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Introduction 7 

The Wildland-Urban Interface (WUI) defines areas where settlements intersect with high 8 

amounts of wildland vegetation cover which causes wildfire hazard (Radeloff et al. 2018). The 9 

WUI is expanding and causes many biotic and abiotic implications for the environment, 10 

including declining biodiversity, fragmentation of habitat, and changes in disturbance 11 

characteristics (Bar-Massada et al. 2014; Carlson et al. 2023; Syphard et al. 2009). Mapping and 12 

monitoring WUI expansion provide important information on where natural ecosystems are 13 

threaten (Lampin-Maillet et al. 2009; Radeloff et al. 2018; Stewart et al. 2009). 14 

The Mediterranean-climate ecosystems are especially important as fire has an ecological 15 

role to preserve habitat for many endemic species (Keeley 2012; Keeley et al. 2011a), while also 16 

putting humans living within the WUI at high fire risk (Radeloff et al. 2018). Human activity is a 17 

major driver and stressor affecting environmental changes and disturbances in addition to 18 

climate variation (Balch et al. 2017; Bowman et al. 2020). This reduces ecosystem resilience, 19 

shifts the species composition, and may lead to persistent reorganization (Falk et al. 2022; 20 

Guiterman et al. 2022; Syphard et al. 2019).  21 

WUI maps have been created based on information provided by national land cover 22 

maps and zonal or building-based housing density information (Bar-Massada 2021; Radeloff et 23 

al. 2018; Schug et al. in review). Datasets on housing density are not always though available 24 

(Bar-Massada 2021), limiting the mapping of WUI growth, its drivers, interaction with 25 

vegetation communities, and fire activity. Developing an approach that can assess the WUI 26 

growth on the basis of globally available and consistent data, such as Landsat and Sentinel-2, is 27 
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therefore advantageous. The WUI is a widespread and growing land use that affects with 28 

wildland vegetation landscapes, creates expanding zones of conflict and threats to human 29 

safety and ecosystems (Bar-Massada et al. 2014; Radeloff et al. 2018). It is essential to quantify 30 

the rate of WUI growth across disturbance-prone Mediterranean-climate landscapes to manage 31 

fire risk effectively (Alexandre et al. 2015; Alexandre et al. 2016; Syphard et al. 2009) and 32 

develop conservation strategies (Bar-Massada et al. 2014; Carlson et al. 2022; Radeloff et al. 33 

2010). 34 

The drivers of WUI growth and losses depend on the settlement density and wildland 35 

vegetation cover. Expanding human activities often lead to more houses in natural landscapes 36 

(Buxton et al. 2011; Godoy et al. 2019; Radeloff et al. 2018), while changes in vegetation cover are 37 

typically a minor effect contributing to WUI growth (Kaim et al. 2018; Miranda et al. 2020; 38 

Pereira et al. 2018). Monitoring drivers of WUI changes across different regions provides 39 

insights and supports development strategies for addressing social, economic, and 40 

environmental challenges (Alexandre et al. 2016; Carlson et al. 2022; Hammer et al. 2009). 41 

Additionally, investigating the trend of vegetation and build-up structures within stable and 42 

new WUI areas supports land-use planning and policymakers to improve fire management, 43 

sustainable development, and nature protection (Carlson et al. 2022; Syphard et al. 2009). 44 

The semi-arid biogeographic conditions of Mediterranean ecosystems promote 45 

predictable fire disturbances, and native vegetation has developed adaptive traits (Keeley 2012). 46 

Human activity is a major driver of environmental change, reshaping fuel settings and 47 

increasing fire ignition and fire frequency (Balch et al. 2017; Bowman et al. 2011; Bowman et al. 48 

2020). WUI growth is therefore likely to contribute to an increase in fire frequency and possibly 49 

more burned areas adjacent to settlements, which poses a significant challenge for fire 50 

management (Buxton et al. 2011; Radeloff et al. 2018; Syphard et al. 2009). 51 

Persistent or transitional vegetation type conversion occurs when changes in vegetation 52 

communities happen as a result of environmental stressors, human activity, and invasion 53 

(Guiterman et al. 2022; van Mantgem et al. 2020). The conversion of chaparral to invasive grass 54 

species is widespread in southern California and a result of increasing fire intensity and 55 

frequency (Keeley et al. 2022; Syphard et al. 2022). Many native woody species within the 56 

Mediterranean climate ecosystems are sensitive to shorter fire return intervals because this 57 

reduces regeneration and reproductive capacity (Bowman et al. 2020; Falk et al. 2022; Syphard 58 



3 
 

et al. 2011). Thus, I will investigate how WUI growth and fire activity may contribute to 59 

vegetation type conversion (woody to non-woody) across different study regions. 60 

In summary, the objective of my research is to develop a mapping approach to map and 61 

assess WUI expansion across different regions within the Mediterranean climate landscapes in 62 

Australia, California, Chile, Portugal, and South Africa. I aim to quantify WUI growth and 63 

losses between 1990-2022 with Landsat data and identify drivers of WUI change, as well as 64 

dynamics of vegetation and housing cover within stable WUI area. Moreover, I aim to assess 65 

how area burned, fire frequency and seasonality changes in relation to WUI growth. Finally, I 66 

will assess how changes in fire activity and WUI growth may affect the vegetation cover. I will 67 

address this with the following major research questions across the global Mediterranean 68 

biome: 69 

1) Can we map WUI areas with Landsat and Sentinel-2 imagery? 70 

2) How did WUI change between 1990-2022? 71 

3) What drives WUI growth and losses, and how do the vegetation and impervious 72 

land cover change within stable WUI areas? 73 

4) How did fire frequency, fire season length, and burned area change as WUI grew? 74 

5) What is the relationship between WUI growth, fire activity, and woody to non-75 

woody vegetation type conversions? 76 

 77 

Study Areas 78 

South and western Australia, California, central Chile, the Cape Province of South 79 

Africa, and the Mediterranean basin are considered as the Mediterranean climate type regions 80 

(Keeley 2012). The climate is characterized by hot and dry summers and cool and moist (wet) 81 

winters, due to the seasonal poleward-equatorward variations of temperatures that move the 82 

large subtropical high-pressure ocean cells towards the respective hemisphere. Predictable 83 

disturbance regimes exist in the Mediterranean climate regions because of the semi-arid 84 

biogeographic conditions that promote vegetation growth in winter and support flammable fuel 85 

conditions during summer (Chuvieco 2009; Keeley et al. 2011a; Médail 2008).  86 

The Mediterranean biosphere is among the most biologically diverse with many 87 

endemic species and dominated by evergreen sclerophyllous-leaved shrublands, semi-88 

deciduous scrubs, and woodlands, that are adapted to predictable disturbance events of 89 
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drought and fires (Keeley and Pausas 2022; Keeley et al. 2011a). Plants have developed different 90 

adaptive traits in response to disturbance regimes (Keeley et al. 2011a; Médail 2008). Natural 91 

fire return intervals of the native shrublands are usually between 10-60 years, for example, the 92 

fynbos in South Africa, the mallee in South Australia, the maquis in Portugal, or the chaparral in 93 

California, while the matorral in Chile is considered fire-free (Médail 2008). Post-fire resprouting 94 

is a common trait due to fertile soil conditions in California and Portugal, while in South 95 

Australia and South Africa, post-fire seeding is widespread due to nutrient-poor soils (Keeley 96 

2012). Unlike the other Mediterranean climate ecosystems, natural fire regimes existed in the 97 

Tertiary in central Chile. With the rise of the Andes in the Miocene, the natural fire regimes 98 

diminished because the Andes reduced summer lightning storms and natural ignition (Keeley 99 

et al. 2011a). This may have limited the evolution of post-fire pulse of seedlings and serotiny, 100 

which are common fire adaptive traits in all other Mediterranean climate ecosystems (Keeley et 101 

al. 2011a; Keeley et al. 2011b; Syphard et al. 2009) while resprouting after fires has been also 102 

observed in woody shrublands in Chile. 103 

I will focus on the WUI growth in southern California, southern South Australia, 104 

Portugal, central Chile, and southern South Africa which are WUI hotspots within a 105 

Mediterranean climate ecosystem (Schug et al. in review). Here, residential development took 106 

place in the fringes of the metropolitan centers of Adelaide (Liu and Robinson 2016), San Diego 107 

(Radeloff et al. 2018), Lisbon (Pereira et al. 2018), Santiago de Chile (Miranda et al. 2020), and 108 

Cape Town (Christ et al. 2022), due to population growth, tourism, housing affordability, 109 

flexible work opportunities, and car-centered lifestyles (Jia et al. 2022; Radeloff et al. 2018; 110 

Underwood et al. 2009). The increase in settlements poses a substantial challenge for fire 111 

management (Keeley and Pausas 2019; Syphard et al. 2009). Fire risk increases due to increased 112 

human-caused ignition near human dwellings and metropolitan centers increases fire frequency 113 

at intermediate population densities (Cattau et al. 2020; Syphard et al. 2009). Especially, the 114 

expansion of the WUI is a major concern, because here residential developments overlap with 115 

fuel load in wildland vegetation landscapes (Buxton et al. 2011; Price and Bradstock 2014; 116 

Radeloff et al. 2018). This has negative consequences for the safety of people and threatens 117 

ecosystems (Keeley et al. 2011a; Keeley and Pausas 2019; Syphard et al. 2009).  118 

Additionally, many non-native species, such as coniferous trees (i.e., Pinus, Acacia, 119 

Eucalyptus (Langdon et al. 2023)), or invasive grass species (i.e., Cheatgrass (Balch et al. 2013; 120 
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Syphard et al. 2019)), have been introduced into Mediterranean landscapes for commercial, 121 

cultural, or aesthetic purposes, which have negative impacts for the ecosystems. These invasive 122 

species tend to outcompete the native vegetation, degrade ecosystems, and change soil nutrient 123 

cycles (D'Antonio and Vitousek 1992; Mack and D'Antonio 1998). For example, several 124 

European grass species have been introduced to different countries for livestock forage or to 125 

prevent soil erosion (Porqueddu et al. 2016). Exotic grasses are highly competitive spreaders 126 

and promoted higher fire frequency that supports their persistence (Balch et al. 2013; D'Antonio 127 

and Vitousek 1992; Syphard et al. 2019). Exotic coniferous species form dense thickets that may 128 

increase fuel load and connectivity and changes the fire behavior (Brooks et al. 2004; Langdon et 129 

al. 2023; van Wilgen 2009). In summary, invasive species threaten the native vegetation because 130 

they alter nutrient cycling and disturbance regime such as type, frequency, and intensity 131 

(D'Antonio and Vitousek 1992; Mack and D'Antonio 1998). Therefore, I will investigate the WUI 132 

growth in these regions and changes in fire characteristics and vegetation compositions 133 

between 1990-2022. 134 

 135 

 136 
Figure 1: Overview of the Mediterranean climate ecosystems (Dinerstein et al., 2017) and the selected 137 

study region. 138 

 139 
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Chapter 1: Mapping the Wildland-Urban Interface by spectral 140 

unmixing of Landsat and Sentinel-2 imagery in Mediterranean 141 

climate landscapes. 142 

1.1 Introduction 143 

The Wildland-Urban Interface (WUI), where housing development meets or 144 

intermingles with wildland vegetation, is a focal point for land cover change and environmental 145 

problems (Radeloff et al. 2018). The WUI concept specifies two categories: the intermix WUI 146 

describes the area where settlements intermingle with wildland vegetation, and the interface 147 

