consists of mapping individuals 
or groups of individuals directly from remote sensing images (e.g., tree crowns (Gougeon, 1995) 
and king penguins (Aptenodytes patagonicus) (Guinet et al., 1995)). These approaches allow 
accurate mapping of species; however, they are mostly limited to large, colonial, or sessile 
organisms such as seabirds or trees.  

To map smaller and more mobile organisms such as birds, scientists mainly rely on 
indirect mapping of their habitats. Large scale patterns of species occurrence or abundance are 
obtained using known habitat association, and adequate landcover maps obtained from  classified 
satellite imagery (e.g., Luoto et al., 2004; Austen et al., 2001; Gutzwiller & Barrow, 2002). The 
use of classified images to map patterns of biodiversity has some limitations. First, the available 
classes may be meaningless to the organism under study. Second, image classification overlooks 
within-habitat heterogeneity, an important structural component of some ecosystems (e.g., 
grassland and shrubland-dominated landscapes). Finally, classification accuracy may be low in 
landscapes with broad ecotones between different habitat types (e.g., grasslands).  
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A third method of monitoring biodiversity using raw, unclassified images, overcomes 
some of the aforementioned limitations. Example includes near-infrared (NIR) to predict Dunlin 
(Calidris alpina) abundance (Lavers & Haines-Young, 1997), or Normalized Difference 
Vegetation Index (NDVI) to predict warbler regional occurrence (Laurent et al., 2005). This 
demonstrates that raw spectral values can be effective in predicting biodiversity. Because there is 
a strong relationship between species richness and vegetation structure (MacArthur & 
MacArthur, 1961), image-based measures of habitat heterogeneity should be incorporated in 
predictive models of biodiversity in addition to spectral values.  

 
Quantifying landscape pattern 
Quantifying landscape pattern is one of the main challenges of landscape ecology. The main 
approaches thus far to complete this task are based on either categorical variables (e.g., 
landcover classification), or point data (e.g., sampling point location) (Gustafson, 1998). 
Landscape indices calculated from categorical maps (e.g., MacGarigal & Marks, 1995) work best 
in habitat with clearly defined patches and low within-habitat variability. However, habitats are 
not always discrete, and classification error due to high within-habitat heterogeneity may induce 
bias in the computation of landscape indices (Wagner & Fortin, 2005; Langford et al., 2006).  

Methods for quantifying spatial heterogeneity based on point data include the use of 
variograms (Gustafson, 1998), which assumes that the variability is similar across space (i.e., 
stationarity) (Legendre & Fortin, 1989). Furthermore, such measures of “global” spatial 
autocorrelation mask local pattern in the data, if present (Fortin & Dale, 2005). Methods 
available for identifying local spatial structure include Local Indicators of Spatial Association 
(LISA) (Anselin, 1995), and the Getis (G*) statistic (Getis & Ord, 1992). Such measures allow 
verifying the assumption of stationarity, and identifying potential outliers (Anselin, 1995).  

Filter-based methods, e.g., image texture analysis, are an alternative to the 
aforementioned approaches and allow quantifying habitat heterogeneity based on raster data 
(e.g., raw remotely sensed data). Image texture analysis addresses some of the limitations 
associated with traditional methods based on categorical variables. In this research, I propose to 
use image texture analysis to quantify spatial pattern within habitats, i.e., habitat texture. This 
addresses current and important needs for developing methods for quantifying spatial 
heterogeneity based on continuous data (Turner, 2005). 

 
What is image texture analysis? 
Image texture is an integral part of all images, and contains information about tonal variations in 
a given area (Harralick et al., 1973). Image texture can be measured using first- and second-order 
statistics (Haralick et al., 1973; Mihran & Jain, 1998). First-order measures (e.g., mean or 
standard deviation of grey tone values (Mihran & Jain, 1998)) are derived from the histogram of 
pixel intensities in a moving window, and can easily be calculated in most remote sensing or GIS 
software. Second-order texture measures (e.g., sum of square variance) are calculated from the 
spatial relationships of pixel values (Haralick et al., 1973). Because texture measures quantify 
spatial heterogeneity, i.e., the complexity and variability of a system property in time and space 
(Li & Reynolds, 1995), they are good candidates for quantifying habitat heterogeneity.  

After their development in the 1970’s (Haralick et al., 1973), first- and second-order 
texture measures substantially improved the field of image processing, and have proven useful in 
a wide range of research avenues, from medical sciences (e.g., cancer research (Petrosian et al., 
1994)) to remote sensing (e.g., image classification (Franklin et al., 2000)). In the latter, image 
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texture substantially improves discrimination between landcover classes (Haralick et al., 1973; 
Coburn & Roberts, 2004; Puissant et al., 2005). Image texture is also used to predict variability 
in leaf area index (LAI) (Wulder et al., 1998) and characterizing grassland management practices 
(Guo et al., 2004). 

To my knowledge, only a few studies incorporate image texture in predictive models of 
biodiversity. Image texture is useful in predicting the occurrence of seven bird species (e.g., 
Song Sparrow (Melospiza melodia), Yellow Warbler (Dendroica petechia), Black-throated 
Green Warbler (Dendroica virens)) in Maine (Hepinstall & Sader, 1997). In Idaho, a change in 
habitat heterogeneity characterized by measures calculated from raw imagery (texture and mean 
spectral value) correlates with the abundance of six bird species at scales ranging from 150 m to 
5 km (Knick & Rotenberry, 2000). Image texture is also useful for characterizing the territories 
of two morphs of the White-throated Sparrow (Zonotrichia albicollis) (Tuttle et al., 2006). 
Testing the use of image texture for quantifying habitat heterogeneity, and predicting broad-scale 
patterns of biodiversity is the necessary next step towards developing new methods for 
quantifying habitat heterogeneity using raw imagery.  
  
