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Introduction  

Avian diversity is declining globally, due to many threats including habitat loss from 

human activities, which modify ecosystems through land cover and land use change. 

Conservation of biodiversity is critically important for the resilience and resistance of 

ecosystems to environmental change (Chapin et al. 2000). Moreover, biodiversity loss raises 70 

serious concerns about services that humans receive from ecosystems (Sekercioglu 2006). Thus, 

there is an urgent need for better assessments of the current status of biodiversity, in order to 

better understand and predict future changes, and to allow timely implementation of conservation 

actions to prevent biodiversity loss. However, to obtain a spatially detailed map of species 

richness directly is hardly possible. In this regard, remote sensing is a suitable tool for assessing 75 

biodiversity (Nagendra 2001, Turner et al. 2003). 

Satellite data can be used to characterize suitable habitat for each species, predict species 

distribution, and identify high-value habitat (Nagendra 2001). Effective management 

applications often require maps with higher spatial resolution.  However, there is a trade-off 

between spatial and temporal resolution of satellite data. On the one hand, satellites with coarse 80 

spatial resolution have more observations over time, providing better estimations of annual 

vegetation productivity, but larger pixels can be too coarse for ecological studies and 

management applications. On the other hand, imagery with higher spatial resolution can provide 

more detailed information about spatial patterns of productivity, especially in heterogeneous 

landscapes, but temporal resolution is lower.  85 

Available energy has a particularly strong influence on biodiversity (Gaston 2000). Based 

on the species-energy hypothesis, areas with more available energy can support larger numbers 

of species (Wright 1983). However, measuring energy can be problematic. Vegetation 

productivity derived from satellite data can be used as indirect measurement of available energy 

(Myneni et al. 2002). Moreover, vegetation productivity is highly associated with biodiversity 90 

(Skidmore et al. 2003, Cohen and Goward 2004, Pettorelli et al. 2011). 

The Dynamic Habitat Indices are remote sensing metrics that summarize three aspects of 

vegetation productivity: overall vegetation productivity of an ecosystem, the lowest vegetation 

productivity over the year, and variation of productivity over a year (Coops et al. 2008, Hobi et 

al. 2017, Radeloff et al. 2019) . The DHIs are important metrics for biodiversity, and effectively 95 

predict species richness for many taxa at national to global scales (Coops et al. 2009, Zhang et al. 
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2016, Hobi et al. 2017, Radeloff et al. 2019). The DHIs are designed specifically for assessing 

biodiversity, however, they might also be useful for studies of individual species (Michaud et al. 

2014, Razenkova et al. 2020).  

My overarching goal is to develop remote sensing indices with different spatial and 100 

temporal resolution for monitoring avian diversity and abundance across different scales. My 

hope is to improve our understanding of the usefulness of higher spatial resolution satellite data 

for explaining patterns of avian diversity and abundance.  

In my first chapter, I will calculate the DHIs using data from two satellites which are 

different in both temporal and spatial resolution. One dataset comes from MODIS instrument 105 

which has high temporal resolution (1-2 days) and coarse spatial resolution (1-km). The second 

dataset is from Landsat satellite with low temporal resolution (16 days) and medium spatial 

resolution (30-m). The calculation of composite DHIs using MODIS and Landsat images will 

require several years of data. Including several years of imagery will increase the robustness of 

the DHIs and minimize noise from raw images and effects of cloud, but precludes analyses of 110 

changes over time. Furthermore, some changes in vegetation productivity can occur very rapidly 

due to land cover change or natural disturbance, such as clear-cuts and fire. In this chapter I will 

find the optimal time period for calculation of the DHIs, balancing the trade-off between 

obtaining robust metrics and avoiding or minimizing land cover change. I will assess the 

uncertainties for each DHI product.  115 

I assume that the DHIs with medium spatial resolution will provide more advantages over 

coarse DHIs for studies at smaller extents, because by averaging the Landsat DHIs over large 

areas we will lose detailed information about landscapes, and Landsat DHIs will provide similar 

information as MODIS DHIs. To test this hypothesis, I will run correlation analysis at two 

scales: ecoregions based on level III classification of the US Environmental Protection Agency 120 

(EPA) (https://www.epa.gov/eco-research/ecoregions) cover large areas (Figure 1), and 

ecoregions based on level IV cover smaller areas. To evaluate the ability of Landsat DHIs to 

capture heterogeneity at a much finer scale then MODIS DHIs, especially in complex terrain and 

fragmented landscapes, I will develop models including commonly used metrics, such as terrain 

ruggedness index and landscape metrics, to explain the variation in the standard deviation of 125 

Landsat DHIs. 

https://www.epa.gov/eco-research/ecoregions
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Figure 1: Ecoregions based on level III classification of the US Environmental Protection 

Agency across the conterminous states of the USA 

 

In my second chapter, I will evaluate the relationship between the two sets of DHIs and 

bird richness at three scales. I will also quantify the benefit of higher spatial resolution DHIs 

when predicting species richness. For that, I will use the DHIs based on MODIS and Landsat 130 

calculated in first chapter and test them as predictors for bird species richness for several bird 

guilds across the US. Birds can serve as good indicators of biodiversity and ecosystem health, 

because they utilize a wide range of habitat and are sensitive to environmental changes (Cody 

1981, Sekercioglu 2006). The vertical complexity of vegetation affects bird species diversity by 

providing more niches in places with complex vegetation structure (MacAthur and MacAthur 135 

1961). Optical satellites are not suitable for measurement of vertical structure such as foliage 

height diversity, however they capture horizontal heterogeneity very well and indirectly capture 

some information related to vertical structure (Wood et al. 2012).  The DHIs implicitly take into 

account land cover classes, many of which differ in their vertical structure. I hypothesize that the 

DHIs with medium resolution will better capture horizontal heterogeneity of landscapes and 140 

vertical vegetation structure, than coarse DHIs. As a result, Landsat DHIs will outperform 

MODIS DHIs in models of bird species richness of some bird guilds, such as forest species. In 
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addition, I will assess the relative importance of the DHIs versus the commonly used metrics, 

including topography and land cover, in multiple regression models for species richness.  