WUI describes settlements in close proximity to wildland vegetation (Stewart et al. 2007). WUI 148 

growth has many implications on biotic and abiotic components and processes of ecosystems, 149 

such as through fragmentation and habitat loss (Theobald and Romme 2007), declining 150 

biodiversity (Gavier-Pizarro et al. 2010; Mockrin et al. 2022), the introduction of invasive species 151 

(McKinney 2002; Soulé 1991), and changes in fire regimes (Bar-Massada et al. 2014; Radeloff et 152 

al. 2018; Syphard and Keeley 2015).  153 

Maps of the WUI have been created across the globe, but research is geographically 154 

biased toward North America, Europe, and Australia (Bento-Gonçalves and Vieira 2020). 155 

Additionally, WUI maps were created with different purposes in mind, such as fire risk 156 

assessment or conservation, resulting in various definitions and algorithms (Bento-Gonçalves 157 

and Vieira 2020; Carlson et al. 2022; Stewart et al. 2009). WUI maps are mainly created based on 158 

land cover maps and building density information (Bar-Massada 2021), and the availability of 159 

these datasets determines where and for what time periods the WUI can be mapped. I aim to 160 

develop a WUI mapping approach based on Landsat and Sentinel-2 imagery, from which 161 

information on vegetation and settlement density can be extracted to map WUI flexibly for 162 

different regions and years. I will focus particularly on WUI mapping for fire-prone 163 

Mediterranean climate ecosystems because increasing human-environmental interaction causes 164 

fragmentation, habitat loss, and changing fire activity in these biodiverse ecosystems (Bar-165 

Massada et al. 2014; Syphard et al. 2009; Underwood et al. 2009).  166 

The assessment of the WUI requires information on vegetation and settlement structure. 167 

I will build on a definition previously established in WUI research in the United States (Radeloff 168 

et al. 2018; Stewart et al. 2007). The intermix WUI is defined by a building density of > 6.17 per 169 
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km2 and a vegetation cover of > 50% within a 500m radius. The interface WUI is described by an 170 

area with a building density > 6.17 per km2 within a 500 m radius and a vegetation patch of > 5 171 

km2 located within a 2.4 km radius (USDI & USDA 2001). Zonal housing density information 172 

(i.e., census blocks) and information on wildland vegetation have been used to map interface 173 

and intermix WUI areas in the conterminous United States (Radeloff et al. 2005; Radeloff et al. 174 

2018). However, zonal housing density information often varies in size and shape, and 175 

therefore, has biased estimations of WUI area (Bar-Massada et al. 2013). An alternative to 176 

census-based mapping uses individual housing locations together with a vegetation land cover 177 

dataset, also referred to as point-based WUI mapping (Bar-Massada et al. 2014; Carlson et al. 178 

2022). Datasets on exact building locations are nearly globally available (i.e., Microsoft Building 179 

Footprint), but these datasets cannot be easily created for past years because high-resolution 180 

data availability is limited (Kasraee et al. 2023).  181 

I propose to map the WUI using building density and vegetation cover information 182 

derived from freely available Landsat and Sentinel-2 satellite data. The approach circumvents 183 

the limitations of previously described approaches. The Landsat program provides the longest 184 

time series of globally consistent optical Earth Observation data (Wulder et al. 2019; Zhu et al. 185 

2019) and allows me to quantify and characterize the WUI at a spatial resolution of 30 m, which 186 

is high enough to provide locally important information, and low enough to be used across 187 

large areas without excessive data storage and processing requirements (Hansen and Loveland 188 

2012; Woodcock et al. 2020; Zhu and Woodcock 2014). Landsat imagery has been widely 189 

applied for mapping land cover changes and seems to provide sufficient spatial, spectral, and 190 

temporal resolution for observing objectively human impact on the land over time (Taubenböck 191 

et al. 2012; Wulder et al. 2015). Additionally, I will also map the WUI area with the Sentinel-2 192 

from ESA’s Copernicus program, because the imagery has a higher spatial, spectral, and 193 

temporal resolution than Landsat (Drusch et al. 2012; Xian et al. 2019; Xu et al. 2022). Yet, the 194 

Sentinel-2 data archive is rather short since the first satellite was only in orbit in June 2015. Since 195 

both types of satellites are well established in terms of land cover mapping and monitoring the 196 

human impact on the land over time (Xu et al. 2022; Zhang et al. 2022), I will develop and test a 197 

WUI mapping approach with both, Landsat and Sentinel-2. I will approximate housing density 198 

via impervious fractions because I cannot assess individual buildings within a Landsat or 199 

Sentinel-2 pixels (Schug et al. 2022; Schug et al. 2020). Also, Landsat and Sentinel-2 images 200 
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provide an advantage over very high-resolution images, because they have shortwave infrared 201 

bands that provides important for vegetation fraction mapping. Additionally, very high-202 

resolution data often have an irregular temporal resolution (Chuvieco 2016).  203 

Spectral unmixing mitigates a major challenge of medium spatial resolution, namely the 204 

abundance of mixed pixels in complex urban environments and vegetated landscapes (Okujeni 205 

et al. 2013; Roberts et al. 1998; van der Linden et al. 2019). While classification approaches 206 

simplify land cover complexity by assigning a pixel to one land cover category, (Griffiths et al. 207 

2010; Reba and Seto 2020; Sousa and Small 2018), spectral unmixing quantifies land cover 208 

proportions within a pixel, and therefore assesses vegetation cover and build-up area fractions 209 

where both land cover types overlap (Okujeni et al. 2013; Schug et al. 2020). Spectral Mixture 210 

Analysis (SMA) and Multiple Endmember Spectral Mixture Analysis (MESMA) are techniques 211 

to systematically decompose mixed pixels and assess land cover proportions within pixels 212 

(Roberts et al. 1998; Small 2005; Small and Sousa 2016). Regression-based unmixing together 213 

with synthetic training datasets is advantageous (Miller et al. 2022; Okujeni et al. 2021; Wang et 214 

al. 2021) because it is an efficient strategy to improve complex urban mapping (Okujeni et al. 215 

2017; Okujeni et al. 2013; Schug et al. 2018) and monitoring vegetation canopy parameters, 216 

disturbance and management (Kowalski et al. 2022; Senf et al. 2020), that works well in 217 

Mediterranean landscapes (Cooper et al. 2020; Okujeni et al. 2021; Suess et al. 2018). Using the 218 

combined information on vegetation cover fractions and imperviousness may enable to develop 219 

a novel WUI mapping approach. 220 

I will develop a method to map the WUI with Landsat and Sentinel-2 data. I will test 221 

and evaluate my WUI mapping approach for five selected study areas located within the 222 

Mediterranean climate type regions. I will assess settlement and vegetation land cover 223 

information using spectral unmixing of Landsat and Sentine-2 imagery, and then map the WUI 224 

land use using a mowing window. Specifically, I will address the following research questions: 225 

(I) How accurately can the Wildland-Urban Interface be mapped using spectral 226 

unmixing of Landsat and Sentinel-2 imagery in Mediterranean climate type 227 

landscapes?  228 
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1.2 Methods and Materials  229 

1.2.1 Study areas  230 

I will select five Landsat WRS-2 footprint that covers the metropolitan areas of San 231 

Diego (USA), Lisbon (Portugal), Adelaide (Australia), Santiago de Chile (Chile), and Cape Town 232 

(South Africa) to develop and test the Landsat and Sentinel-2 based WUI mapping approach. 233 

These regions are WUI hotspots, where settlements have expanded into wildland vegetation 234 

areas on the fringes of larger metropolitan centers (Christ et al. 2022; Liu and Robinson 2016; 235 

Miranda et al. 2020; Pereira et al. 2018; Radeloff et al. 2018). The expansion of the WUI has 236 

increased the risk of wildfires, which are a major threat to biodiversity, natural resources, 237 

human life and property, as well as cause challenges for fire management (Bowman et al. 2020; 238 

Syphard et al. 2009).  239 

1.2.2 Data 240 

Landsat and Sentinel-2 data 241 

I will analyze multi-spectral Landsat and Sentinel-2 satellite data to map the WUI in 242 

Mediterranean climate type landscapes for 2020. I will download all available Landsat and 243 

Sentinel-2 image acquisitions with a cloud cover of ≤ 70% for five WRS-2 footprints (to be 244 

selected) covering the five study areas. I will pre-process downloaded Level-1 data using the 245 

Framework for Operational Radiometric Correction for Environmental monitoring (FORCE) 246 

environment (Frantz 2019). Pre-processing in FORCE includes cloud and cloud shadow 247 

masking as well as topographic and atmospheric correction and produces analysis-ready data.  248 

Reference data 249 

Training   250 

I will use the Microsoft Building footprint and national land cover products for each 251 

study region in reference to develop a fractional threshold to map the WUI with Landsat and 252 

Sentinel-2. Based on these datasets, I will also create WUI maps, that I will compare to the 253 

Landsat and Sentinel-2 WUI maps. 254 

Aerial high-resolution imagery 255 

I will use very high-resolution reference (i.e., Google Earth and aerial images) images for 256 

validating the Landsat and Sentinel-2-based WUI maps. I will create a stratified random sample 257 

to assess the WUI criteria visually from VHR data. For this, I will create a 500-m buffer and a 258 
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2400-m buffer to assess visually if the intermix WUI, interface WUI, and non-WUI has been 259 

correctly identified.  260 

1.2.3 Methods 261 

My Landsat and Sentinel-2 WUI mapping approach is based on the assessment of pixel-262 

based land cover fraction, which allows gathering combined information on vegetation cover 263 

and settlement density to map the WUI. 264 

 265 
Figure 2: Flow Chart of the WUI mapping approach with Landsat and Sentinel-2 data. Part 1 shows the 266 

workflow for generating image fraction of vegetation and imperviousness, while part 2 described the process to 267 
assess the WUI based on the land cover fraction. 268 

Spectral Unmixing 269 

I will use spectral unmixing to derive land surface characteristics and the abundance of 270 

specific materials. For each study area, I will create a spectral library to represent pure spectral 271 

characteristics (endmembers): (1) woody vegetation, (2) non-woody vegetation, (3) impervious, 272 

(4) bare soil, and (5) water. For WUI mapping, my target classes are impervious as a proxy for 273 

settlement density, and woody and non-woody vegetation for the wildland vegetation cover 274 

criterion. I include water and soil as background classes.  275 

I will generate synthetic mixed training data from spectral libraries to quantify land 276 

cover fractions for each study area based on derived spectral temporal metrics of the Landsat 277 

and Sentinel-2 time series. Synthetic mixed training data are training data that consists of pure 278 

original library spectra and multiple-binary mixed spectra representing a range of mixing 279 

fractions between 0-100% of the target category (Okujeni et al. 2013). Mixed spectra are 280 

constructed as linear combinations based on two or more randomly selected endmembers and 281 
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provide direct means to train empirical regression models for subpixel mapping (Okujeni et al. 282 