 
Study system 
 
This study is conducted on approximately 
282,500 ha of the McGregor Range of Fort 
Bliss Military Reserve located in the 
northern Chihuahuan Desert of New 
Mexico (Fig. 1). The arid climate is 
characterized by average minimum and 
maximum temperatures for the May-July 
time period ranging from 11 to 19 °C and 
30 to 35°C respectively (Western Regional 
Climate Center, 2005). The average annual 
precipitation is approximately 235 mm 
(Schmidt, 1979), although most rain falls 
between July and October. Precipitation 
occurs as very sporadic, but intense events. 
The study area is characterized by seven 
main habitat types, delineated on a 
classification derived from a Landsat TM 
image by Melhop et al. (1996). The 
habitats include two grasslands (Black 
grama grassland and Mesa grassland), four 
shrublands (Creosotebush, Mesquite, 
Sandsage, and Whitethorn), and one tree-
dominated (Pinyon-Juniper) habitat. The 
high level of heterogeneity within several 
of those habitats and the broad ecotones 
that characterize some of the transitions between habitats provides ideal conditions in which to 
test the use of image texture to characterize habitat heterogeneity.  

Figure 1. Study area location and sampling design. 
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Figure 2.  DOQQ’s (1m resolution) of the seven main habitat 
types: A) Black grama, B) Mesa grassland, C) Creosote, D) 
Whitetorn, E) Sandsage, F) Mesquite, and G) Pinyon-Juniper.  
 

Visual inspection of USGS 
digital orthophoto 
quadrangles (DOQQs) of 
the Black grama and Mesa 
grasslands reveals very low 
contrast between adjacent 
pixels (Fig 2A and B). 
Black grama is dominated 
by black grama grass 
(Bouteloua eriopoda), with 
a scattering of cane cholla 
(Opuntia imbricata) and 
Yucca spp. Mesa grassland 
is dominated by blue grama 
(Bouteloua gracilis), which 
occurs in combination with 
black grama, hairy grama 
(Bouteloua hirsute), and 
threeawn grass (Aristida 
spp.) among others. DOQQs 
of creosote shrublands, a 
habitat dominated by 
creosotebush (Larrea 
tridentata), exhibits more 
variability in grey tone 
values than the two 
grasslands, but is still fairly 
homogeneous due to poor 
species richness and low 

ground cover (Fig. 2C). The Whitethorn shrubland in the McGregor range is dominated by 
whitethorn acacia (Acacia constricta), and may include several species of shrub and cacti; 
DOQQs show high variability (Fig. 2D). Sandsage habitat is dominated by the relatively dense 
shrub sandsage (Artemesia filifolia), with many sub-dominants including soaptree yucca (Yucca 
elata), little leaf sumac (Rhus microphylla), four-wing saltbush (Atriplex canescens), and 
mesquite. This image shows high level of contrast induced by the different cover types, but very 
homogeneous spatial distribution of grey tones (Fig. 2E). Mesquite shrublands are characterized 
by mesquite (Prosopis glandulosa.), a multi-stemmed shrub which creates dunes by entrapping 
drifting sand (Hennessy et al., 1983). These shrublands also contain a scattering of soaptree 
yucca, broom snakeweed (Gutierrezia sarothrae), and other small shrubs. Finally, pinyon-
juniper habitat is dominated by Colorado pinyon (Pinyon edulis), one-seed juniper (Juniperus 
monosperma), and alligator juniper (Juniperus deppeana). Pinyon-Juniper habitat ranges from 
savanna, with fewer than 320 trees per hectare, to woodlands with an almost closed canopy 
(Dick-Peddie, 1993). The DOQQs of mesquite and pinyon-juniper habitats exhibit the highest 
spatial variability, induced respectively by mesquite shrubs interspersed with sand (Fig. 2F), and 
scattering of individual trees (Fig. 2G).  
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Data overview 
 
The data that I will use in this research were collected between 1996 and 1998 (Pidgeon, 2000). 
The sample consists of 42 plots randomly located within each of the seven aforementioned 
habitat types (i.e., six plots in each) (Fig. 1). Each plot consists of a 108 ha 12 points grid located 
within a 50 m buffer of contiguous habitat. Appendix A summarizes the data available and how 
it is integrated within each chapter.  
 
Bird data 
Bird data were summarized over the 42 plots between May 1 and June 7, 1996 through 1998. All 
birds seen or heard within 150 m of each point were recorded during 10-min periods. Plots were 
visited 4-5 times during the sampling season. The abundance of each species was calculated as 
the average of the two visits with the highest counts. Plot-level abundance is defined as the 
average abundance of species over the 12 points, while plot-level occurrence is calculated from 
presence or absence across the whole plot during all 4-5 visits. The tally of species from the 4-5 
annual visits across the twelve points will be used as a measure of species richness for each plot 
(Pidgeon et al. 2001). 
 
Nest data 
Intense nest-searching was conducted at three randomly selected plots per habitats (i.e., 21 plots 
total) (Pidgeon et al., 2003). Nest searching focused on the interior 54 ha to ensure that 
occurrence and success of nests are influenced by processes within homogeneous habitat. At 
plots that were not searched intensively, nest finding was incidental during point-counts and 
vegetation surveys. All nests found within the plots were monitored 2-3/week until they failed or 
young fledged. A nest is considered successful if it fledged at least one young, and will be 
assigned a value of 1 or 0. Nest success was estimated at each plot using the Mayfield method 
(refer to Pidgeon et al. (2003) for more details).  
 