The main goal in my third chapter is to evaluate the utility of the Landsat DHIs in 145 

explaining bird abundance across the western US. The More Individuals Hypothesis (MIH) 

explains heterogeneous pattern of species richness (Evans et al. 2005, 2006, Storch et al. 2018), 

but this hypothesis can also be directly applied to explain species abundance. More productive 

areas that have high biodiversity can support a higher number of individuals, because of 

abundant food resources (Srivastava and Lawton 1998, Storch et al. 2018). At same time, the 150 

relationship between available energy and abundance may be stronger for rare species than for 

common species (Evans et al. 2005, 2006), because where there is more available energy the 

extinction probability may be reduced, especially for rare species (Evans et al. 2005, 2006). My 

first objective is to test if bird abundance varies between areas with higher vegetation 

productivity and lower productivity. Then I will examine if the relationship between the DHIs 155 

and bird abundance is stronger for rare species or common species. And finally, I will explore if 

bird groups based on migratory behavior exhibit different relationships to the DHIs.  

In total, my dissertation will a) provide a better understanding of the time period required 

for the calculation of DHIs from MODIS and Landsat, and their ability to capture heterogeneity; 

b) quantify the benefits of higher spatial resolution DHIs for explaining bird species richness, 160 

and c) test the utility of Landsat DHIs for explaining spatial patterns of bird abundance. 

Moreover, I will produce two datasets which will be available for users, including updated 

MODIS DHIs and Landsat DHIs. 

Study area 

My study area encompasses the conterminous US (7.6 million km2). This large area is 165 

suitable for my research questions because it covers a wide range of ecoregions (Figure 1), and 

has diverse climatic zones and topography (Figure 2), resulting in a large number of habitats and 

large ranges of the DHIs. Moreover, rich datasets for bird richness and abundance are available 

for the US, particularly the western US.  

 170 
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Figure 2: Elevation across the conterminous states of the USA 
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Chapter 1. Comparison of vegetation productivity summarized by the Dynamic Habitat 

Indices from MODIS instrument and Landsat satellites  

 

Introduction 175 

A main question in ecology is which key environmental factors shape the patterns of 

biodiversity? The species-energy hypothesis predicts that the areas with higher amounts of 

biomass can support more species due to availability of abundant food resources (Wright 1983, 

Currie et al. 1993, Hawkins et al. 2003a, 2003b). By exploiting the spectral reflectance signal 

from vegetation, remote sensing vegetation indices can characterize the available environmental 180 

energy available due to photosynthesis, making them a good proxy for vegetation productivity 

(Myneni et al. 1995, Cohen and Goward 2004, Pettorelli et al. 2011). However, it is often unclear 

what satellite data to select for different purposes. On the one hand, satellite sensors with coarse 

resolution provide more frequent observations, but images are often too coarse for ecological 

studies (Kennedy et al. 2014). On the other hand, imagery with medium or high resolution 185 

provide more spatially detailed information about ecosystems (Wulder et al. 2008, 2019), but the 

frequency of observations is lower. 

The Dynamic Habitat Indices summarize three measures of vegetation productivity over 

the course of a year, and capture seasonal variations in energy and correlates of available food 

resources, which is how the DHIs are linked to patterns of biodiversity (Hobi et al. 2017). 190 

Studies have shown that the DHIs can effectively predict species richness and abundance at 

regional and global scales. For example, the DHIs can predict bird richness in Canada (Coops et 

al. 2009), US (Hobi et al. 2017), and Thailand (Suttidate et al. 2019), species richness for birds, 

mammals, amphibians in China (Zhang et al. 2016) and over the globe (Radeloff et al. 2019), 

and moose abundance in Canada (Michaud et al. 2014) and Russia (Razenkova et al. 2020). So 195 

far, the DHIs have only been derived from coarse-resolution satellite data, such as AVHRR and 

MODIS. However, in principle these indices can be calculated from different satellites including 

Landsat. Having the DHIs with higher spatial resolution may make them more useful than 

MODIS DHIs. The DHIs with higher spatial resolution could characterize habitat heterogeneity 

at much finer scale, especially in complex mountainous terrain and areas with fragmented land 200 

cover. Moreover, the pixel size of the Landsat DHI is closer to home territory of some bird 

species, and therefore may reflect bird habitat better than coarser-resolution imagery. Another 
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advantage of Landsat is the long data record, which creates a great opportunity to understand 

changes over time (Kennedy et al. 2014, Wulder et al. 2019). However, the temporal resolution 

of Landsat is low, at a 16-day return cycle, while satellites with coarse resolution obtain imagery 205 

every day. Prior studies use the MODIS DHIs as composite products calculated from different 

numbers of years (Coops et al. 2008, Radeloff et al. 2019). Composite products minimize effects 

of atmosphere and eliminate noise from raw imagery. At same time, some changes in vegetation 

productivity caused by anthropogenic and natural disturbance can occur very rapidly, and that 

modification in landscape is critical for habitat selection. To avoid land cover change and climate 210 

change trends during the period for which monthly measures are combined, it is better to 

calculate composite DHIs over shorter time periods. However, there is a lack of evaluation to 

determine what is the optimal period for the DHIs calculation in order to provide high quality 

product and avoid land cover changes, and how much this period changes for different input data 

that are different both in spatial and temporal resolution. 215 

In order to identify the period required for the DHIs calculation, which depends on input 

data differing in temporal and spatial resolution, I will use images from two satellites. One 

dataset will come from MODIS with 1-km spatial resolution, and another dataset is from Landsat 

with 30-m spatial resolution. For both products I will test the robustness of the DHIs metrics to 

number of years included for calculation. I assume that the DHIs derived from MODIS will be 220 

very robust due to large number of observations, and thus will require a relatively short period of 

time. For Landsat DHIs it will require a much longer period of time, and it will increase the 

uncertainties associated with land cover change and low number of cloud-free images. I expect 

that the performance of the DHIs will depend on the scale of study. By averaging the Landsat 

DHIs over a large area, all detailed information will be lost, and Landsat DHIs will be similar to 225 

MODIS DHIs. The comparison between MODIS DHIs and Landsat DHIs will help me to 

identify at what scale the main discrepancy between them occurs. 