2017). I will use spectral temporal metrics based on Landsat and Sentinel-2 bands and indices 283 

(Okujeni et al. 2021). I will also include a temporal and phenological component that will help 284 

to separate the land cover classes, and woody and non-woody vegetation can be separated by 285 

its phenological differences across the Mediterranean climate type landscapes (Cooper et al. 286 

2020; Kuemmerle et al. 2006; Viana-Soto et al. 2022). 287 

I will train a regression-based unmixing model for each study area that captures the 288 

relationship between the spectral features of the corresponding fractions of a single target class 289 

(Frantz 2020; Okujeni et al. 2013; Pham et al. in review). I will then apply the regression models 290 

and predict the image fraction of each land cover category with a model output range between 291 

0-100%. 292 

The spectral ambiguity between bare soil, rocky, and impervious surface is a problem in 293 

the spectral unmixing analysis (Herold et al. 2003; Okujeni et al. 2013; Schug et al. 2020). I will 294 

likely encounter difficulties in separating these land surfaces and possibly overestimate 295 

imperviousness in rocky mountainous regions. The problem is that building materials often 296 

come from the surrounding area and therefore appear spectrally similar (Franke et al. 2009; 297 

Herold et al. 2004; van der Linden et al. 2019). This is why I am considering using radar data or 298 

slope data to improve this. 299 

I will validate land cover fraction maps with high-resolution imagery, where reference 300 

data is created based on the proportion of different land cover types within a pixel. These 301 

reference proportions are generated by visually interpreting and classifying land cover for 302 

several points within the pixel. For the validation, I will compare the predicted and reference 303 

pixel fraction within a scatterplot and include the regression line and report statistical estimates 304 

of slope and intercept (eq. 1.1), R2 (eq. 1.2), Mean Absolute Error (MAE, eq 1.3), and Root Mean 305 

Squared Error (RMSE, eq 1.3). 306 

y = β0 + β1x      (1.1) 307 

R2 = (∑ (xi − x̄)(yi − y̅)n
i=1 )2

∑ (xi − x̄)2  ∑ (yi − y̅)2n
i=1

n
i=1

   (1.2)   308 

I will use the coefficient of determination (R2) to evaluate the goodness of fit between the 309 

model fraction (yi) and the reference (xi), where ȳ and x̄ represent the means of the modeled and 310 

reference fractions. 311 
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MAE = 1
n
∑ |yi  − xi|n
i=1    (1.3) 312 

I will use MAE and RMSE to measure the prediction accuracy, which are calculated 313 

from predictions (yi) and reference fractions (xi), while n represents the number of validation 314 

samples. 315 

RMSE = �1
n
∑ (yi  −  xi)

2n
i=1    (1.4) 316 

Masking agricultural vegetation with Spectral-Temporal Metrics 317 

Since the WUI definition refers mainly to semi-natural and natural vegetation in 318 

combination with settlements, I will need to identify agricultural vegetation and exclude it from 319 

the WUI mapping process. I will use differences in phenology, represented by intra-annual 320 

spectral-temporal metrics, such as greenness mean, maximum, minimum, median, range, and 321 

standard deviation to distinguish cropland from semi-natural and natural vegetation types. 322 

Phenological indicators can distinguish spectrally similar managed from unmanaged vegetated 323 

land cover (Müller et al. 2015; Okujeni et al. 2021; Senf et al. 2015). I will test the usage of the 324 

spectral temporal metrics for Tasseled Cap Greenness (Crist and Cicone 1984; Kauth and 325 

Thomas 1976), the Normalized Difference Vegetation Index (NDVI) (Tucker 1979), or Enhanced 326 

Vegetation Index (EVI) (Huete et al. 2002) to develop a suitable masking approach.  327 

In Mediterranean climate ecosystems, there can be considerable variation in seasonal 328 

shares of non-photosynthetic active vegetation and green vegetation (Gordo and Sanz 2010; 329 

Okujeni et al. 2021; Suess et al. 2018). These phenological variations are driven by the wet 330 

season (winter) and the dry season (summer). In principle, I expect a lower standard deviation 331 

and lower maximum greenness for evergreen natural vegetation (Keeley et al. 2022; 332 

Montenegro 1987), while the seasonal pattern of deciduous natural vegetation, scrubland, or 333 

grasslands follows the seasonal pattern of the year with a more pronounced minimum and 334 

maximum greenness (Bart et al. 2017; Hess et al. 2022; Milla et al. 2010). For highly managed 335 

(i.e., irrigated and fertilized) croplands, I expect a higher maximum and lower minimum of 336 

greenness, as well as a larger range or standard deviation, as there are different growth stages, 337 

management, and harvesting cycles (Müller et al. 2015). Therefore, cropland may also show 338 

higher green vegetation signals during the dry season. However, I assume that via the 339 

differences in phenology, I will be able to exclude highly managed, non-natural cropland 340 

vegetation. 341 
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WUI Mapping Approach 342 

The WUI is mapped based on the information on vegetation cover and settlement 343 

density surrounding the pixel. Since I cannot count the number of building structures within a 344 

10-30 m Landsat or Sentinel-2 pixel, I will develop and test an impervious fraction threshold 345 

based on the Microsoft building footprint dataset1. Similarly, I will test the > 50 % wildland 346 

vegetation threshold for the vegetation fractions within a 500 m radius. However, since I derive 347 

fractions of woody and non-woody vegetation, I might adjust the threshold for the Landsat 348 

versus the Sentinel-2-based WUI mapping approach in reference to national land cover maps. 349 

Additionally, I will cluster vegetation cover based on a certain fraction threshold to derive 350 

larger vegetation patches (> 500 km2). I will need that information to determine if larger 351 

vegetation patches are within a 2400-m radius of settlements to assess the interface WUI. For the 352 

WUI classification, I will first evaluate the criterion for imperviousness and vegetation cover 353 

within a 500-m radius. When the criteria are met, I will classify the pixel as intermix WUI. 354 

Otherwise, I will check for the interface WUI criterion, and check if there is a 5-km2 vegetation 355 

patch within 2.4 km. If none of the criteria are met, I will assign the non-WUI category. 356 

WUI mapping Validation  357 

I will perform validation with very high-resolution images to verify the accuracy of the 358 

Landsat and Sentinel-2-based WUI maps. I will select a stratified random sample with an equal 359 

number of points for each WUI class, i.e., interface WUI and intermix WUI, as well as for non-360 

WUI. I will determine the number of samples per study area following the suggestions of 361 

Olofsson et al. (2014). Then, I will use visual evaluation of very high-resolution (i.e., Google 362 

Earth and orthophotos) data to determine if the intermix or interface WUI criteria apply. For 363 

this, I will draw a 500-m and 2400-m buffer around the validation point to assess the wildland 364 

vegetation cover and building density. 365 

I will summarize the accuracy by reporting the overall accuracy, omission and 366 

commission error, and the error matrix with the class-wise accuracy of intermix WUI, interface 367 

WUI, and non-WUI. Because I expect unequally distributed classes within each study area, I 368 

will apply an area adjustment in terms of proportions of classes per area to better represent the 369 

spatial agreement and disagreement between the map and reference (Olofsson et al. 2014; 370 

Olofsson et al. 2013).  371 

 
1 https://www.microsoft.com/en-us/maps/building-footprints 



14 
 

I am considering comparing my Landsat and Sentinel-2-based WUI maps to point-based 372 

WUI maps (Microsoft Building Footprint & national land cover map based WUI maps) or the 373 

global WUI map for 2020 has been created based on the European Space Agency World Cover 374 

dataset and the Joint Research Center building footprint and has also been validated (Schug et 375 

al. in review). However, the products have different strengths and varying accuracy of land 376 

cover classes, and therefore, I consider it useful to perform a validation with high-resolution 377 

imagery first. 378 

I will visually examine and compare the maps, as well as estimate and graphically 379 

display the area shares of intermix and interface WUI per study area. I will use the Jaccard 380 

index (Jaccard 1901) to assess the similarities between two sets S and T (eq. 1.6), where the size 381 

of the intersection is divided by the size of the union, and J(S,T)=1 if |S∪T|=0 (Fletcher and 382 

Islam 2018). 383 

𝐽𝐽(𝑆𝑆,𝑇𝑇) = 𝑆𝑆 ∩ 𝑇𝑇
𝑆𝑆 ∪ 𝑇𝑇

      (1.6) 384 

1.3 Expected Results 385 

Evaluation of the Spectral Unmixing results 386 

I will display scatterplots showing the predicted fractions (x-axis) versus reference 387 

fractions (y-axis), and report the slope and intercept, R2, MAE, and RMSE as statistical 388 

evaluation of model fit and error. I expect the quality of land cover fraction mapping to be 389 

comparable to previous studies (i.e., RMSE of ~ 20 % (Okujeni et al. 2013; Schug et al. 2020)), but 390 

with a potentially higher variation between land cover classes because of the particularities and 391 

complexity of Mediterranean climate type landscapes. 392 

Wildland-Urban Interface Maps  393 

I will map the WUI for my five selected study areas. I will show WUI maps for each 394 

study area displaying the resulting WUI area based on Landsat and Sentinel-2 data.  395 

Additionally, I will report and display as a bar chart the estimated class-wise proportion of 396 

intermix and interface WUI for all three maps. For the evaluation and comparison of the three 397 

maps, I will report the overall accuracy, and omission and commission errors. I will display the 398 

results of the accuracy measures and error matrix as a table for intermix WUI, interface WUI, 399 

and non-WUI.  400 
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Overall, I expect to be able to map WUI relatively well along the coastline of 401 

Mediterranean climate type landscapes with vegetation cover. However, I will potentially 402 

encounter difficulties in overestimating imperviousness in bare and rocky mountainous regions 403 

with low vegetation cover, which might limit the ability to assess accurate imperviousness for 404 

example in very dry, desert-like mountain regions.  405 

1.4 Significance and contributions 406 

I will develop a novel WUI mapping method based on Landsat and Sentinel-2 data to 407 

assess the detailed spatial distribution of the interface and intermix WUI area. WUI maps are 408 

useful for understanding where human-environmental conflicts are most likely and are 409 

particularly important in the Mediterranean climate type landscapes since here settlements 410 

intersect with flammable vegetation fuel. Human activity increases ignition potential and fire 411 

frequency. Therefore, WUI detection supports the identification of areas with high fire risk and 412 

may help to mitigate fire damage. 413 

Using Landsat and Sentinel-2 data will allow me a precise assessment of WUI for 414 

different temporal and spatial scales across the Mediterranean climate ecosystems. My Landsat 415 

and Sentine-2-based WUI mapping approach will assess WUI criteria of vegetation cover and 416 

settlement density without the need for land cover products and exact building locations. This 417 

is advantageous because it allows me to map WUI for a chosen region independently of other 418 

available datasets. 419 

WUI maps are a fundamental tool for decision-making, land-use planning, and policies, 420 

fire hazard protection and prevention, and conservation management. Knowing the spatial 421 

extent of the WUI in the landscape is of interest because anthropogenic changes in the 422 

environment cause issues related to biotic and abiotic factors, as well as ecosystem functions 423 

and processes. Especially in fire-prone landscapes of the Mediterranean climate ecosystems, 424 

changes in fuel accumulation, and higher ignition potential caused by human activity increases 425 

fire hazard risk with negative consequences for humans and the environment.  426 
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Chapter 2: The growth of the Wildland Urban Interface in 427 