Vegetation data 
Vegetation horizontal structure was measured using percent cover data at four subsampling 
points (i.e., subpoints) for each of the 12 points in the 42 plots (Fig 3). The first subpoint was 
centered at the point, while the three others were located at random distances 0-30 m from the 
point. The second subpoint was located at a random direction, while subpoints 3 and 4 were 
located at a 120º and 240 º from subpoint 2 respectively. Percent cover of grass, forbs, shrub, 
cactus (non cholla), cholla, yucca, sand, bedrock, and ground was estimated in 1997 and 1998 
using Braun Blaunquet categories (i.e., 5 =>75%, 4=50-75%, 3=25-50%, 2=5-25%, 1=up to 5%, 
+ =few, r =solitary) at five, 1 m2 circular sites associated to each subpoint. The first site was 
centered on the subpoint, while the four others were in the Cartesian directions at random 
distances between 0-5 m. Vegetation vertical structure was measured at sites established 
following the same sampling protocol as the cover data, but at different location. Measurements 
were made using the Wiens’ pole technique at four sites located at random distances between 0-5 
m of the subpoint (Fig 3) (Rotenberry & Wiens, 1980; Wiens & Rotenberry, 1981). The number 
of individuals of each plant species touching each 0.25 m section on a vertical pole of 3/4in 
diameter was recorded.  
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Remote sensing data 
The remote sensing data consist of a set of DOQQs collected in 1996, with a spatial resolution of 
1m. I will also use a digital elevation model (DEM) with a spatial resolution of 10 m, and a 
Landsat TM image acquired in June 1996 with a spatial resolution of 30 m. Melhop’s (1996) 
classification will be used to calculate landscape indices for different cover classes. The 
classification was conducted using Landsat 5 TM scenes acquired between 1992 and 1997. 

 
 

SECTION I 
A REMOTE SENSING APPROACH TO QUANTIFY BIRDS’ RESPONSE TO HABITAT 

SPATIAL HETEROGENEITY 
 
1. High-resolution image texture as a predictor of bird species richness 
This paper is in press in Remote Sensing of Environment. I will provide only a brief summary 
here. For more details, refer to St-Louis et al. (2006). 
 
Monitoring broad-scale patterns of biodiversity in semi-arid landscapes is challenging. Relying 
on classified images alone might result in misleading conclusions because of the potentially large 
source of error associated with classifying landscapes with high within-habitat heterogeneity 
(Wagner & Fortin, 2005). Image texture analysis is a promising alternative because it quantifies 
the spatial heterogeneity of raw pixel values (Haralick et al., 1973), and may correlate with some 
habitat structural attributes that birds key in on. In this paper, I evaluate image texture as a tool 
for predicting bird species richness in a semi-arid landscape of New Mexico. I expect a positive 

Figure 3. Sampling design structure. For each 
plot, there are 12 points (A). Vegetation 
measurements are conducted at four subpoints 
(B) associated to a point, and data are collected 
at five sites (C) at each subpoint (refer to text for 
more details). 
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relationship between species richness and image texture. Specifically, I: 1) derive first- and 
second-order texture measures based on digital orthophotos using different moving window 
sizes, 2) evaluate the relationship between species richness and image texture using linear 
regression models, and 3) determine which window sizes and which measures are best 
predictors of species richness.  

 
Approach  
 
Bird data 
The average species richness at each plot across the three years was used in this analysis because 
there is no year effect on species richness (ANOVA for repeated measures; unpubl. data). 
  
Image texture analysis 
I calculated five first- and nine second-order texture measures (total of 14) for each of the 42 
plots based on DOQQs. All roads were masked to control for texture induced by artificial, 
human-made features. I used eight different moving window sizes, ranging from 3x3 to 101x101 
pixels. At each plot, I summarized texture by calculating the mean and standard variation of 
pixel values from the texture images. An example of a texture image is provided in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Example of standard deviation filter applied to one of the original 42 108-ha plots (A) 
with B) a 15x15 and C) a 31x31 moving window.  
 
2.4 Statistical analyses  
I assessed the relationship between species richness and mean and standard deviation of texture 
measures at each window sizes using univariate models, and evaluated which window size is the 
best for each texture measure using Akaike Information Criterion (AIC) weights (Burnham and 
Anderson 2002). I compared the best model for each measure of texture using the corrected AIC 
(AICc) (Hurvich & Tsai, 1989). The use of AICc is recommended for small sample sizes, 
specifically when the number of samples divided by the number of parameters is smaller than 40. 
 I used multiple regression models to evaluate the contribution of multiple image textures 
in predicting species richness. For each window size, I first fitted a full model containing the 28 
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summarized measures of texture (14 measures * 2 summary statistics). Then, I selected the best 
model using a stepwise approach. I used a p-value cutoff of 0.05 to exclude variables that are 
non-significant (Venables & Ripley, 2002).  

I incorporated elevation variables in the best univariate models. I calculated four 
elevation variables at each plot using a Digital Elevation Model (DEM): coefficient of variation 
(CV), mean, minimum and maximum elevation. The coefficient of variation is defined as the 
standard deviation divided by the mean.  

 
Summary of the results 
Image texture varies across habitat types, from high texture in pinyon-juniper, to intermediate in 
shrublands, to low in grasslands (St-Louis et al., 2006). Single image texture predicts up to 57% 
of the variability in species richness. The best measures of texture for explaining species richness 
include first-order standard deviation (adjusted R2 = 57%) and average (49%), and second-order 
sum of square variance (54%), and information measure of correlation 1 and 2 (54 and 44% 
respectively). The window sizes that are best vary among texture measures, but in general there 
is not a single one that produces substantially better predictions. Incorporating multiple measures 
of texture in the same model or incorporating measures of elevation predicts up to 63% of the 
variability in species richness. Coefficient of variation is the best predictor of species richness 
among the elevation variables. Incorporating multiple measures of texture and habitat type from 
a coarse classification explains 76% of the variability in species richness. These results suggest 
that image texture is a promising tool for monitoring and mapping patterns of avian biodiversity.  
 
Contribution 
This research contributes to the field of remote sensing by expanding current applications of 
image texture analysis to address ecological questions. It contributes to the field of landscape 
ecology by providing tools for quantifying habitat heterogeneity based on continuous data. 
Finally, it contributes to our understanding of variability in semi-arid ecosystems habitat 
heterogeneity, and its relationship with bird species richness.  
 
 
2. Image texture and productivity from mid-resolution imagery (Landsat TM) as 
predictors of bird species richness in semi-arid ecosystems 
 
Remote sensing technologies provide unique opportunities to model broad-scale patterns of 
biodiversity as a function of various habitat attributes. In my first chapter, I show that image 
texture from DOQQs is a good predictor of bird species richness (St-Louis et al., 2006). These 
results suggest that image texture acts as a surrogate for habitat heterogeneity. In addition to 
habitat heterogeneity, productivity (MacArthur 1972) and range in elevation also influence 
biodiversity (Hurlbert & Haskell, 2003). In this chapter, I propose to investigate the relationship 
between environmental factors (elevation, habitat texture, and productivity) measured from mid-
resolution images (digital elevation model (10 m) and Landsat TM (30 m)) and bird species 
richness.  