 At same time I will quantify how well the Landsat DHIs capture heterogeneity in 

complex terrain and fragmented landscapes. Mountains are often hot spots for biodiversity 

because of long evolutionary processes (Badgley et al. 2017, Rahbek et al. 2019). Furthermore, 230 

large gradients of temperature and environmental conditions can support more species than 

where environmental conditions are homogeneous (Letten et al. 2013). In such places, species do 

not need to travel long distances to find suitable environmental and climatic conditions for 
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survival and reproductive success.  Moreover, climate change is causing elevational shifts for 

many species (Freeman and Class Freeman 2014), therefore it is important to estimate the 235 

amount of habitat area is available for species following range shifts (Elsen et al. 2020b).  

With limited resources for protecting important habitat, it is crucial to understand how 

species respond to anthropogenic modification of landscapes, which disturb the integrity of 

landscape pattern, and therefore affect biodiversity. Although the effect of habitat fragmentation 

is debated (Fahrig 2017, Fletcher et al. 2018), there is general agreement that species show 240 

complex responses to fragmented landscapes, with some species such as habitat specialists 

suffering from fragmentation (Henle et al. 2004), while others benefit from it (Rybicki et al. 

2020). There are numerous landscape metrics that describe compositional and spatial aspects of 

landscapes, but the ecological relevance of those metrics is questionable due to many limitations 

(Kupfer 2012). Moreover, landscape metrics are usually calculated based on static land cover 245 

maps, and at inappropriate scales for organisms (Kupfer 2012). That is why it will be beneficial 

for biodiversity studies to have metrics which capture heterogeneity that incorporates dynamic 

patterns of vegetation productivity at fine spatial scales, and be free of the limitations of 

landscape metrics.    

I assume that the temporal resolution of satellite data will be one of the main 250 

determinants for period required for calculation. However, I expect that some areas will tend to 

more problematic than others, due to frequent cloud formation and consequently low number of 

images over that area, especially for Landsat. Moreover, adjacent Landsat images have 

overlapping zones, therefore the non-overlap zones may require more years. In order to account 

for these uncertainties, I will generate an additional band in the DHIs that will provide 255 

information about quality of given pixel for both MODIS and Landsat DHIs.  

My primary goal of this chapter is to develop the Dynamic Habitat Indices based on 30-m 

resolution Landsat data and 1-km resolution MODIS data across the conterminous US, and to 

quantify the sensitivity of the DHIs to these input data that are different both in temporal and 

spatial resolution. More specifically, I will focus on the following goals:  260 

• Identify the time period required for obtaining robust DHIs metrics based on 

MODIS and Landsat data. 

• Assess the uncertainties of the DHIs for both satellites. 

• Compare the DHIs derived from MODIS and Landsat at different scales. 
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• Assess the ability of Landsat DHIs to capture heterogeneity in complex terrain 265 

and fragmented landscapes.  

I expect that the DHIs based on MODIS will require a relatively short period of time 

because of the greater temporal density of images. While for Landsat DHIs it will be a much 

longer time period, and it will contain the uncertainties associated with land cover change. 

However, I expect that Landsat DHIs will provide more advantages over MODIS DHIs by 270 

capturing heterogeneity in mountains and fragmented landscapes, and over small geographical 

extents. 

Methods 

The DHIs calculation 

I will process all data in Google Earth Engine (GEE). This free cloud-based platform 275 

provides a great opportunity to develop the DHIs across the conterminous US. The entire archive 

of Landsat and MODIS data is available on Google Earth Engine (GEE). Moreover, GEE has 

powerful servers, which allow to parallelize the data processing, resulting in shorter processing 

times. 

I will analyze atmospherically corrected Surface Reflectance (SR) Tier 1 obtained from 280 

Landsat-5 TM, Landsat-7 ETM+, and Landsat-8 OLI from 2001 to 2020. Areas covered by 

clouds, i.e. ‘cloud shadow,’ will be removed based on the pixel quality (QA). To remove water 

bodies, first, I will remove pixels based on QA, and, second, I will apply a water mask of 

permanent water bodies (Hansen et al. 2013). I will calculate the Normalized Difference 

Vegetation Index (NDVI) using bands 4,3 for TM, ETM+ and bands 5,4 for OLI. OLI has 285 

narrow spectral bands compared to TM and ETM+, therefore I will apply a calibration correction 

to combine NDVI from these satellites (Roy et al. 2016). If NDVI has negative values, then 

those values will be replaced with zeroes. For each pixel, I will have a different number of NDVI 

values due to data availability, sensor problems for ETM+, and overlapping zones. In order to 

create comparable (MODIS versus Landsat) DHIs, I will select 16-day median NDVI values 290 

over different numbers of years, starting from three years (covering 2018-2020) up to twenty, 

from 2001-2020. I select this time period because MODIS started collecting data in 2001. From 

NDVI composites, I will calculate the three components of the DHIs: 1) summing up all 16-day 

median NDVI values (cumulative DHI), 2) selecting the minimum NDVI (minimum DHI), and 

3) calculating coefficient of variation (seasonal DHI).  295 
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For the DHIs calculation from MODIS Collection 6, I will use NDVI 16-day composite 

product with 1-km resolution (MOD13A2) and I will follow the established protocol (Hobi et al. 