Mediterranean climate type landscapes 428 

2.1 Introduction 429 

The Wildland-Urban Interface (WUI) is a global phenomenon (Schug et al. in review), 430 

causing many environmental problems, such as fragmentation, loss of habitats (Theobald et al. 431 

1997), declining biodiversity, spread of invasive species (McKinney 2002; Soulé 1991), and 432 

changes in fire regimes (Bar-Massada et al. 2014; Radeloff et al. 2018; Underwood et al. 2009). 433 

Humans are a dominant driver of land use changes through expanding agricultural use, 434 

deforestation, and urban development (Güneralp et al. 2020; Hansen et al. 2013). The 435 

assessment of WUI growth is important in the context of fire risk and management, as 436 

increasing settlements overlap with landscapes of high fuel load (Caton et al. 2017; Cohen 2010; 437 

Radeloff et al. 2018). Destructive fires in WUI areas cause losses of property and lives in many 438 

countries (Bento-Gonçalves and Vieira 2020; Gill et al. 2013; Moritz et al. 2014). Also, the WUI is 439 

a dominant and widespread implication for land resources and conversation (Güneralp et al. 440 

2020; Mockrin et al. 2022; Schug et al. in review). Therefore, it is important to assess rates of 441 

WUI expansion and its associated impacts on natural ecosystem function and services (Bar-442 

Massada et al. 2014; Carlson et al. 2022; Mockrin et al. 2022).  443 

WUI growth is strong in the United States (Radeloff et al. 2018; Radeloff et al. 2022), 444 

Australia (Buxton et al. 2011; Gonzalez-Mathiesen et al. 2021), Europe (Bar-Massada et al. 2023; 445 

Modugno et al. 2016; Pereira et al. 2018), Chile (Miranda et al. 2020), Argentina (Godoy et al. 446 

2019; Godoy et al. 2022), and South Africa (Christ et al. 2022). In the conterminous US, WUI was 447 

the fastest growing land use type between 1990-2010 (Martinuzzi et al. 2015; Radeloff et al. 448 

2018). However, the data availability of zonal housing density information or building locations 449 

limits the ability to capture precise WUI growth. For example, census data only allows for 450 

decadal WUI assessments in the US (Radeloff et al. 2018; Radeloff et al. 2022). In other regions, 451 

such data are not available, and therefore WUI growth cannot be assessed (Bar-Massada 2021; 452 

Bar-Massada et al. 2013). Capturing WUI growth with Landsat data might allow tracing WUI 453 

growth more precisely. Landsat imagery provides consistent spatial, spectral, and temporal 454 

data, which have been successfully used to monitor land-use and land cover changes, and 455 

human activity (Wulder et al. 2015; Wulder et al. 2019; Zhu and Woodcock 2014).  456 
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WUI growth creates changes within semi-natural ecosystems causing conservation 457 

concerns (Bar-Massada et al. 2014), increases fire risk, and spread of invasive species (Keeley et 458 

al. 2011a; Keeley and Pausas 2019; Syphard et al. 2009), and the assessment of WUI changes can 459 

support land use planners to manage fire risk zones effectively and provide conservation 460 

strategies (Lampin-Maillet et al. 2009; Radeloff et al. 2018). Severe fire hazards occurred 461 

frequently, for example in Australia (2019-2020), California (2020), South Africa (2021), Chile 462 

(2017), and southern Europe (2021) (Bowman et al. 2020; Bowman et al. 2019). Fire risk is 463 

particularly high in the WUI because of the amount of vegetation fuel that intersects with 464 

human settlements (Bento-Gonçalves and Vieira 2020). Also, ignition frequency tends to 465 

increase with the number of people living in an area (Syphard and Keeley 2015; Syphard et al. 466 

2009). The Mediterranean climate ecosystems are characterized by hot, dry summers and cool, 467 

moist (wet) winters, and therefore are prone to drought and fire (Keeley et al. 2011a). Here, 468 

human-induced changes may shorten fire return intervals and reduce the regeneration and 469 

reproductive capacity of some woody or shrubby ecosystems (Bowman et al. 2020; Falk et al. 470 

2022; Syphard et al. 2011). Therefore, mapping long-term WUI growth is necessary to study 471 

growing human-environmental interactions and conflicts (Lampin-Maillet et al. 2009; Radeloff 472 

et al. 2018; Syphard et al. 2009), such as shifts in species composition (Falk et al. 2022; Keeley 473 

and Pausas 2019; Syphard et al. 2022), fuel load, and connectivity to prepare humans living 474 

within the WUI for fire risk (Theobald and Romme 2007). 475 

I will address the research question:  476 

(I) How much did WUI grow from 1990 to 2022 in Mediterranean landscapes in 477 

southern California, southern South Australia, Portugal, central Chile, and 478 

southern South Africa? 479 

2.2 Methods and Materials  480 

2.2.1 Study areas 481 

I will assess WUI growth for the select Landsat WRS-2 footprint that covers the 482 

metropolitan areas of San Diego (USA), Lisbon (Portugal), Adelaide (Australia), Santiago de 483 

Chile (Chile), and Cape Town (South Africa). The study regions are WUI hotspots within a 484 

Mediterranean climate type regions and the expansion of human settlement into the WUI has 485 

resulted in an increase in the number of homes, businesses, and infrastructure in these areas 486 

(Abrams et al. 2012; Bento-Gonçalves and Vieira 2020; Underwood et al. 2009). Especially in 487 
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Mediterranean climate type regions, the increasing number of people living within the WUI 488 

expanded the fire risk zones and cause a significant challenge for environmental protection 489 

(Bento-Gonçalves and Vieira 2020; Syphard et al. 2009; Underwood et al. 2009). This has led to 490 

greater risks to life and property from wildfires, as well as increased pressure on natural 491 

resources and ecosystems (Gill et al. 2013; Moritz et al. 2014). Efforts to mitigate the risks 492 

associated with WUI growth across these regions require accurate maps of WUI (Caggiano et al. 493 

2020). 494 

2.2.2 Data 495 

Landsat Time Series 496 

I will use 30-m Landsat time series (TM, ETM+, and OLI) between 1990-2022 to map 497 

WUI growth in Mediterranean landscapes. Landsat data provide high-quality data with 498 

sufficient temporal (between 8 to 16-day revisits), spatial and spectral resolution to potentially 499 

quantify WUI growth (Woodcock et al. 2008; Wulder et al. 2015; Zhu et al. 2019). Similar to my 500 

first chapter, I will download Landsat data with a cloud cover of ≤ 70% and pre-process these 501 

using FORCE (Frantz 2019).  502 

2.2.3 Methods 503 

 504 

Figure 3: Flow chart of the WUI growth assessment 505 

Multi-year WUI change detection 506 

I will apply the WUI classification approach from chapter 1 to the Landsat time series of 507 

each of the study areas for southern California (San Diego), southern South Australia 508 

(Adelaide), Portugal (Lisbon), central Chile (Santiago de Chile), and southern South Africa 509 

(Cape Town) to assess WUI growth in my study regions. I will create annual WUI maps based 510 

on the spectrally unmixed land cover fractions of vegetation and impervious, and then apply a 511 

context-based classification approach. Next, I will assess WUI change based on my time series 512 

of annual WUI maps with three classes (intermix WUI, interface WUI, and non-WUI). I will use 513 

post-classification change detection to detect WUI changes between 1990-2022. The post-514 

classification change detection corresponds to a comparison of independently derived land 515 



19 
 

cover information from different timesteps. A true change classification (multi-temporal change 516 

detection) is based on combined data analysis, which captures the change directly based on the 517 

time series but it is complex and more feasible for detecting changes directly from 2–3-time 518 

steps (Singh 1989). Therefore, I decided to apply the simpler post-classification change 519 

detection. 520 

Housing development or wildland vegetation cover variation are both gradual changes, 521 

and unlikely to show high year-to-year fluctuations. Therefore, I will implement and apply a 522 

temporal majority vote or ruleset to detect persistent WUI change. For instance, if I observe 523 

mainly intermix WUI throughout the time series for one pixel and only once non-WUI, it seems 524 

more reasonable that there is stable intermix WUI. Non-WUI may have been misclassified due 525 

to inter-annual variation in phenology. Therefore, I will develop a ruleset to smoothen pixels 526 

with highly variable WUI classes, and to reduce misclassifying changes based on the inter-527 

annual variation of vegetation cover. I will only apply a temporal filter since the WUI 528 

classification already incorporates the surrounding area to determine a pixel’s class, and it 529 

seems less useful to apply another spatial filter. Finally, I will flag very inconsistent pixels, and 530 

perhaps, estimate some kind of confidence measure for the detected pixel change. 531 

Evaluation of the Landsat-based WUI change detection  532 

To verify the accuracy of my WUI change map, I plan to compare my Landsat-based 533 

WUI change map to orthophotos or Google Earth imagery and to existing or building-location-534 

based WUI maps. Due to limited WUI maps and high-resolution reference datasets, I cannot 535 

validate the entire time series of WUI change. However, I will be able to cross-check and 536 

validate certain points in time. I plan to use a stratified random sample with an area adjustment 537 

(Olofsson et al. 2014) for which I will estimate interface WUI, intermix WUI, or non-WUI. I will 538 

use high-resolution images (i.e., Google Earth or orthophotos) and draw a 500-m and a 2400-m 539 

buffer around each validation point. I will then visually assess the wildland vegetation cover 540 

and building density to label the points as intermix WUI, interface WUI, or non-WUI.  541 

2.3 Expected Results 542 

Landsat-based WUI change detection results 543 

I will quantify WUI growth across the different study areas between 1990-2022. I expect 544 

to detect WUI growth at the fringes of large metropolitan centers across all study areas. To 545 

visualize the results, I will create maps of WUI change for each of the selected study areas. The 546 
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maps will show changes in total WUI area between 1990-2022, as well as the change of interface 547 

and intermix WUI. Additionally, I will show bar charts showing the total WUI area and shares 548 

of intermix and interface WUI for each year of the 33-year time series. This provides a general 549 

overview of trend of WUI growth between the selected study regions, as well as total WUI area 550 

per year. Based on these estimates, I will assess the mean WUI growth trend, as well as identify 551 

key years of higher and lower WUI growth rates. These numbers and results will be shown in 552 

the respective bar charts of each study area. 553 

I expect to detect WUI growth and losses in terms of gradual changes of non-WUI pixels 554 

to intermix and interface WUI. For example, I might observe that non-WUI areas with a lot of 555 

wildland vegetation cover will gradually experience housing development and change to 556 

intermix or interface WUI. Land abandonment may result in increasing intermix WUI or 557 

turning other areas into interface WUI, while urban densification may cause WUI loss, due to 558 

losses of wildland vegetation cover. However, I expect the increase in buildings within the 559 

landscape to be the dominant driver of WUI changes for all study areas, and vegetation cover 560 

increases only to matter in Portugal and Chile. 561 

Evaluation of the Landsat-based WUI change detection  562 

For the evaluation, I will report the accuracy of the WUI change maps for the study 563 

regions. I will compare the detected Landsat-based WUI growth to visually assessed WUI 564 

changes based on high-resolution images. However, I do not know if I can validate the 565 

complete time series from 1990-2022. I will likely assess the accuracy of WUI growth for certain 566 

periods of the time series, for which I have reference data available. Still, this will provide a 567 

good approximation of the overall accuracy. I will show the results of the error matrix and 568 

accuracies in table form and will report the overall, user and producer accuracy. 569 