The use of multi-band imagery has several advantages over DOQQs. Each Landsat TM 
band emphasizes different landcover characteristics (e.g., water bodies, soil, or vegetation) 
through varying wavelengths. For example, the red band reflects chlorophyll absorption and is 
commonly used for plant differentiation (Kerr & Ostrovsky, 2003). Productivity indices can also 
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be readily calculated using multi-band imagery (Kerr & Ostrovsky, 2003). Preliminary results 
show that image texture calculated on bands 5 and 7 predicts 65% and 62% of the variability in 
species richness (St-Louis, unpubl. data). 

My main goal in this chapter is to explain patterns of bird species richness using 
measures derived from multi-bands Landsat TM imagery. Specifically, I will: 1) assess the 
relationship between texture measures calculated from each color band of a Landsat TM 
image with 30 m resolution, elevation from a DEM with 10 m resolution, productivity indices, 
and bird species richness, and 2) compare the effect of window size on the strength of the 
prediction.  

Given that habitat heterogeneity is one of the main components of biodiversity 
(MacArthur, 1972), my hypothesis is that there is a positive relationship between measures of 
texture and bird species richness. I also hypothesize a positive relationship between productivity 
measures and species richness. In this ecosystem, areas with more abundant above-ground 
vegetation generally support more species (St-Louis, pers. obs.). I expect species richness to be 
positively correlated to range in elevation, because at this scale, range in elevation is usually 
accompanied by a higher diversity of vegetation structure and composition. I expect a negative 
relationship between species richness and mean elevation because vegetation structure decreases 
at higher elevation in this ecosystem.  
  
Approach 
 
Bird data 
As described in chapter 1, I will use the plot-level species richness value averaged across the 
three years.  
 
Remote sensing images 
I will use an unclassified Landsat TM scene from June 1996 with a spatial resolution of 30 m to 
calculate image texture and productivity indices. The image was georectified, but no atmospheric 
correction was performed. I will assume this effect to be minimal in my analysis because it is 
likely to be consistent across the image.  

I will calculate mean and standard deviation of the soil-adjusted vegetation index (SAVI) 
as a measure of productivity at each plot. SAVI is recommended in habitats with less than 50% 
ground cover (Huete, 1988), and is calculated using the following formula: 
 
SAVI = [(NIR – Red) / (NIR + Red + L)] * (1 + L),  
 
where L is a correction factor whose values range from 0 (high vegetation cover) to 1 (low 
vegetation cover) (Huete, 1988).  
 
Image texture analysis 
I will calculate fourteen image texture measures (i.e., same as chapter 1) at each of the 42 plots 
for six of the Landsat TM bands (TM1, TM2, TM3, TM4, TM5, and TM7). For each of those 
bands, I will also calculate the mean reflectance value at each plot. Because the resolution is 
much coarser than the DOQQs, I will calculate image texture at four window sizes (i.e., 3x3, 
5x5, 11x11, and 21x21 pixels).  
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Statistical analysis 
I will use a linear modeling approach similar to chapter 1 to analyze the relationship between 
image texture, elevation, and productivity on bird species richness. I will first evaluate the effect 
of each image texture measure separately, and will then evaluate the contribution of several 
measures of texture, elevation, and productivity using multiple regression models.  
 
Expected outcomes & contribution 
This chapter will broaden our understanding of the relationships between bird species richness 
and measures of elevation, heterogeneity, and productivity. It will also enhance our 
understanding of how image texture derived from satellite imagery can predict patterns of 
species richness in a semi-arid ecosystem. The results from this chapter will contribute to both 
the field of ecology and remote sensing, by broadening our understanding of bird-habitat 
relationships and improving methods for characterizing habitat heterogeneity using readily 
available data.  
 
 
3. Use of image texture in ecology: application and ecological relevance 
 
One of the main challenges of landscape ecologists is to develop tools for quantifying habitat 
heterogeneity. In my first chapter, I show that image texture can be a powerful tool for 
quantifying habitat heterogeneity and predicting bird species richness. Understanding the 
features that drive different patterns of texture is a crucial step for explaining why habitat texture 
is important for wildlife populations. Here, I propose to study the ecological relevance of image 
texture measures and compare them with a more commonly used method for quantifying 
heterogeneity using continuous data, i.e., variograms.  

The relevance of measures of landscape pattern (i.e, landscape indices) has been mainly 
assessed using simulated categorical maps, where the composition and spatial configuration of 
habitat patches varies (Li & Reynolds, 1994). Simulated binary maps are also used to study the 
relationship between periodicity and semivariance functions (Radeloff et al., 2000), and study 
the sensitivity of landscape indices to landscape composition and configuration (Remmel & 
Csillag, 2003). Studies that have used continuous data to verify the sensitivity of heterogeneity 
measures to different scenarios of spatial heterogeneity are sparse. In one current study, 
continuous landscapes are simulated using conditional autoregressive models (CAR) to test the 
sensitivity and accuracy of boundary detection techniques (Philibert et al., in prep). 

The main objective of this paper is to study the ecological relevance of image texture. 
The specific objectives are to: 1) calculate and compare measures of heterogeneity (texture and 
semivariance) for simulated landscapes representing scenarios from highly heterogeneous to 
homogeneous, 2) calculate heterogeneity measures from aerial photographs and Landsat 
scenes for different “real” ecosystems, from closed-canopy to open grasslands, and 3) compare 
the textural characteristics of “real” versus simulated landscapes. I expect image texture to 
vary as a function of habitat heterogeneity, from low texture in homogeneous grasslands to high 
texture in highly fragmented forests ecosystems.  
 