2017). However, for calculation of the MODIS DHIs I will use the median NDVI values for each 

time step over different number of years starting from three years, as described above for 

Landsat. 300 

In order to understand the effect of the number of years of input images on the DHIs, I 

will calculate composite DHIs using different time periods, starting from three years. For that I 

will generate points using a 5*5 km grid over the conterminous US, and calculate summary 

metrics such as mean, median, standard deviation from DHIs layers for those points, for each 

time period. From these summary metrics I will create boxplots and identify which time period 305 

boxplots for the DHIs have similar shape. I will do these steps both for MODIS and Landsat. To 

incorporate the uncertainties associated with different numbers of years included for calculation 

on the quality of the DHIs product, I will create an additional band showing the number of 

available NDVI values. I assess how many pixels will have 3 or less observations, for each time 

period.  310 

To compare the DHIs based on MODIS and Landsat, I will run correlation analysis at 

two scales. Because I expect that by averaging the Landsat DHIs over large areas such as 

ecoregions level III, all detailed information about landscape will be washed out and it will be 

similar to MODIS DHIs. First, I will calculate the MODIS DHIs over the same time period as 

Landsat DHIs. Then I will calculate the mean values of both DHIs for Environmental Protection 315 

Agency (EPA) ecoregions level III (about 85 ecoregions in US, Figure 1) and level IV (about 

967 in US. Figure 3) and calculate the Pearson correlation coefficients. Ecoregions based on 

level III and level IV are appropriate units for the DHIs comparison, because ecoregions are 

defined as areas that exhibit similar characteristics of ecosystems and incorporate regional 

differences (Omernik and Griffith 2014). Ecoregions based on level III cover a relatively large 320 

area, while ecoregions based on level IV are much smaller and incorporate regional differences 

at a finer scale. 
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Figure 3: Ecoregions based on level IV classification of the US Environmental Protection 

Agency across the conterminous states of the USA 

 

To assess the ability of Landsat DHIs to capture heterogeneity in complex terrain and 325 

fragmented landscapes, I will calculate two metrics related to topography and six landscape 

metrics related to fragmentation. I will use elevation data from the National Elevation Dataset 

(NED) with 1/3 arc-second spatial resolution. From that layer I will calculate the terrain 

ruggedness index as following (Riley 1999): 

 330 

TRI=[∑(xij- x00)
2]1/2, 

 

where xij-elevation of each neighbor cell to cell (0,0), x00 - central pixel of eight surrounding 

pixels. TRI characterizes topographic heterogeneity. 

To characterize how fragmented landscapes are, I will use the National Land Cover 335 

Database (NLCD) with 30-m resolution for 2011 and select land cover classes related to three 

main habitats: forest, shrubland, and grassland. I will combine three classes for forest (base on 
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NLCD classification 41-decidious forest, 42-evegreen forest, 43-mixed forest), two classes for 

shrubland (51-dwarf scrub, 52-shrub/scrub) and one class for grassland (71-grassland/ 

herbaceous). I will apply image morphology (Vogt et al. 2007, 2009) and calculate the percent of 340 

core areas and edge areas for combined classes of forest, shrubland, and grassland.  

I will model relationships between the Landsat DHIs and topography and landscape 

metrics using linear regression analysis for randomly selected 10,000 MODIS pixels separated 

by at least 10 km to minimize spatial autocorrelation. In order to assess the ability of Landsat 

DHIs to capture heterogeneity I will calculate the standard deviation of Landsat DHIs calculated 345 

within MODIS pixels as the dependent variable, and explanatory variables will include two 

variables related to topography (elevation, TRI) and six variables related to fragmentation 

(percent of core and edge areas for forest, shrubland, and grassland). Prior to modeling, I will 

check the collinearity between all explanatory variables and look on scatter plots between 

dependent variables and explanatory variables, to identify whether assumptions of linear 350 

regression are met. Then I will use best subset regression to find several good models using the 

Bayesian Information Criterion (BIC). For the top five models I will calculate the adjusted 

coefficient of determination (adj R2) to compare the predictive performance of these models.  

 

Expected results 355 

One of my main tasks in this chapter is to develop a methodology for the calculation of 

Landsat DHIs with medium 30-m resolution and MODIS DHIs with coarse 1-km resolution. I 

expect that the DHIs with medium resolution will have more applications especially for local 

studies than MODIS DHIs, because of their ability to characterize habitats of some species with 

more details (Figure 4). At the same time, Landsat DHIs will be able to capture heterogeneity of 360 

complex mountain terrains and fragmented areas much better, and for some species this type of 

information is critical for habitat selection.  

The first question of this chapter is to find the number of years needed for the DHIs 

calculation in order to provide high quality DHIs products. In general, I expect that for the 

calculation DHIs based on MODIS will require fewer years, while the Landsat DHIs will require 365 

more, therefore for Landsat DHIs it will be hard to avoid landcover changes. I expect to have 

difficulty with providing high quality Landsat DHIs uniformly across the conterminous US due 
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to differing numbers of available images. Landsat DHIs will have more uncertainties than 

MODIS DHIs because of low temporal resolution.  

I expect that the pattern of the DHIs based on MODIS and Landsat will be comparable 370 

for areas with homogeneous landscapes, such as continuous forest and grassland, but will have 

large differences in complex terrains, fragmented areas, and heterogeneous landscapes. MODIS 

DHIs and Landsat DHIs will be highly correlated at ecoregions based on level III, and from 

moderate to low correlation for ecoregions based on level IV. I expect that metrics related to 

topography and fragmentation will be highly correlated with the standard deviation of Landsat 375 

DHIs within MODIS pixels.  