2.4 Significance and contributions 570 

The growth rate and pattern of the Wildland-Urban Interface across the Mediterranean 571 

climate ecosystems have not been investigated. Data availability has been an important limiting 572 

factor for the assessment of WUI growth. My new Landsat-based WUI mapping approach 573 

combined with a change detection method makes it possible to investigate the growth of the 574 

WUI. This helps to investigate growing human-environment conflict, as well as the 575 

identification of areas with high fire risk and the need for fire prevention management. The 576 

analysis across different regions of the fire-prone Mediterranean climate ecosystems supports 577 
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an understanding of where WUI is a dominant driver for implication for fire risk, 578 

fragmentation, and ecosystem services.  579 

Precise WUI growth has not been assessed with Landsat time series. The Landsat 580 

Archive provides valuable data for monitoring land-use and land cover changes. This enables a 581 

precise WUI growth, and where WUI is on a trajectory to continue growing in the near future. 582 

My mapping approach is advantageous because it provides a flexible and precise assessment.  583 

WUI growth has important implications for ecosystem function, ecosystem services, 584 

conservation concerns, and fire activity. So far, very little information has been assessed on the 585 

rate and extent of how much the WUI area has been growing. Therefore, this chapter 586 

contributes to assessing the growing human-environmental implications of the WUI that may 587 

support strategic land-use planning, conservation, and fire hazard prevention.  588 

 589 

Chapter 3: Vegetation and housing as driver of WUI change 590 

3.1 Introduction 591 

The Wildland-Urban Interface is a fast-growing land use, where houses increase within 592 

wildland vegetation landscapes is an important driver of WUI growth (Buxton et al. 2011; 593 

Godoy et al. 2019; Radeloff et al. 2018). Growing residential areas are often a consequence of 594 

population growth, socioeconomic and cultural development, environmental and geographic 595 

factors, as well as spatial planning and development policies (Bar-Massada et al. 2023; Güneralp 596 

et al. 2020; Liu and Robinson 2016). Housing development is a major factor contributing to WUI 597 

growth in the US (Radeloff et al. 2005; Radeloff et al. 2018; Radeloff et al. 2010), Australia (Gill et 598 

al. 2014), and South Africa (Christ et al. 2022), caused by both push and pull factors (Gabbe et al. 599 

2020; Jia et al. 2022) and facilitated by remote work opportunities or car-ownership (Abrams et 600 

al. 2012; Gosnell and Abrams 2011; Hammer et al. 2009). In the periphery of metropolitan areas, 601 

such as San Diego (Jia et al. 2022) or Cape Town (Christ et al. 2022), housing can be more 602 

affordable and make living close to wildland vegetation a necessity for many. High population 603 

influx to these areas can lead to uncontrolled urban sprawl, creating unorganized WUI 604 

(Bardsley et al. 2015; Buxton et al. 2011; Christ et al. 2022). In contrast, natural amenities also 605 

attract people to live in less densely settled areas, creating wide-ranging WUI surrounding cities 606 

(Abrams et al. 2012; Argent et al. 2007; Godoy et al. 2019).  607 
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WUI growth is often associated with new buildings that reduce wildland vegetation 608 

cover (Radeloff et al. 2010). Wildland vegetation is an inherent part of the WUI, where 609 

depopulation and land abandonment of rural areas may contribute to long-term vegetation 610 

regrowth, and hence, to WUI growth (Gómez-González et al. 2018; Pereira et al. 2018; Tedim et 611 

al. 2018). This occurred in some regions within Portugal and Poland, where economic and 612 

policy changes caused the abandonment of agricultural land and reduction of the population 613 

(Kaim et al. 2018; Pereira et al. 2018). Expanding forest plantations near settlements increase the 614 

fuel load and connectivity, causing higher fire hazard risks in WUI areas in Portugal (Gómez-615 

González et al. 2018; Pereira et al. 2018) and Chile (González et al. 2018; Miranda et al. 2020). 616 

Additionally, urban densification contributes to losses of the WUI, because the vegetation 617 

criteria are no longer met, such as in Cape Town (Christ et al. 2022). 618 

It is still unclear how vegetation and building density have changed in stable WUI areas 619 

across the five Mediterranean climate type study regions. One scenario might show that 620 

vegetation cover decreases during the establishment phase of the WUI. When new houses are 621 

built, vegetation cover often decreases due to clearings for the construction of houses and 622 

infrastructure. As people move into the landscape and arrange their homes and gardens 623 

(Buxton et al. 2011; Gavier-Pizarro et al. 2010), vegetation cover increases over time, as new 624 

trees or shrubs and other plants are planted and grow (Lampin-Maillet et al. 2009; Lampin-625 

Maillet et al. 2011). Increasing vegetation cover may raise fire risk within the WUI (Bardsley et 626 

al. 2015; Bowman et al. 2020; Gómez-González et al. 2018). Alternatively, vegetation cover may 627 

gradually decline or stabilize at a lower level, when for example unorganized WUI 628 

development takes place, depending on how people transform and use the land (Bar-Massada 629 

et al. 2014; Moreira et al. 2020). Housing densification in intermix WUI can shift the WUI type, 630 

for example, to interface WUI land use, because high vegetation cover can be found nearby but 631 

no longer intermingles with buildings (Christ et al. 2022). 632 

In my 3rd Chapter, I will investigate what causes WUI growth in my five Mediterranean 633 

climate type study regions across the globe. I will address the following research questions:  634 

(I) What is the main driver of WUI growth (vegetation or buildings) in different 635 

Mediterranean climate type study sites?  636 

(II) How did land cover change within newly created WUI areas change compared to 637 

stable WUI areas? 638 
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I hypothesize that the increase in buildings is the main driver of WUI growth, since 639 

globally, population densities are declining (Güneralp et al. 2020) but increasing residential 640 

development have been observed across the Mediterranean (Bento-Gonçalves and Vieira 2020), 641 

while vegetation increase due to land abandonment and forest plantations may contribute as a 642 

minor driver in central Chile and Portugal (Gómez-González et al. 2018).  643 

Also, I hypothesize that new WUI areas may have more buildings and less vegetation 644 

cover at first, but over time vegetation cover may increase due to the establishment of gardens 645 

and vegetation clearance during the building construction phase, except for a few areas of 646 

unorganized WUI growth in South Africa. Additionally, I predict gradual densification 647 

processes in some areas, for instance, near urban centers, which underlines the need for a 648 

gradual WUI assessment instead of discrete classes. 649 

3.2 Methods and Materials  650 

3.2.1 Study area 651 

I will investigate drivers of WUI growth in different Mediterranean climate type regions 652 

across the globe: San Diego (USA), Lisbon (Portugal), Adelaide (Australia), Santiago de Chile 653 

(Chile), and Cape Town (South Africa). In all these metropolitan areas, residential development 654 

took place in the natural and semi-natural periphery, which is associated with population 655 

growth, tourism, housing affordability, flexible work opportunities, and car-centered lifestyles 656 

(Bar-Massada et al. 2023; Jia et al. 2022; Johnston et al. 2019; Radeloff et al. 2018). In contrast, 657 

agricultural land abandonment and conversion to invasive, highly flammable forest plantations 658 

consisting took place in rural inland areas of Portugal and central Chile (Gómez-González et al. 659 

2018; McWethy et al. 2018; Nunes et al. 2019), which may also affect WUI growth. 660 

3.2.2 Data 661 

I will analyze the annual time series of impervious and vegetation fractions and the 662 

detected WUI change between 1990 to 2022 from my second chapter to investigate the drivers of 663 

WUI growth and losses, as well as the dynamics within stable WUI areas. As reference 664 

information for stable WUI areas between 1990-2022, I will use the assessed stable WUI area 665 

from the change detection map of the second chapter.   666 
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3.2.3 Methods 667 

Counterfactual scenarios: identifying drivers of WUI growth and loss 668 

I will use the counterfactual scenarios for my pixel-based analysis of the main drivers of 669 

WUI growth and losses, as investigated by Kaim et al. (2018). For this, I will use the settlement 670 

structure information from 1990 and the vegetation cover from 2022 to create a WUI map, and 671 

vice versa (scenario 1: 1990 impervious and 2022 vegetation, and scenario 2: 2022 impervious and 672 

1990 vegetation). Then, I will compare these results with the original WUI maps for 2022 and 673 

identify whether changes in vegetation or housing density are driving WUI growth and losses. I 674 

will use the Jaccard index (eq. 1.6, chapter 1) to assess the two counterfactual scenarios and the 675 

original WUI maps of 1990 or 2022 and evaluate if increasing impervious surfaces are the main 676 

cause of WUI growth and losses across all study regions between 1990-2022. 677 

Trend in stable WUI areas with RemotePARTS 678 

In a second step, I will investigate trends in vegetation and impervious fraction in stable 679 

WUI areas with RemotePARTS (Ives et al. 2021). RemotePARTS is a tool that can test map-scale 680 

statistical hypotheses, while accounting for both spatial and temporal autocorrelation (Ives et al. 681 

2021). For my analysis, I will assess trends (in each pixel) for the time series of vegetation and 682 

imperviousness between 1990-2022. I will conduct the trend analysis for the overall stable WUI 683 

area, and for intermix and interface separately. I will report the resulting F-test and T-test from 684 

remotePARTS, to evaluate the significance level of the trends.  685 

3.3 Expected Results 686 

The drivers of WUI growth and losses 687 

I will show the main driver of WUI growth and losses from the counterfactual analysis 688 

(scenario 1: 1990 impervious and 2022 vegetation, and scenario 2: 2022 impervious and 1990 689 

vegetation) and the WUI maps of 1990 and 2022 in all study sites. I will also show the maps 690 

with the original WUI area and the two counterfactual scenarios next to the WUI maps. Also, I 691 

will present the estimation of the similarity of two sets (WUI map of 1990/2022 and scenario 1/2) 692 

via the Jaccard index. I expect to see a greater impact of increasing imperviousness as the 693 

dominant driver of WUI growth across all sites, while I expect only slightly positive trends in 694 

vegetation cover for Portugal and Chile. I also assume building densification processes and 695 

urban expansion in Cape Town and Adelaide cause WUI loss. 696 
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Land cover dynamics within the WUI 697 