 
 
 



 14

Approach 
 
Simulating continuous landscapes 
To simulate data, I will create 1500 X 1500 pixels raster maps, an arbitrary area corresponding to 
225 ha with a pixel size of 1-m2. Because I want to compare texture measures obtained using 
fine- and coarse-resolution images, I will aggregate the pixel values obtained from the 
simulations (see explanation below) into 50 x 50 pixel images, with pixel size of 900 m2. This 
will correspond to the spatial resolution of a Landsat TM scene. 

I will simulate spatial data following three main steps: 1) simulating broad-scale pattern 
within a map (e.g., spatial variability in soil background), 2) simulating fine-scale spatial 
variability in habitat features (e.g., clusters of shrubs), and 3) aggregating the broad and fine-
scale patterns. To simulate broad-scale pattern within a map I will create a grid composed of 
points 1m apart. Values will be simulated at each point according to a given distribution (e.g., 
Gaussian) and spatial autocorrelation function. To simulate fine-scale variability, I will simulate 
spatial point processes according to a Poisson cluster process. The distribution and size of 
clusters will vary according to the mean parameter of the Poisson distribution. I will then count 
the number of points in a 1-m pixel size grid overlay. To obtain a final value for each map, I will 
sum the broad-scale and fine-scale values at each grid point. The advantage of using such 
approach is that it incorporates spatial heterogeneity at different spatial scales.  
  
Real data 
DOQQs and Landsat TM images will be used to compare the aforementioned scenarios to real 
landscapes. I will clip the remote sensing images obtained for a range of ecosystems, from semi-
arid grasslands of New Mexico to boreal forests, using 225 ha squares. I will create a histogram 
of frequency distribution of pixel values and will compare the level of contrast of those images 
with the simulated scenarios.  
 
Quantifying image texture & semivariance 
I will compute five first-order and nine second-order measures of image texture for each 
simulated and real landscapes. I will calculate image texture at two different window sizes for 
each level of resolution (3x3 and 101x101 for the fine resolution maps and DOQQs, and 3x3 and 
21x21 for the coarser resolution map and Landsat scenes). For each map, the mean and standard 
deviation of image texture will be calculated. I will use Matlab® 7.0.4.365 (TheMathWorks, Inc., 
1984-2005) to simulate maps and calculate image texture. I will also compute variograms for 
each simulated and real landscapes. 
 
Sensitivity analysis 
To analyze the sensitivity of a given texture measure to the simulation parameters (e.g., mean of 
the Poisson process, autocorrelation function), I will create a series of graphs showing: 1) 
frequency distribution of texture values for each simulation parameters combination, and 2) 
mean and standard deviation of texture value as a function of the simulation parameters. I will 
also build correlation matrices to evaluate the correlation between different measures of texture. 
Texture measures from real data will be incorporated in those graphs for comparison. Finally, I 
will compare variograms between the simulated and real landscapes.   
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Expected outcomes & contribution 
The expected outcomes from this chapter include first a set of tools available for ecologists for 
quantifying spatial heterogeneity from remotely sensed data. Also, it will result in a broader 
understanding of the relationships between measures of image texture, and their relevance in 
detecting spatial pattern in different ecosystems. This will represent substantial advances in the 
field of landscape ecology because it will provide a thorough understanding of a method for 
quantifying habitat heterogeneity that has been rarely used by ecologists, but has great potential.  
 
 

SECTION II 
 UNDERSTANDING PATTERNS OF AVIAN BIODIVERSITY IN SEMI-ARID 

ECOSYSTEMS 
 

4. Avian biodiversity responses to habitat heterogeneity in the Chihuahuan Desert of New 
Mexico. 
 
In my first chapters, I develop tools for quantifying broad-scale patterns of heterogeneity using 
continuous data and assessed how accurately they predict species richness. My fourth chapter 
seeks to explain why we observe these patterns, through a thorough analysis of the fine- and 
broad-scale factors determining avian biodiversity.  

Habitat heterogeneity affects not only species richness (MacArthur, 1972), but also 
patterns of occurrence and abundance. Bird occurrence patterns correlate with vegetation 
structure in North American grasslands (Wiens, 1974). Furthermore, the vertical complexity of 
vegetation explains species diversity in the shrub steppe environments of North America 
(Rotenberry & Wiens, 1980). Broad-scale heterogeneity calculated from a classified image of 
grasslands and shrublands also determines patterns of species abundance, occurrence, and 
species richness in the Chihuahuan Desert of Texas (Gutzwiller & Barrow, 2001). In the 
Chihuahuan Desert of New Mexico, avian biodiversity shows patterns that vary across habitats, 
from high species richness in pinyon-juniper habitats, intermediate in shrublands, to low in 
grasslands (Pidgeon et al., 2001). This reflects variability in vegetation structure, i.e., grassland 
lacks the complex vertical structure inherent to the shrubland and pinyon-juniper habitats. I 
propose to evaluate the contribution of fine- and broad-scale heterogeneity in explaining species 
occurrence, abundance and other measures of biodiversity. In addition to habitat heterogeneity, 
competition and productivity also play an important role in determining patterns of occurrence 
and abundance (Cody, 1981). Through my analyses, I will examine the role of inter-specific 
competition through the analysis of species co-occurrence patterns, and will assess the role of 
productivity in determining species occurrence and abundance.  
 The main objective of this paper is to relate avian biodiversity to habitat heterogeneity in 
a semi-arid ecosystem. Specifically, I propose to: 1) evaluate fine- and broad-scale factors 
determining patterns of occurrence and abundance, 2) evaluate the fine- and broad-scale 
factors determining species richness and diversity, and 3) examine if gradients of habitat 
heterogeneity determine community structure. Birds are thought to select habitat following a 
multi-scale procedure (Hutto, 1985). Therefore, I expect species occurrence to be determined 
mainly by broad-scale factors, whereas fine-scale factors will play a larger role in determining 
species abundance. I expect a positive relationship between measures of habitat heterogeneity 
and measures of biodiversity.  
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Approach 
 
Bird data 
I will use bird annual abundance data at each plot, and will calculate relative abundance of each 
species. I will calculate bird species diversity (H) for each year using the Shannon’s diversity 
index:  
 
H = -sum (pi*log (pi)), where pi is the proportion of individual of species at a plot. 
 