 

Figure 4: The DHIs calculated from 1-km MODIS and 30-m Landsat (preliminary analysis) in 

central Colorado, US. The DHIs are shown in RGB where red = variation DHI, green = 

cumulative DHI, blue = minimum DHI.  

 

Significance 

The DHIs from MODIS and Landsat will be useful for many ecological studies, 

especially for monitoring biodiversity, and in species distribution modeling. However, I expect 380 

that the DHIs will vary substantially depending on input data. The results of this work will help 

to find the sweet spot for providing robust and meaningful DHIs. The new Landsat DHIs will be 

more useful for studies at fine scales and over heterogeneous landscapes, while MODIS DHIs 

will be more suitable for regional and continental studies. Having remote sensing indices which 

are relevant to biodiversity and cover four decades, create a great opportunity to understand the 385 

effect of climate change on biodiversity through changes in vegetation productivity. Awareness 
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of limitations and advantages of the DHIs depending on input data will help users select 

appropriate DHIs for a given area of interest and scientific question.  
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Chapter 2. Explaining bird richness with the Dynamic Habitat Indices across the 

conterminous US 390 

 

Introduction 

Biodiversity is declining at an unprecedented rate and a major cause of this decline is 

anthropogenic factors (Rockström et al. 2009, Pimm et al. 2014). Humans dramatically change 

ecosystems through land use and land cover change, with profound consequences for 395 

biodiversity (Sala et al. 2000, Hansen et al. 2013, Haddad et al. 2015). Effective conservation 

efforts rely on understanding the drivers of biodiversity pattern at broad scales (Pereira et al. 

2013). In this capacity, satellite data provide meaningful information about biophysical 

characteristics of ecosystems (Turner et al. 2003) and are suitable for monitoring of biodiversity 

patterns across the globe (Wright 1983, Gaston 2000, Mittelbach et al. 2001, Hawkins et al. 400 

2003a, 2003b, Bonn et al. 2004). 

Species richness is a key component of biodiversity and positively correlated with Net 

Primary Productivity (NPP, Paruelo et al. 1997). Remote sensing based vegetation indices such 

as the normalized difference vegetation index (NDVI) relate to NPP at broad scales, and 

consequently relate to species richness (Myneni et al. 1995, Skidmore et al. 2003, Cohen and 405 

Goward 2004, Pettorelli et al. 2011). The integrated measure of vegetation productivity 

summarized as a) overall productivity over a course of the year, b) available minimum 

productivity during winter, and c) variation in productivity named the Dynamic Habitat Indices 

(DHIs) are effective predictors of species richness at regional and global scales (Coops et al. 

2009, Hobi et al. 2017, Radeloff et al. 2019). The MODIS DHIs are available globally at 1-km 410 

spatial resolution (Radeloff et al. 2019). However, these DHIs can be too coarse for some species 

in cases where territory size is smaller than 1-km MODIS pixel. Moreover, satellite data with 

higher resolution can capture spatial heterogeneity at finer scales which is an important driver of 

species distribution and richness. However, satellites with higher spatial resolution have less 

images for a point of interest than satellites with coarse spatial resolution. That raises the several 415 

questions regarding whether it is beneficial to calculate the DHIs using satellite data with higher 

spatial resolution, and how much explanatory power it will add in models of species richness.  

To answer the question whether higher spatial resolution provides more advantages over 

coarse data, I will test the predictive performance of the DHIs based on MODIS and Landsat in 
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bird species richness models. Birds are a good indicator of biodiversity and ecosystem health, 420 

because they quickly respond to changes in ecosystem, have diverse ecological functions, and 

are very mobile (Cody 1981, Sekercioglu 2006). With steep declines of birds (Pimm et al. 2014), 

it raises a serious concern about ecosystem health and in particular human wellbeing because 

humans obtain benefits from birds by receiving ecological services such as pest control, 

pollination, fertilizer, and seed dispersal (Sekercioglu 2006). The North American Breeding Bird 425 

Survey (BBS, Sauer et al. 2017) is a long-term dataset of bird abundance and occurrence, and 

provides an opportunity to explore the relationship between the DHIs and bird richness.  

The general expectation based on species-energy hypothesis is that bird richness will be 

higher in areas with high productivity because of more food resources (Gaston 2000, Hawkins et 

al. 2003a, 2003b). However, this relationship varies across different scales, and can be ‘hump-430 

shaped’ at local scales and linear at regional scales (Waide et al. 1999, Chase and Leibold 2002). 

It is interesting to explore if the relationship between vegetation productivity (the DHIs) and 

species richness will change depending on the spatial resolution of the DHIs. My expectation is 

that the relationship between the DHIs and species richness will be linear for both DHIs, but the 

predictive performance of the Landsat DHIs will increase with zooming to smaller areas. By 435 

averaging remote sensing data over large areas, such as ecoregions, we wash out detailed 

information about regions, and Landsat DHIs will be similar to MODIS DHIs.    

Another important determinant of species richness is habitat heterogeneity (MacArthur 

1964). Vegetation heterogeneity may support higher biodiversity by providing more niche space 

(Tews et al. 2004). I hypothesize that sites with high vegetation productivity have more 440 

vegetation complexity and therefore support more species. However, birds show complex 

response to heterogeneity, thus Landsat DHIs may provide more explanatory power in modeling 

birds that depend on heterogeneous landscapes, including forest and shrubland species. At the 

same time, small-bodied birds that are not good with regulating body temperature may require 

heterogeneous landscapes to escape extreme ambient temperatures (Scholander et al. 1950, Elsen 445 

et al. 2020a).  