I will present the trends in vegetation and impervious fractions within the stable WUI 698 

area, as well as for intermix and interface WUI, for each study area. For this, I will create plots 699 

showing the annual shares of vegetation and imperviousness within stable WUI areas. I will 700 

report the statistical metrics, such as slope and intercept, standard deviation, the F-test and T-701 

test and their p-value, of the remotePARTS analysis as a table. The results will indicate how 702 

vegetation or imperviousness have changed in association with stable overall, intermix and 703 

interface WUI. I expect to observe trends of increasing vegetation cover due to the way WUI is 704 

constructed, people settle and design their gardens in San Diego and Adelaide, while land 705 

abandonment and forest plantation increased in rural inland Portugal and central Chile. In 706 

contrast, in areas of unorganized WUI growth in South Africa, vegetation cover may decrease. 707 

Additionally, I expect also trends of more stable vegetation cover in some areas of extensive fuel 708 

treatment and prescribed burning, for example in San Diego, Adelaide, and Cape Town. 709 

3.4 Significance and contributions 710 

Across the different regions, I will identify what drives WUI growth and losses. The 711 

drivers provide useful insights into the pattern and dynamics that reflect on human-712 

environmental conflicts, social-economic changes, population growth and prosperity, and 713 

policies. In addition, the analysis of the land cover dynamics within the WUI provides 714 

information on the trends of the structure and composition of the WUI and its fuel load. 715 

Increasing vegetation cover may increase the risk of fire hazards, and causes concern for the 716 

safety of people, which is important for land use planners, conservation, policy, and fire risk 717 

management across the Mediterranean climate ecosystems. 718 

Mine will be the first study to investigate why and how WUI has changed using optical 719 

remote sensing Landsat data. The consistent Landsat Archive data provide the opportunity to 720 

assess trends in vegetation and impervious cover in relation to WUI change and its dynamics. 721 

The combined analysis of the counterfactual scenarios and remotePARTS will allow me to 722 

identify the drivers of the WUI and monitor trends of land cover dynamics within the WUI 723 

between 1990-2022.  724 

Growing human-environmental conflicts are especially apparent in the WUI. Therefore, 725 

assessing the drivers and dynamics of the WUI provides information on where these conflicts 726 

are present, expanding, or causing issues related to ecosystem function and processes, and fire 727 
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risk. The expanding fire risk zones of WUI growth and existing WUI areas through fuel load 728 

increases are important to assess for mitigating wildfire hazards and to ensure the safety of 729 

people. 730 

 731 

Chapter 4: Changing fire activity in relation to WUI growth 732 

across Mediterranean climate type landscapes 733 

4.1 Introduction 734 

Severe fires have occurred in many regions across the world, especially in 735 

Mediterranean climate type landscapes, including in Australia (2019-2020), California (2020), 736 

South Africa (2021), Chile (2017, 2023), and southern Europe (2021). Wildfires kill people 737 

(Alexandre et al. 2015; Buxton et al. 2011; Collins et al. 2021), impacted ecosystem resilience 738 

(Guiterman et al. 2022; Syphard et al. 2019), wildlife habitat (Barro and Conard 1991Theobald, 739 

1997 #44; Carlson et al. 2022) and destroyed property and homes (Alexandre et al. 2016; 740 

Bowman et al. 2020; Buxton et al. 2011). WUI growth expands the area of wildfire risk (Radeloff 741 

et al. 2018) because human activity increases the fuel exposed to fire (Alexandre et al. 2016; 742 

Lampin-Maillet et al. 2011; Nunes et al. 2019), introduces and promotes the spread of invasive 743 

species (Bar-Massada et al. 2014; Gavier-Pizarro et al. 2010; Keeley et al. 2022), and increases 744 

ignitions (Balch et al. 2017; Syphard et al. 2017; Syphard et al. 2009).  745 

Fire regimes depend on the interactions between climate and weather, fuel availability, 746 

connectivity, soil and vegetation moisture content, as well as ignitions (Bowman et al. 2011; 747 

McColl-Gausden et al. 2022; Seidl and Turner 2022). Changing fire activity and disturbance 748 

regimes occur when one of these parameters’ changes (Davis et al. 2019; Turner 2010). The 749 

presence of human activity is a major determinant of the location and timing of fires (Balch et al. 750 

2017; Bowman et al. 2011), and fire ignition frequency increases with population density (Balch 751 

et al. 2017; Syphard et al. 2009). For example, in Australia, human colonization by Aboriginals 752 

and later European settlers were associated with increased burning (Archibald 2016; Miller et al. 753 

2005). The trend towards longer fire seasons and more frequent and larger fires due to increase 754 

human-caused ignition occured in the USA (Balch et al. 2017; Cattau et al. 2020; Westerling et al. 755 

2006), Chile (Miranda et al. 2017; Montenegro et al. 2004), Portugal (Moreira et al. 2009; Nunes 756 

et al. 2016), South Australia (Abram et al. 2021; Price and Bradstock 2014), and South Africa 757 



27 
 

(Christ et al. 2022; Kahanji et al. 2019). Fire management efforts in the US have resulted in 758 

extensive and costly fuel management (Baylis and Boomhower 2023; Keeley 2012; Reinhardt et 759 

al. 2008). However, due to more frequent extreme fire weather conditions, fire risk and the rate 760 

of losses and damage costs are still increasing (Kramer et al. 2019; Kramer et al. 2018). Although 761 

higher population density is often associated with higher fire frequency, human presence may 762 

also prevent and suppress fire activities (Abatzoglou and Williams 2016; Alexandre et al. 2016; 763 

Baylis and Boomhower 2023). Fire suppression is a problem in dry coniferous forests 764 

ecosystems with frequent surface fires because fuel accumulates (Bowman et al. 2011; Hagmann 765 

et al. 2021; van Wagtendonk 2007) and can lead to destructive fire events in the future, posing a 766 

threat to humans (Buxton et al. 2011; Collins et al. 2021) and deteriorates ecosystems (Falk et al. 767 

2022; Keeley et al. 1999; Syphard et al. 2009). 768 

In the five regions of San Diego, Adelaide, Lisbon, Santiago, and Cape Town, fire risk in 769 

the vicinity of human dwellings and metropolitan centers with highly flammable vegetation 770 

poses a significant challenge for fire management (Bowman et al. 2020; Syphard et al. 2009). 771 

Semi-arid biogeographic conditions shape these landscapes and promote vegetation growth 772 

and fuel availability during the wet-winter season, while the dry-summer season supports 773 

easily flammable fuels (Chuvieco 2009; Keeley et al. 2011a; Rundel et al. 1998). The vegetation 774 

consists of many fire-adapted or fire-dependent, endemic species, such as evergreen 775 

sclerophyllous-leaved shrublands, semi-deciduous scrubs, and woodlands, that need persistent 776 

predictable disturbances (Keeley 2012; Keeley et al. 2011b; Syphard et al. 2009). However, 777 

changing characteristics of fire disturbances threaten these ecosystems due to increasing or 778 

decreasing fire frequency and intensity (Keeley et al. 2011a; Keeley et al. 2011b; Pausas 2022).  779 

Across Mediterranean climate ecosystems, human activity has increased fire ignition in 780 

the landscape (Bowman et al. 2020; Pausas and Keeley 2021). Increased fire ignition frequency 781 

and seasonality (earlier & later fires) occur especially around human settlements bordering 782 

wildland vegetation (Bowman et al. 2020; Keeley and Pausas 2019; Syphard et al. 2009). Also, 783 

the fire season has lengthened due to human ignition (Balch et al. 2017; Cattau et al. 2020; 784 

Pausas and Keeley 2021). Often, higher ignition rates are non-linearly related with higher 785 

population density (Balch et al. 2017; Syphard et al. 2009). However, it is unknown how WUI 786 

growth across the five-study region has contributed to increasing fire frequency, area burnt, and 787 

fire seasonality changes between 1990-2022. Therefore, I will focus on: 788 
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(I) Did the area burned due to wildfire increase as WUI grew across the five study 789 

regions within the Mediterranean climate type region around the globe? 790 

(II) Did wildfire frequency increase as WUI grew?  791 

(III) Did the wildfire seasons lengthen as WUI grew? 792 

I hypothesize that WUI growth has increased fire frequency, area burned, and 793 

lengthened the fire season due to more buildings and people that cause higher ignitions within 794 

wildland vegetation landscapes. 795 

 796 
Figure 4: Potential WUI growth effects on fire activity across the Mediterranean climate ecosystem. 797 

4.2 Methods and Materials  798 

4.2.1 Study area 799 

San Diego (USA) (Keeley and Syphard 2019; Syphard et al. 2021), Adelaide (Australia) 800 

(Adachi and Li 2023; Gill et al. 2014), Lisbon (Portugal) (Chergui et al. 2018; Moreira et al. 2020; 801 

Moreira et al. 2011), Santiago de Chile (Chile) (Gómez-González et al. 2018; Soto et al. 2015), and 802 

Cape Town (South Africa) (Christ et al. 2022; Liu et al. 2023) all are experiencing increasing 803 

population in or near a drying, fire-prone environment (Bowman et al. 2020; Jones et al. 2022; 804 

Pausas and Keeley 2021; Underwood et al. 2009). These regions are dominated by evergreen, 805 

sclerophyllous-leaved shrublands, semi-deciduous scrub, and woodlands plant communities 806 

that have developed different adaptive traits in response to predictable disturbance regimes 807 

(Keeley 2012; Keeley et al. 2011b). Natural fire return intervals of the shrubby vegetation 808 

communities across the global Mediterranean biome is usually 10-60 years (Médail 2008). 809 

However, humans determine the location and time of fire and disrupt the natural fire regimes, 810 

which threatens ecosystems where plants are not adapted to fire activity (Abatzoglou and 811 

Williams 2016; Bowman et al. 2011; Keeley et al. 2011b). WUI growth increases the ignition 812 

potential and wildfire risk (Balch et al. 2017; Syphard et al. 2009), and recent wildfires in these 813 

regions have caused significant damage to homes, businesses, infrastructure, and ecosystems in 814 

the past (Alexandre et al. 2016; Bowman et al. 2020; Gill and Stephens 2009).  815 
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4.2.2 Data 816 

WUI Map 817 

I will use the WUI change map from my second chapter to underline how WUI change 818 

affects fire regime potentials (see chapter 2). 819 

4.2.3 Methods 820 

Landsat-based burned area mapping (1990-2022) 821 

I will apply the Landsat Burned Area algorithm (Hawbaker et al. 2017; Hawbaker et al. 822 

2020) to the Landsat time series for each study region to map the area burned, fire frequency, 823 

and fire seasonality. This method is useful, because it captures fire activity for the same time 824 

period as for the WUI change detection, while the MODIS burned area product (Giglio et al. 825 

2018) information only goes back to 2001 and has coarser resolution. The Landsat burned area 826 

algorithm has been successfully tested across ecosystems within the United States and is able to 827 

accurately identify burned areas between 1984-2018 (Hawbaker et al. 2020; Teske et al. 2021; 828 