Vegetation structure 
I will derive measures of vegetation structure using cover and foliage height diversity 
information. I will first summarize the percent cover and average number of hits in the first 
section of the pole for each point as the average percent cover of each class and the average total 
percent cover of vegetation (incl. grass, forbs, shrub, cactus (cholla and non cholla), and yucca). 
Then, I will take the average and standard deviation of cover and number of hits in the first 
section over the 12 points to obtain values of horizontal structure. I will use the median of the 
range of percentage of a given class as a value of percent cover. I will assign a value of 1% to the 
category “few”, and a value of 0.5 was assigned to the category “solitary”.  

For each site, I will calculate foliage height diversity using the Shannon’s diversity index, 
where pi is the proportion of individuals of all species in a given section of the pole. Other 
vertical structure measures include the average total number of hits per pole, and the average 
maximum height of vegetation hitting the pole at a point (averaged over the 20 sites) (Rotenberry 
& Wiens, 1980). I will take the average of the 12 points to calculate plot-level information on 
vegetation structure.  

 
Habitat texture 
The most relevant measure(s) of image texture from chapter 2 will be used to quantify plot-level 
habitat heterogeneity. I will also use SAVI from chapter 2 as a measure of productivity at each 
plot. 

 
Landscape pattern 
I will first quantify landscape pattern using average and standard deviation of image texture in a 
1, 2, and 5 km buffer around each plot. This includes scales at which desert bird communities are 
known to respond to landscape heterogeneity (Gutzwiller & Barrow, 2002). I will use the same 
texture measure as were used to assess habitat texture, as mentioned above. I will calculate 
landscape indices from the classified image at three spatial scales: a 1, 2, and 5 km buffer around 
each survey plot. The landscape indices will include measures of landscape composition (e.g., 
class area) and measures of landscape heterogeneity (e.g., total edge) (Gustafson, 1998). 
  
Statistical analyses 
I will use logistic regression to analyze the contribution of fine- and broad-scale factors in 
explaining species occurrence, and will use multiple regression models for species abundance 
data. I will use stepwise regression to choose the best model out of a set of possible predictors. 
The former analysis will be conducted for species occurring at more than 10 plots only. The 
analysis of species co-occurrence can help rule out the effect of inter-specific competition in 
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determining species abundance patterns (Wiens & Rotenberry, 1981). I will thus build 
correlation matrices between species abundance and occurrence to examine patterns of co-
occurrence among species.   

Diversity measures such as the Shannon’s diversity index are sensitive to rare or 
abundance species. I will create relative abundance/rank graphs to evaluate the contribution of 
different species in explaining pattern of diversity at a plot. I will also analyze the contribution of 
fine- and broad-scale factors to explaining patterns of species diversity and species richness 
using multiple regression models.  

The analysis of community structure can contribute to understanding species diversity. I 
will analyze how the community varies along gradients of habitat heterogeneity using non-metric 
multidimensional scaling (NMDS). NMDS is recommended for analyzing ecological data, 
particularly when the data are non-normal (McCune et al., 2002). I will first create two 
ordinations for: 1) species occurrence and 2) species abundance. Second, I will overlay a matrix 
of environment covariates to evaluate how much habitat heterogeneity contributes in explaining 
spatial patterns of occurrence and abundance.  
 

Expected outcomes and contribution 
The expected outcomes form this research include a series of ecological models which will 
broaden our understanding of the fine- and broad-scale predictors of avian biodiversity in a semi-
arid landscape. The spatial scale at which spatial heterogeneity matters will also be assessed 
from those results. These results will greatly contribute to the field of ecology and conservation 
biology. In an ecosystem where habitat heterogeneity is rapidly changing, this represents 
essential information for successfully adapting conservation strategies to evolving landscape 
conditions.  
 
 
5. What habitat features affect patterns of nest success in semi-arid ecosystems? 
 
Understanding patterns of nest success is important for understanding population dynamics. 
Broad-scale assessment of population status and trend is often conducted using abundance data; 
however, areas of high abundance are not necessarily correlated with high nest success, 
particularly in areas with high anthropogenic disturbances (Van Horne, 1983; Bock & Jones, 
2004). Conservation actions based on patterns of abundance only in these areas of disconnect 
may actually degrade preferred habitat for focal species. In the Chihuahuan Desert of New 
Mexico, for example, habitat dominated by mesquite shrubs hosts high densities of the Black-
throated Sparrow. However, nesting success data suggest that this habitat is a sink for this 
species (Pidgeon et al., 2003; Pidgeon et al., 2006). The difficulty of assessing broad-scale 
patterns of nest success stems from the fact that broad-scale data on nest success are not 
available (Pidgeon et al., 2003). This is particularly true for desert ecosystems, where only a few 
studies have focused specifically on the factors that drive nest success (Kozma & Mathews, 
1997; Mason et al., 2005). The data available for the McGregor Range of Fort Bliss in New 
Mexico offers a unique opportunity to study the fine- and broad-scale factors influencing nesting 
success in a semi-arid ecosystem.   

Nest success is influenced by a number of factors across multiple scales. Habitat 
heterogeneity affects nest success because it creates new opportunities for predators (Rodewald 
& Yahner, 2001), and because it increases nest parasitism by cowbirds (Brittingham & Temple, 
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1983). Predation is one of the main causes of nest failure for most land birds (Rotenberry & 
Wiens, 1989) and is influenced by the location and type of nests (Mason et al., 2005). In the 
Chihuahuan Desert, open-cup ground nests may be less predated than nests located in shrubs 
based on a study on artificial nests (Mason et al. 2005). A possible explanation is that large 
predators use patches of shrubs as corridors. High predation rates also occur in mesquite habitat, 
particularly for open-cup nests located 1-3 meters above ground (Mason et al., 2005). Cowbird 
parasitism affects species nest success in the Chihuahuan Desert, particularly in Pinyon-Juniper 
habitats (Goguen & Mathews, 1998). Other factors contributing to the differences in nesting 
success across habitat are microhabitat conditions such as temperature and plant productivity 
(i.e., as a substrate for food and nest establishment), and small mammal predation. 