The DHIs may provide complementary information to other variables such as climate and 

topography (Suttidate et al. 2019) in models of species richness. To evaluate the relative 

importance of both DHIs compared with other commonly used variables that potentially 

influence bird richness, I will run the global models combining the DHIs, topography and land 450 
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cover separately for 30-m and 1-km resolution. Even though topography and land cover are static 

variables, both variables are important drivers of biodiversity (Rosenzweig 1995).  I select these 

variables because elevation characterizes habitat heterogeneity well, while land cover is a good 

estimation of potential habitats for birds including forest, shrubland and grassland guilds (Turner 

et al. 2003). At the same time, elevation and land cover are available at 30-m and 1-km which 455 

allow comparisons of global models. 

My primary goal is to evaluate the predictive performance of the DHIs at 1-km and 30-m 

resolution for modeling bird species richness and identify where the DHIs with medium 

resolution provide more advantages over coarse DHIs. Specifically, I will examine the following 

questions: 460 

• Do the Landsat DHIs provide higher predictive power in models of bird richness 

than MODIS DHIs? 

• For which bird guilds are the DHIs with higher resolution important? 

• What is the relative importance of the DHIs for bird richness, compared with 

common variables characterizing environmental heterogeneity, such as 465 

topography and land cover? 

I predict that Landsat DHIs will provide more advantages over MODIS DHIs in models 

of some bird guilds including forest and shrubland birds, permanent residents, and birds with 

small body size because landscapes with greater heterogeneity will provide more niches and 

therefore support more species. At the same time, permanent residents and birds with small body 470 

size must regulate body temperature for survival during harsh seasons, and heterogeneous 

landscapes provide more places to escape unfavorable weather conditions, and lead to higher 

bird richness. However, I expect no difference in explaining power between MODIS DHIs and 

Landsat DHIs for grassland birds, because this group of birds depends on homogeneous 

landscapes, which are probably equally well captured by both satellites. For global models I 475 

expect that the both DHIs based on MODIS and Landsat will complement the other 

environmental variables and increase the predictive power of the models. However, Landsat 

DHIs will provide more independent contribution then MODIS DHIs. 
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Methods 480 

Calculation DHIs 

I will use the results of the first chapter, where I will calculate the DHIs. For my second 

chapter I will use two sets of the composite DHIs based on MODIS and Landsat for 2011-2020. 

The composite DHIs are calculated only over one decade to minimize the uncertainties 

associated with land cover change. The DHIs contain the three components: overall productivity 485 

(Cum DHI), the lowest amount of vegetation (Min DHI), and seasonality (Var DHI). 

 

BBS data 

The North American Breeding Bird Survey (BBS) data are collected once a year during 

the breeding season across North America (Sauer et al. 2017). At 50 stops along a 39.4 km long 490 

route, skilled volunteers observe and record individual birds, by species. I will exclude some 

observations from BBS data using the following criteria: if the weather conditions during the 

survey were not good, or false positive errors (first time observers). I will calculate bird richness 

by summing up the list of unique bird species for Environmental Protection Agency (EPA) 

ecoregions level III (about 85 ecoregions in US, Figure 1), routes (more than 3,000 routes, 495 

Figure 5), and the first stop of each route within the conterminous US for 2011-2020. I will 

separate birds based on habitat association (forest, shrub land, grassland), and migratory 

behavior (residents, short-distance migrants, long-distance migrants) using BBS classifications 

and detailed information about bird species from Birds of the World (Billerman et al. 2020). 

Also, I will separate birds by body size (small, large). For that I will calculate the average body 500 

mass of all breeding birds from BBS data, using information about body mass (Dunning 2008). I 

will assign birds as small-bodied or large-bodied if their average body mass is smaller or larger 

than the average body mass of all birds.  

 

Environmental Variables 505 

For elevation I will use the National Elevation Dataset for the USA with 30-m spatial 

resolution. To characterize land cover composition, I will use land cover maps from 2016 

National Land Cover Database (NLCD) with 30-m resolution. To make sure that I will compare 

the global models containing DHIs with different resolution and not differences in land cover or 

topography, I will upscale elevation and NLCD to 1-km matching the resolution of MODIS 510 



22 
 

DHIs. I will focus on three main habitat types: forest, shrubland, and grassland. I will calculate 

the mean and standard deviation of elevation layers and proportion of forest, shrubland and 

grassland cover within 20-km buffers surrounding the center of BBS routes.  

 

Statistical analysis  515 

For modeling, I will calculate the mean value of two sets of the DHIs for 85 ecoregions, 

mean value of the DHIs within 20-km buffers surrounding the center of BBS routes, and extract 

the raw value of one DHIs pixel that covers the coordinates of the first stop of each route. To 

explore the relationship between species richness and the DHIs, I will calculate Pearson 

correlation coefficients, and create scatter plots for visualization. For statistical analysis, I will 520 

use a linear regression where the dependent variable will be bird richness for several bird guilds 

and explanatory variables will be MODIS DHIs or Landsat DHIs. To compare the predictive 

performance of the DHIs based on Landsat and MODIS in modeling species richness, I will run 

a series of univariate linear models with only one component of the DHIs (8 bird guilds by 3 the 

DHIs components by 2 resolutions by 3 scales, total 144 models) and calculate the adjusted 525 

coefficient of determination (adj R2).  Also, I will check spatial autocorrelation by plotting the 

semivariograms for each model. 