Vanderhoof et al. 2017). However, it has not been tested for Australia, Chile, Portugal, and 829 

South Africa. Still, the approach seems promising to assess pixel-level burn probabilities and I 830 

will test it for my selected study regions. Therefore, I will validate the scene-level burned area 831 

products for regions outside of the US using high-resolution imagery and perhaps cross-check 832 

with the MODIS Burned Area product (Boschetti et al. 2019; Giglio et al. 2018). Similar to 833 

Hawbaker et al. (2020), I will report the error of omission and error of commission as validation 834 

metrics. 835 

The algorithm uses Landsat-derived, pixel-wise spectral indices, thresholding, machine 836 

learning, and image segmentation to assess burn probabilities and a scene-level burn 837 

classification. The Landsat burn probability approach assesses the maximum burn probability 838 

across all images in a year, the number of times a pixel was classified as burned across all 839 

images in a year, the time since the last burn in years, the longest fire-free interval, and the day 840 

of the year (seasonality) of the first image pixel was classified as burned (Hawbaker et al. 2017; 841 

Hawbaker et al. 2020). 842 

Statistical analysis 843 

I will quantify if the area burned, fire frequency, and fire season length increases as WUI 844 

grew for each study region. I will explore the data by computing histograms, scatterplots, 845 

boxplots, and numerical summaries (i.e., mean, median, …). Then, I will use remotePARTS for 846 
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each study region to investigate if there are trends in the burned area, fire seasonality, or fire 847 

frequency in association with WUI growth. I will report the F-test, T-test, R2, estimates, and p-848 

values. This will provide an overview of if there is a trend or relation, how strong the 849 

association is, and how significant these are, as well as how much of the variation of the 850 

response variables (y) can be explained by the predictor variables (x).  851 

I will aggregate the data and test different sizes of hexagons (500 m, 1 km, 5 km, 20 km) 852 

to balance meaningful spatial detail and frequency of observations. I will test if WUI growth 853 

increased fire frequency, area burned, and fire season (earlier & later fires). My time series 854 

(1990-2022) may not be long enough to detect a pixel-wise change in fire frequency, and 855 

therefore, data aggregation can help. Additionally, hexagons are a useful unit of analysis 856 

because they are an evenly spaced grid with almost circular shapes, which reduces edge effects 857 

(Birch et al. 2007). 858 

4.3 Expected Results 859 

Statistical analysis and Model evaluation 860 

I will quantify fire frequency, area burned, and fire season length. I will show plots and 861 

numerical summaries to present the results for each study region. I expect to observe that WUI 862 

growth is positively associated with higher fire frequency, area burned, and longer fire seasons. 863 

However, I suspect that WUI growth may not explain all variation in the data, as fluctuations in 864 

climate, temperature, precipitation, fuel moisture, and other factors also affect year-to-year fire 865 

activity. Still, I expect higher fire frequency, area burned, and longer fire season in association 866 

with WUI growth across all study regions, because WUI expansion contributes to land use 867 

changes, increasing the population density and thus higher ignition potential within landscapes 868 

of high fuel load that will have a considerable influence on fire activity.  869 

4.4. Significance and contributions 870 

Mediterranean climate ecosystems are undergoing rapid changes due to increasing 871 

human activity. Expanding WUI within vegetated, fire-prone landscapes causes declining 872 

biodiversity, ecosystem services, and poses risks to people and their homes. My research will 873 

determine if there are considerable feedbacks between WUI expansion and fire activity between 874 

1990-2022 for selected study areas in Australia, California, Portugal, Chile, and South Africa. 875 

RemotePARTS will support me to determine the relationship between WUI and changing fire 876 

characteristics over 33 years. These models will show how the effect of expanding WUI area 877 
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within wildland vegetation landscapes relates fire frequency, fire seasonality, and area burned 878 

in association with growing human settlements across the Mediterranean climate ecosystems.  879 

Identifying where burned areas, fire frequency, and season have increased is an 880 

important aspect of assessing wildfire risk in the WUI and the consequences for natural 881 

ecosystems that depend on specific fire regimes. This information is particularly important for 882 

land use planning, fire management, and conservation efforts, especially in so far undeveloped 883 

land with a lot of natural vegetation that experiences housing development. 884 

 885 

Chapter 5: Vegetation Type Conversion in Mediterranean 886 

climate type landscapes due to WUI growth and changing fire 887 

activity  888 

5.1 Introduction 889 

Humans have modified fire activity leading to more severe and frequent fires that have 890 

negatively impacted many ecosystems (Bowman et al. 2020; Pausas and Keeley 2021; Shuman et 891 

al. 2022). Variations in climate, wildfire, drought, invasive species, climate, and other 892 

disturbances drive widespread changes in species composition (Falk et al. 2022; McDowell et al. 893 

2020; van Mantgem et al. 2020). Resilient ecosystems are able to recover after disturbances and 894 

the pre-disturbance species community persists, while reorganization occurs when the 895 

ecosystem fails to reestablish the pre-disturbed species community (Falk et al. 2022). Species 896 

composition can shift gradually in relation to changing environmental conditions (i.e., global 897 

warming or fire disturbance suppression), or abruptly in response to interacting, compound, or 898 

high-severity disturbances (Diez et al. 2012; Falk et al. 2022). Vegetation type conversion 899 

describes an abrupt transformation in vegetation communities that is either transitional or 900 

persistent (Guiterman et al. 2022; Syphard et al. 2022; van Mantgem et al. 2020). 901 

In southern California, widespread vegetation type conversion is occurring. Invasive 902 

grasses are replacing native chaparral because of increased human-caused fire ignition and 903 

frequency (Syphard et al. 2019; Syphard et al. 2022). Chaparral is sensitive to shorter fire return 904 

intervals, as increased fire frequency reduces its regeneration and reproductive capacity, and 905 

makes it less competitive (Syphard et al. 2022). Cheatgrass (Bromus tectorum) can tolerate a 906 

higher fire frequency and severity and replaces chaparral. Cheatgrass also contributes to the 907 
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spread of highly flammable fuel and promotes short fire return intervals (Balch et al. 2013; 908 

Keeley and Pausas 2022; Syphard et al. 2022). Therefore, increasing settlements and population 909 

growth within wildland vegetation areas in southern California causes conservation concern 910 

and threaten ecologically valuable areas (Balch et al. 2017; Syphard et al. 2009; Syphard et al. 911 

2007). 912 

In Mediterranean climate ecosystems, many vegetation communities have evolved 913 

adaptative traits to recover from fire disturbance (Keeley and Pausas 2022; Keeley 2012; Keeley 914 

et al. 2011a). Therefore, growing WUI areas in close proximity to natural ecosystems threaten 915 

the resilience and may cause vegetation type conversion. The native vegetation cannot adapt to 916 

human-caused fires and this causes changes in species composition, promotes biotic invasion, 917 

and increases the risk of erosion, landslides, and contamination of water and soil (Keeley et al. 918 

2011b; Pausas 2022; Shuman et al. 2022). 919 

In this chapter, I will investigate the trend in woody and non-woody vegetation in 920 

relation to WUI growth. Specifically, I ask: 921 

(I) Did the five study areas experience vegetation type conversion from woody to non-922 

woody vegetation between 1990-2022? 923 

(II) Does WUI growth result in higher fire frequency and area burned and ultimately 924 

vegetation type conversion? 925 

I hypothesize that with expanding WUI area, vegetation type conversions also occur in 926 

other regions across the Mediterranean climate ecosystems. With higher human-caused 927 

ignition, fire return intervals shorten and reduce the resilience of native woody species. 928 

Therefore, I expect an increasing conversion of non-woody vegetation type conversion. This 929 

might further change fire characteristics; however, I am not confident that in my analysis, if I 930 

will be able to link back changes in fire frequency to vegetation type conversion between 1990-931 

2022. 932 

 933 
Figure 5 Vegetation Type Conversion (woody to non-woody) because of WUI growth and increased fire 934 

activity  935 
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5.2 Methods 936 

5.2.1 Study area 937 

The shrubland plant communities’ fynbos in South Africa, the mallee in South Australia, 938 

the maquis in Portugal, the chaparral in California, and the matorral in Chile (Médail 2008) are 939 

dominated by evergreen sclerophyllous-leaved shrublands, semi-deciduous scrub, and 940 

woodlands that are prone to predictable disturbances (Keeley 2012; Keeley et al. 2011a). The 941 

increase in population densities and urban areas (Underwood et al. 2009) and higher human-942 

caused ignition changes natural disturbance regimes and reduces the resilience of natural 943 

species. Additionally, exotic and invasive species are introduced for commercial (i.e., forestry 944 

and livestock forage), cultural or aesthetic purposes (gardens), and outcompete native plant 945 

species, reducing biodiversity and changing the composition of the local ecosystem (Brooks et 946 

al. 2004; D'Antonio and Vitousek 1992; Richardson and Rejmánek 2011).  947 

The chaparral is threatened by increasing human-caused fire ignition that threatens 948 

native species (Syphard et al. 2009) and allows for the spread of invasive grasses, such as 949 

cheatgrass (Bromus tectorum), which has a rapid life cycle and can tolerate high fire frequencies 950 

(Balch et al. 2013; Brooks et al. 2004). Invasion of exotic tree species (Gill et al. 2014) and 951 

competitive grasses (i.e., African lovegrass (Eragrostis curvula) (Firn 2009)) are creating a higher 952 

fire risk and degrade the mallee ecosystems. The matorral is threatened by extensive afforestation 953 

of invasive, flammable forest plantations (Castillo et al. 2020; Langdon et al. 2023), while non-954 

native, invasive grass species (i.e., cogon grass (Imperata cylindrica) (MacDonald 2004)) form 955 

dense, flammable stands that displace native vegetation and can increase the risk of wildfires. 956 

The Mediterranean maquis is replaced by invasive, flammable forest plantations (i.e., Eucalyptus 957 

(Nunes et al. 2019)) and invasive grasses (i.e., pampas grass (Cortaderia selloana) and fountain 958 

grass (Pennisetum setaceum)), that are invading a wide range of habitats, alter soil nutrient 959 

cycling and increase the risk of wildfires (Brunel et al. 2010; Marchante et al. 2017; Roy et al. 960 

2019). The fynbos is under threat of Pinus, Acacias, and Eucalyptus (Nel et al. 2004; van Wilgen 961 

2010; van Wilgen et al. 2012), and several highly competitive European grasses have been 962 

introduced (D'Antonio and Vitousek 1992) that form dense mats, displace native vegetation, 963 

alter soil nutrient cycling, and increase the risk of wildfires (Brooks et al. 2004; Nel et al. 2004). 964 

5.2.2 Data 965 
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I will use the Landsat-based time series of the fractions of woody and non-woody from 966 

chapter 1. In addition, I will use the WUI change map from chapter 2, and assess fire frequency 967 

and area burned from chapter 4. 968 

5.2.3 Methods: Assessing Vegetation Type Conversion 969 

I will investigate vegetation type conversion from woody to non-woody vegetation 970 

cover across the study areas. Typically, chaparral vegetation type conversion occurs as a 971 

gradual transition from woody to non-woody vegetation dominance (Syphard et al. 2019).  I am 972 

considering using the Normalized Difference Fraction Index (NDFI, eq. 5.1) (Souza et al. 2005) 973 

to map vegetation type conversion. The index highlights the difference between disturbed 974 