In this chapter, I will use a multi-scale approach to understand the habitat attributes that 
influence nest success in the northern Chihuahuan Desert of New Mexico. Specifically, I want to 
understand: 1) what fine-scale habitat factors determine nest location, and 2) what fine- and 
broad-scale habitat attributes characterize nest success. This will provide new insights into 
processes affecting the reproductive potential of the avian community in an open canopy, semi-
arid system. I expect nest success to be significantly related to local habitat attributes such as 
vegetation vertical structure and percent cover, nest location, and nest type, habitat texture and 
landscape indices such as number of patches and percent cover within the plot.  
 
Approach 
Bird abundance data 
Plot abundance values for each year/species separately will be used in this analysis.  
 
Nest success 
Nest success at each individual nest will be used. I will only consider species for which more 
than 50 nests were surveyed over the course of three years. A total of eleven species satisfied this 
condition, including Black-throated Sparrow (n = 430 nests), Northern Mockingbird (Mimus 
polyglottos) (n = 222), Western Kingbird (Tyrannus verticalis) (n = 185), Scott’s Oriole (Icterus 
parisorum) (n = 136), and Crissal Thrasher (Toxostoma crissale) (n = 117). I will also calculate 
the percent of successful nest for each plot/year combination.  
 
Vegetation data & Habitat heterogeneity measures 
Vegetation data at nests were collected using the same procedure as the data collected at points 
within plots. Vertical and horizontal vegetation structure will be summarized at each nest using 
the same procedure as described in chapter 4. These will define fine-scale habitat attributes for 
each nest. Landscape indices and texture calculated at the plot-level, and within 1, 2, and 5 km 
buffers from chapter 4 will also be used to quantify habitat texture and landscape pattern at each 
of the 21 plots searched intensively.  
  
Statistical analysis 
To evaluate if the vegetation at the nest is different than surrounding available habitat (i.e., 
selected versus available), I will use repeated measures ANOVA (Analysis of Variance) for each 
local vegetation variable, and each species. I will compare habitat attributes at the nest to those 
of the four closest points.  

I will use conditional logistic regression models to evaluate the influence of local (fine-
scale vegetation structure, nest substrate, nest type), habitat texture and landscape indices on 
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nesting success for the eleven species separately. Conditional logistic regression will be used 
because the observations from several nests are grouped, according to the plot in which they 
were found and the year. I will use multiple regression models to evaluate the influence of the 
aforementioned factors on the percentage nest success at a given plot. I will perform a logit 
transformation of the percent nest success prior to conducting the model.  
  
Expected outcomes and contribution 
The expected outcomes from this paper include a broader understanding of the habitat attributes 
influencing nest success in semi-arid landscapes. For the species under study, this study will 
quantify local population response to a set of environmental conditions. With the rate at which 
habitats are changing in semi-arid ecosystems, this represents significant contribution for the 
field of ecology and conservation, to understand potential impact of management decisions on 
avian population dynamics.   

 
 

SECTION III  
MASTERS IN BIOMETRY 

 
6. Coping with variability in point count data: a hierarchical approach to modeling and 
mapping species abundance and occurrence  
 
Understanding broad-scale patterns of biodiversity is crucial from a scientific point of view, but 
also for the management of biological resources. Remote sensing and GIS technologies offer 
exciting opportunities for mapping biodiversity over broad spatial scales (Nagendra, 2001). 
Maps play a crucial role in gaining better knowledge of species distribution and abundance, 
which can be used for informing better conservation strategies. Statistical models used for broad-
scale mapping of biodiversity are built from existing data on the occurrence and abundance of 
species and environmental covariates. The problem is that the data may come from numerous 
sources, be collected at different spatial and temporal scales, and be of variable quality. This 
presents numerous challenges for using classical statistical techniques. Ecologists and 
statisticians are developing sophisticated methods for modeling complex processes with robust 
estimates of predictive error at given locations.  

The deterministic approach to modeling wildlife occurrence patterns builds upon classical 
statistical inference techniques, where species occurrence patterns or other ecological response 
variables of interest (e.g., nest success, abundance) are modeled as functions of environmental 
covariates. One of the drawbacks of the classical methods is that they do not provide a 
convenient framework to incorporate the influence of multiple spatial scales (Clark, 2005), or 
known information from previous studies (Ellison, 2004). Also, problems may arise when the 
observations are correlated across space and time. In this chapter, I propose a Bayesian approach 
to model and map broad-scale patterns of species occurrence and abundance using data from 
previous chapters.  

The Bayesian approach is gaining popularity among ecologists, primarily because it 
allows for incorporating model complexity (Clark, 2005). Using a Bayesian approach for 
modeling wildlife populations addresses common problems found in ecological data, such as 
irregular sampling, and differing spatial resolution of environmental and response variables 
(Gelfand et al., 2006). Recent use of a Bayesian approach in ecology includes habitat mapping 
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(Aspinall & Veitch, 1993), assessing the relationship between raw imagery data and bird 
occurrence (Hepinstall & Sader, 1997), predicting the spread of ecological processes (Wikle, 
2003), and predicting bird abundance and occurrence (Thogmartin et al., 2004). The complexity 
of the calculations required for these analyses is nontrivial, but the availability of fast computers 
and modern statistical software has reduced this limitation.  

There are several advantages of using a Bayesian approach to analyze point-count data 
(Thogmartin et al., 2004; Thogmartin et al., 2006). First, there is an inherent degree of variability 
among observers. Second, the detection rate may vary as a function of time of day or habitat 
characteristics (St-Louis, pers. obs.). Lastly, point counts surveyed at a given day are most often 
spatially structured along roads (e.g., Breeding Bird Survey data), or within stands of similar 
characteristics (e.g., Ontario Forest Bird Monitoring Program). A Bayesian method for mapping 
point count data is described in Royle (2002). A Bayesian approach could accommodate the 
spatial structure of variables and prior information on detection rates into the models. Another of 
the advantages of using a Bayesian approach is that it generates error estimates on the output 
probability of occurrence maps (Hepinstall & Sader, 1997).  