To evaluate the relative importance of the DHIs in global models combining the DHIs 

and other environmental variables, I will run analysis only for BBS routes (medium scale). First, 

I will check multicollinearity among explanatory variable by calculating Pearson correlation 530 

coefficients and excluding variables with |r|> 0.7. I will fit a global model that include the DHIs, 

two elevation metrics, and three landcover metrics. I will use best subset regression that allows 

all possible combinations of explanatory variables, and identifies a set of good models. To rank 

these models, I will use Bayesian Information Criterion (BIC), which penalizes models with 

large numbers of explanatory variables. For the top five models, I will calculate adjusted R2 to 535 

estimate how much of the variation in bird richness is explained by the model. For the final best 

model, I will calculate variance inflation factors (VIF) to check for multicollinearity among final 

predictors. For the top model based on BIC according to results of best subset regression, I will 

apply hierarchical partitioning analysis to evaluate the relative importance of predictors in 

multivariate models (Chevan and Sutherland 1991).    540 
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Figure 5: BBS routes in conterminous United States 

 

Expected results  

The DHIs versus bird richness 

I expect that DHIs at both spatial resolutions will provide high explanatory power in 545 

species richness models. However, I expect that DHIs with medium spatial resolution will 

capture the difference in vertical structure of vegetation and heterogeneous landscapes much 

better than coarse DHIs. As a result, Landsat DHIs will have higher explanatory power for some 

bird guilds which depend on heterogeneous landscapes. It is expected that Landsat DHIs will be 

more important for forest and shrubland birds, birds with small body size, permanent residents, 550 

while there is no difference between MODIS and Landsat DHIs for grassland species. But I 

expect that for some bird guilds such as short-distance migrants there will be no difference in 

explanatory power between MODIS and Landsat DHIs due to unimportance of the DHIs for 

habitat selection of these birds.  

 555 

The DHIs at different scales 

In terms of the scale, I think that performance of Landsat DHIs and MODIS DHIs will be 

similar across ecoregions. However, the Landsat DHIs will perform much better at medium 

scales (i.e., within the buffer of BBC routes), and at fine scales (start point of BBC routes). 
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 560 

The relative importance of the DHIs in global model 

I expect that the DHIs will complement the elevation and landcover metrics and increase 

the predictive power of the model. However, I expect the Landsat DHIs will provide more 

independent contribution then the MODIS DHIs. 

 565 

Significance  

To maintain biodiversity, it is important to monitor biodiversity pattern at different scales 

and identify areas that are important for biodiversity. My study will add more understanding to 

the importance of higher spatial resolution for characterizing the DHIs metrics and consequently 

for modeling biodiversity pattern. The comparison of DHIs based on MODIS and Landsat will 570 

reveal whether higher spatial resolution of satellite data provides more detailed information 

about vertical structure of vegetation and heterogeneous landscapes. Moreover, having the DHIs 

with higher spatial resolution, my work will add more knowledge about drivers of avian diversity 

across broad spatial extents, that can be used to predict how biodiversity patterns will change in 

the future depending on changes in vegetation productivity.  575 
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Chapter 3. Explaining bird abundance with the Dynamic Habitat Indices  

 

Introduction 

According to the North American Bird Conservation Initiative (NABCI), 37% of all birds 580 

in North America are at risk of extinction, with many species in coastal, grassland, and aridland 

habitats declining steeply (NABCI 2016, Rosenberg et al. 2019). With limited resources, 

conservationists want to maximize conservation return (Wilson et al. 2011), and consequently 

often focus on identifying and protecting areas with higher biodiversity. For these purposes there 

are different metrics such as species richness, alpha, beta, gamma diversity and many other 585 

biodiversity indices that incorporate different information about functionality of existing species 

in given area. However, all these metrics do not provide information about how many individuals 

of a given species lives in an area. By only monitoring these metrics, we may miss important 

signals when species start to decline, which as a result could potentially trigger changes in 

abundance of other species (Rosenberg et al. 2019). Moreover, there are many uncertainties 590 

about species response to advancing climate change (Langham et al. 2015). That is why it is 

important to monitor species abundance.  

At the same time, obtaining accurate estimates of abundance data is difficult and time 

consuming (Buckland et al. 2008), especially in remote and hard-to-reach areas. Moreover, 

abundance can fluctuate from one year to another because there are so many factors influencing 595 

species abundance, such as unfavorable climatic conditions, low primary productivity, predation, 

disturbance (fire, wind fall, clear cuts, etc.), competition, disease and many others (Currie et al. 

1993). Even if it is possible to obtain all these data for one species or over a small extent, it is not 

possible to obtain it for all species. It is important to understand the underlying mechanisms 

influencing spatial patterns of species abundance over broad scales. In this regard, remote 600 

sensing provides a great opportunity for monitoring species abundance because it provides 

information about environmental characteristics of habitat, and captures dynamic changes on the 

ground. Moreover, data are collected systematically and provide wall-to-wall global coverage 

(Nagendra 2013).  

In this chapter, I will explore the effectiveness of the Dynamic Habitat Indices (DHIs) to 605 

explain abundance patterns of birds. Birds can easily move over long distances to find suitable 

habitat, hence the decline in bird abundance in some areas are not always caused by mortality, it 
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can be caused by outmigration (Pavlacky et al. 2017). The DHIs integrate three measures of 

vegetation productivity providing information about species habitat and forage conditions 

(Coops et al. 2008). Birds are a good taxon for understanding the utility of the DHIs because 610 

they exhibit a range of behaviors and strategies to find food and suitable habitat. The More 

Individuals Hypothesis (MIH) postulates that areas with greater food resources support higher 

total numbers of individuals in a community (Srivastava and Lawton 1998, Storch et al. 2018).  

While the MIH was developed to explain spatial patterns of species richness, it can be applied to 

explain patterns of species abundance as well. The underlying mechanism of MIH is closely 615 

connected to extinction rates, with the assumption that only species with viable population size 

can support high species richness, whereas low population sizes have a higher probability of 

extinction, and could not support high species richness (Storch et al. 2018). 

The mechanism of the MIH reflects abundance-dependent extinction rate, however the 

relationship between species richness, abundance and available energy might be different for 620 

common versus rare species (Storch et al. 2018). Because an increase of available energy should 

decrease the extinction risk, especially in rare species due to low number of individuals, 

therefore rare species will show stronger species-energy relationships (Evans et al. 2005, 2006). 