(thinned or cleared) and non-disturbed forest pixels by using input spectral mixture analysis 975 

derived fractions of green vegetation (GV), non-photosynthetic active vegetation (NPV), Shade, 976 

and Soil. Souza et al. (2005) and Bullock et al. (2020) used the NDFI to identify selectively 977 

logged forests, since in degraded forests the shade fraction is higher than in intact forests, which 978 

have higher GV and lower Soil and NPV fractions.  979 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐺𝐺𝑉𝑉𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−(𝑁𝑁𝑁𝑁𝑉𝑉+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)
𝐺𝐺𝑉𝑉𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎+𝑁𝑁𝑁𝑁𝑉𝑉+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

  (5.1) 980 

Viana-Soto et al. (2022) used a modified version of the index to contrast fractions of tree 981 

and shrub cover to analyze post-fire vegetation shifts in Mediterranean pine forests. I will assess 982 

shifts in vegetation cover, however, from vegetation type conversion from woody to non-983 

woody vegetation across different Mediterranean-climate type study regions. Therefore, I 984 

propose a modified version of the NDFI (eq. 5.2) to compare and contrast the woody cover 985 

(fwoody) relative to the non-woody (fnonwoody) cover fraction. 986 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑤𝑤−𝑓𝑓𝑛𝑛𝑤𝑤𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑤𝑤
𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑤𝑤+𝑓𝑓𝑛𝑛𝑤𝑤𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑤𝑤

   (5.2) 987 

I will apply the index to quantify annual vegetation cover dominance between 1990-988 

2022, where a positive index value indicates predominant woody and a negative non-woody. I 989 

will evaluate the pixel-wise trend of the index with remotePARTS (Ives et al. 2021). This will 990 

allow me to examine if there are significant trends in shifts of woody to non-woody vegetation 991 

cover, and potential vegetation type conversion. Additionally, I will cross-check some of the 992 

detected areas with significant trends in the gain of non-woody vegetation with high-resolution 993 

Google Earth TM or aerial photos.   994 
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5.3 Expected Results 995 

Vegetation type conversion 996 

I will assess if the five study regions have experienced vegetation type conversion from 997 

woody to non-woody vegetation between 1990-2022. I will present my results as maps 998 

highlighting the areas where vegetation type conversion occurred. I will also show a map of 999 

estimated trends in woody and non-woody vegetation fractions estimated via remotePARTS. 1000 

Additionally, I will report the model result and inspect the F-test and T-test p-values (p < 0.05). 1001 

I will report also on the observed trends of vegetation type conversion in relation to high-1002 

resolution Google Earth data to confirm trends. I expect to detect vegetation type conversion in 1003 

all study regions. However, I assume the effect to be less pronounced, in Portugal and Chile, 1004 

where large forest plantations have been increasing but also land abandonment tool place 1005 

(Nunes et al. 2019; Pereira et al. 2018). Still, I may observe a transition from wood to non-woody 1006 

vegetation, for example, on abandoned land in association with higher fire frequency near the 1007 

WUI. In South Africa and South Australia, I expect to detect vegetation type conversion in areas 1008 

with increased fire frequency, while an opposite effect may also occur where invasive 1009 

coniferous species increase the woody fuel load in the landscape (Bowman et al. 2020; Brooks et 1010 

al. 2004; Langdon et al. 2023). 1011 

Additionally, I will assess if WUI growth results in higher fire frequency and area 1012 

burned and ultimately vegetation type conversion from woody to non-woody vegetation. For 1013 

this, I will present how much variance in vegetation type conversion is explained by WUI 1014 

growth, fire frequency, and area burned. I expect high fire frequency to have the greatest 1015 

influence on vegetation type conversion from woody to non-woody vegetation, because this has 1016 

been described as a significant factor influencing the resilience of native woody species (Balch et 1017 

al. 2013; Syphard et al. 2009), while the amount of area burned might play a role in combination 1018 

with higher fire frequency. 1019 

5.4 Significance and contributions 1020 

The growth of the Wildland-Urban Interface affects species communities of the wildland 1021 

vegetation landscapes. Natural ecosystems in the Mediterranean climate ecosystems are 1022 

threatened by higher fire ignition and frequency, that is caused by increasing human 1023 

settlements within wildland vegetation landscapes. The analysis of vegetation type conversion 1024 

of woody vegetation to non-woody ecosystems in relation to WUI growth is important for 1025 



36 
 

assessing the extent of changed fuel settings and the replacement of natural vegetation across 1026 

different regions. Since vegetation type conversion from woody to non-woody vegetation often 1027 

forms species communities that promote higher fire frequency, while other invasive coniferous 1028 

tree species may increase the fuel load. Therefore, fire management efforts are important for 1029 

increasing humans living within the WUI and a fire-prone landscape.  1030 

I will monitor vegetation type conversion with the fractions of dense Landsat time 1031 

series. Long-term trends of the woody and non-woody fractions reflect on persistent or 1032 

transitional shifts in vegetation composition and loss of biodiversity. Therefore, I will test the 1033 

hypothesis of whether non-woody vegetation increases significantly. These changes can be 1034 

detected and investigated using remotePARTS and determine the changes that occur in relation 1035 

to WUI growth and changes in fire frequency and area burned. 1036 

WUI growth has important implications for ecosystem composition and natural 1037 

vegetation communities. Vegetation type conversion is a consequence of changes in disturbance 1038 

regimes that threaten natural ecosystems and reduce the recovery and reproduction of native 1039 

species. In southern California, vegetation type conversion from woody to non-woody 1040 

vegetation has been observed, where chaparral is replaced by invasive grasses. Since WUI 1041 

growth is a global phenomenon, it is likely that these effects will also occur in other regions. 1042 

However, in other WUI hotspot regions across the Mediterranean climate ecosystems, 1043 

vegetation type conversion from woody to non-woody has not been studied. Therefore, this 1044 

chapter will contribute to assessing the effect of vegetation type conversion across the five study 1045 

regions in relation to WUI growth and increased fire activity. 1046 

 1047 

Overall Significance 1048 

Mediterranean climate type regions are undergoing rapid changes due to increasing 1049 

human activity. Expanding settlement within vegetated, fire-prone landscapes causes severe 1050 

declines in biodiversity, undermines ecosystem services, and poses risk to people and their 1051 

homes. Human activity is a major driver of changing fire activity because it increases ignition 1052 

frequency and biomass burning and lengthen the fire season. Also, humans modify the 1053 

terrestrial surface, change vegetation fuel and continuity, and introduce invasive species. This 1054 

influences fire characteristics and is a reason for the observed severe damage and losses of past 1055 

wildfires in WUI areas across Mediterranean climate ecosystems. My research will determine if 1056 
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there are significant feedbacks between WUI growth, fire, and vegetation characteristics within 1057 

Mediterranean climate ecosystems. I will accomplish this by first quantifying trends in WUI 1058 

area expansion and its drivers between 1990-2022, and then investigating trends in recurring 1059 

fire activity, and vegetation cover changes in association with WUI development for selected 1060 

study regions. 1061 

The WUI is a fast-growing settlement type in close proximity to wildland vegetation 1062 

cover. Growing WUI across Mediterranean climate ecosystems causes reduction and 1063 

fragmentation of the natural environment, as well as shifts in species composition, biodiversity, 1064 

ecosystem services, and fire hazards. In particular, WUI maps are a useful tool for 1065 

understanding where human-environmental conflicts are most likely. WUI growth has mainly 1066 

been mapped in the conterminous US, while in other regions, the assessment of WUI growth 1067 

was constrained due to limited datasets on detailed building locations over time. Therefore, my 1068 

new Landsat and Sentinel-2-based WUI mapping approach contributes to a flexible assessment 1069 

of WUI distribution and patterns of human development between 1990-2022 across different 1070 

regions within the Mediterranean climate ecosystems. Also, assessing the trends of fire activity 1071 

and associated vegetation type conversion in relation to WUI is critical for finding appropriate 1072 

prevention efforts to reduce losses of life, properties, and ecosystems. 1073 

Mapping the WUI with Landsat and Sentinel-2 data is advantageous since the satellite 1074 

data are consistent and freely available. This new method provides a basis for a flexible WUI 1075 

assessment independent of census blocks or building footprints. I will be able to retrieve the 1076 

WUI criteria of vegetation cover characteristics and housing density via land cover fractions 1077 

using spectral unmixing. Also, I can conduct a change analysis of WUI using this approach and 1078 

the long-time series available from Landsat imagery. This enables the detailed assessment of 1079 

WUI growth and losses between 1990-2022 and provides substantial information on how WUI 1080 

has evolved in different regions across Mediterranean climate ecosystems. In addition, fire 1081 

activity and vegetation characteristics can be derived to identify important human-induced 1082 

changes in the landscape. 1083 

Maps are useful tools for decision-making, land-use planning and policies, fire risk 1084 

assessment, fire hazard prevention, and conservation management. Humans modify the land 1085 

cover, vegetation canopy and connectivity, and increase ignition that raises the overall fire risk. 1086 

This is especially important in the WUI across Mediterranean climate ecosystems, where human 1087 
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settlements overlap with vegetated, fire-prone landscapes. In Mediterranean climate 1088 

ecosystems, many species have adaptive traits to recurring fire characteristics but are not per se 1089 

adapted to fires. Therefore, increasing or decreasing fire activity causes conservation concerns 1090 

caused by WUI growth, where settlements often spread into undeveloped, wildland vegetation 1091 

landscapes. The WUI fragments the landscape and promotes biotic invasion that further 1092 

threatens the natural ecosystems, and possibly leads to cascading effects and feedbacks on fire 1093 

risk and regimes. 1094 

WUI growth affects ecosystems within the Mediterranean climate type regions. The 1095 

Mediterranean climate ecosystems are highly diverse and have many endemic species with 1096 

special adaptations to predictable disturbance. Expanding settlements into wildland vegetation 1097 

landscapes threatens these species because WUI growth causes habitat loss, fragmentation, and 1098 

increasing fire ignition and frequency. This reduces the resilience of ecosystems, promotes biotic 1099 

invasion, and may increase severe fire hazards in the future. Especially in the last 5 years, heavy 1100 

fires have occurred in WUI areas in Australia (2019-2020), California (2020), South Africa (2021), 1101 

Chile (2017, 2023), and southern Europe (2021), which are related to the human modifications in 1102 

the landscape, higher ignition potential, and anthropogenic climate change.  1103 

In conclusion, the WUI across Mediterranean ecosystems presents a complex and 1104 

ongoing social-ecological challenge, seeking to balance human development with ecological 1105 

conservation. Effective management strategies are needed to enhance the resilience of these 1106 

dynamic and valuable ecosystems and to create safe and more sustainable communities in the 1107 

landscape. 1108 
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