In this chapter, I want to understand broad-scale patterns of bird occurrence and 
abundance using a Bayesian modeling approach to mapping biodiversity. I will evaluate if we 
gain new ecological insights by analyzing bird-environment relationships at the point level 
rather than summarizing across the whole plot. I will take a Bayesian statistical approach that 
will account for the spatial structure of the data and variability in data quality.  
  
Approach 
Data 
For this analysis, I will use bird data at the point level (i.e., 12 points per plot). I will use the 
occurrence and abundance of birds for each year separately. For quantifying the environmental 
covariates, I will also calculate measures of elevation, heterogeneity, and productivity at the 
point level by summarizing the results in chapter 2 at 150-m buffers around each point. I will use 
the landscape indices calculated in chapter 4 to summarize plot-level habitat heterogeneity. 
 
Statistical modeling 
I will use a Hierarchical Bayes modeling approach to build models that incorporate information 
on data quality, spatial autocorrelation, and random effects of year. Bayesian inference generates 
posterior probabilities of the model conditional on the data, and is structured as follows: 
 
p(θ|data) α p(data| θ) • p(θ),  
 
where p(data| θ) is the likelihood, and p(θ) is the prior (Clark, 2005). The later allows for the 
incorporation of known information about the distribution of the parameters θ’s. Scientists may 
use informative or non-informative priors, depending on their knowledge about the distribution 
of the parameters (Ellison, 2004). I will use the posterior distribution of the parameters given the 
data to predict new values of abundance and probability of occurrence at different locations 
given values of environmental covariates.  
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 The structure of a model of bird occurrence as a function of environmental covariates is 
provided in Figure 5. The ultimate goal of this model is to generate parameter estimates for the 
environmental covariates (fixed effects), and taking into account different sources of variability 
(random effects). The parameters estimates will then be used to map the probability of 
occurrence (or species abundance) at a given location given environmental covariates. In a first 
time, the observed bird occurrence will be modeled as a function of true occurrence and an error 
term associated with observer, time of day, habitat type and wind. Second, I will model bird true 
occurrence as a function of environmental covariates (fixed effect). The solid arrows in this 
second part of the model represent parameter estimates, to which I will assign prior distribution. 
I will also incorporate in the model random effects for year and spatial autocorrelation. A similar 
approach can be taken to model bird abundance data. The hierarchical structure of this model 
stems from the fact that: 1) data are gathered at two spatial scales (point and plot level), and 2) 
parameter estimates will be assigned prior, and hyperprior distribution when applicable.  

 

Figure 5. Example of the structure of a model used to predict bird occurrence. Variables in 
dashed boxes represent potential random effects, while the others represent fixed effects. Words 
in italic specify the scale of data collection. 
 
Expected outcomes and contribution 
The expected outcomes from this chapter are twofold. First, it will generate species occurrence 
and abundance maps throughout the McGregor Range. These maps will be useful for managing 
species and making decisions on the intensity of military activities in areas of high value for 
maintaining biodiversity. Second, it will provide a methodological framework to analyze point 
count data for taking into account different sources of variability. These results will inform 
ecologists and conservation biologists in providing them with the necessary methods to produce 
maps used for decision-making.   
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Significance of the research 
 
From an ecological perspective, the proposed research will broaden our scientific understanding 
of broad-scale patterns of species biodiversity. Specifically, it will help understanding how 
habitat heterogeneity shapes patterns of avian biodiversity in semi-arid ecosystems. These 
ecosystems provide unique opportunities and challenges for investigating birds’ response to 
habitat heterogeneity because of the potentially high variability within habitats. The work that I 
propose characterizes structure in environmental variables not only at the fine- and broad-scales, 
but also at an intermediate scale (i.e., habitat texture) not taken into account in more traditional 
avian ecology research. This will represent substantial advances in ecology by providing a 
thorough understanding of the relationship between biodiversity and habitat heterogeneity at the 
fine- (vegetation structure), intermediate- (habitat texture), and broad- (landscape pattern) scales.    

The desertification of semi-arid ecosystems substantially modifies habitat heterogeneity; 
the increase in shrublands at the expense of grasslsands is the most striking evidence of this 
change. Identifying the environmental factors that contribute to higher bird diversity and 
abundance, and that controls patterns of occurrence (chapter 4) will broaden our understanding 
of the potential consequences of a shift from grasslands to shrublands in this ecosystem. This 
will lead to better informed conservation strategies.   

From a technical perspective, my research will broaden our understanding of available 
methods for quantifying habitat heterogeneity from remotely sensed data. Results from this 
research will address issues related to the use of traditional image classification methods for 
quantifying habitat heterogeneity and mapping patterns of biodiversity, particularly in habitat 
with high within-habitat heterogeneity and soft boundaries. The use of measures of heterogeneity 
based on raw satellite data will improve the accuracy of predictive models of occurrence and 
abundance. Testing the ecological relevance of image texture for capturing habitat heterogeneity 
in different ecosystems (chapter 3) will provide a baseline for ecologists interested in using them, 
which will substantially advance the field of landscape ecology. For remote sensors interested in 
semi-arid ecosystems, my second chapter will provide insights on the use of productivity indices 
and multiple Landsat TM bands to capture important aspects of bird habitats. Comparing results 
from Landsat TM imagery and DOQQs (chapter 1) will provide significant insights into how 
different grain and window sizes contribute to the analysis of image texture.   
 Lastly, from a statistical perspective, the hierarchical modeling approach that I propose 
in chapter 6 will help to reveal the consequences of data aggregation and uncertainty in 
ecological models of point-count data. If successful, a hierarchical approach will be very 
beneficial to the analysis of large point-count databases, such as the Breeding Bird Survey data. 
It will broaden our understanding of the implications of ecological modeling when confronted 
with data collected at multiple scales and of varying quality.  
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Appendix A. Data used in different chapters 
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Appendix B. Proposed timeline 
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