In this regard the DHIs are very promising for testing the MIH for individual species, because 

these indices provide information about available energy over the year and during winter time, 625 

and moreover show the stability of available energy in the system through photosynthesis 

activity (Radeloff et al. 2019). Having three different measure of available energy, we can 

explain abundance of different bird species. For example, resident birds stay close to their 

breeding areas all year around, but one limiting factor for this guild is available food resources 

during winter time. Therefore, I hypothesize that resident birds will have stronger relationship 630 

with available energy during harsh winter season. While long-distance migrants travel great 

distances to take advantages of seasonal abundance of insect food, for this guild I expect that 

seasonality is more important.     

While the DHIs provide information about available energy, it may not be a primary 

factor influencing bird abundance patterns. Prior studies show the effectiveness of the DHIs for 635 

explaining the abundance of large mammals (Michaud et al. 2014, Razenkova et al. 2020), 

however the combination of DHIs with other environmental variables provides higher predictive 

power in models (Suttidate et al. 2019). Climate and environmental heterogeneity are important 
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determinants shaping species distribution and abundance patterns (MacAthur and MacAthur 

1961, Gaston 2000). To test the performance of DHIs in multivariate models, I will add 640 

bioclimatic and topographic variables.  

My primary goal is to evaluate the utility of the DHIs to explain bird abundance in the 

western US. Specifically, I will examine the following questions: 

• Does bird abundance vary between productive and less productive areas? 

• Is the MIH more relevant for rare species than for common bird species? 645 

• Does abundance of resident birds have a stronger relationship with productive 

areas based on winter? Does abundance of long-distance migrants have a stronger 

relationship with productive areas based on overall productivity or seasonality? 

• Do the DHIs provide information complementary to other environmental 

variables? 650 

I expect to find evidence of MIH and to see higher number of individuals in more 

productive areas. I expect that common species will show stronger relationships with the DHIs, 

and different components of the DHIs will appear more important for different birds. For 

example, I expect the residents will show a stronger correlation with minimum DHI, while long-

distance migrants will correlate with variation DHI. Whereas Evans et al. (2005) assumed a 655 

stronger species-energy relationship in rare birds, I expect to find weak or no relationship 

between the DHIs and abundance of rare species, because vegetation productivity is not the 

limiting factor for these species. I expect that the DHIs will complement environmental variables 

in multivariate models, but for some species I expect that bioclimatic variables or topography 

will more important than the DHIs.  660 

 

Methods 

The DHIs and bioclimatic variables 

I will use the results of the first chapter, where I will calculate the DHIs. To minimize the 

influence of clouds and atmosphere, I will use composite DHIs based on Landsat for 2011-2020. 665 

The DHIs contain three components: overall productivity (Cum DHI), the lowest amount of 

vegetation (Min DHI), and seasonality (Var DHI).  

I will subset BIOCLIM variables that influence survival and reproductive success of birds 

such as the minimum temperature in the coldest month (BIO6), annual precipitation (BIO12), 
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and precipitation of the warmest quarter (BIO18). This dataset is available globally at 1-km 670 

resolution. For topography, I will use the elevation data based on the National Elevation Dataset 

(NED) with 1/3 arc-second spatial resolution. 

Bird data 

The ready-to-use data from the Integrated Monitoring in Bird Conservation Regions 

(IMBCR) Program (Woiderski et al. 2018) provides an opportunity to explore the effectiveness 675 

of the DHIs to explain bird abundance. The main advantages of IMBCR data is that they are 

collected using a standard protocol and data are corrected for imperfect detection. Data are 

publicly available for the western US since 2005 (Figure 6). The IMBCR design defines 

sampling units as 1 km² cells, each containing 16 evenly-spaced sample points, 250 m apart 

(Figure 7) (Woiderski et al. 2018). They provide estimates of bird density at 1-km resolution.  680 

 

Figure 6: Shaded area indicates spatial extent of IMBCR surveys, with sampled Bird 

Conservation Regions in different colors (Woiderski et al. 2018). 
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Figure 7: Example 1-km2 sampling unit using the IMBCR design (Woiderski et al. 2018) 

 

To test if bird abundance varies between productive and non-productive areas, I will 

select ten widely distributed bird species with sufficient numbers of observations, such as 

American Robin and Black–capped Chickadee. To test if the MIH is more relevant to rare 

species, I will select ten rare species. I will identify rare species based on IUCN status and from 685 

detailed species accounts (Billerman et al. 2020, IUCN 2020). To test if the abundance of 

resident and long-distance birds is related to different components of the DHIs, I will select 

several species from each group (residents, long-distance migrants).  

 

Statistical analysis 690 

  To relate the DHIs to bird abundance, I will calculate the mean value of the three 

components of the DHIs for each grid of cells, based on the US National Grid (USNG), because 

the IMBCR data are summarized based on this grid. Then I will run a set of linear regressions, 

where the dependent variable will be bird abundance (widely distributed, common, rare, 

residents, long-distance migrants), and explanatory variables will be the three DHIs. For each 695 

model I will calculate the adjusted coefficient of determination (adj R2) in order to estimate how 
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much of the variation in the response variable is explained by each model. To avoid potential 

bias, I will check for spatial autocorrelation and plot semivariograms.  

To determine the relative importance of the DHIs in determining bird abundance in 

multivariate model that include the subset of BIOCLIM variables and elevation, I will use a 700 

multiple linear regression approach and select a set of good models based on BIC criteria. The 

response variable will be bird abundance of several common species, residents, and long-

distance migrants, the explanatory variables will the DHIs, the BIOCLIM variables and 

elevation. I will apply log-transformation of dependent variables to meet assumption of linear 

regression if it is necessary. Before fitting regression models, I will calculate correlation 705 

coefficients for all explanatory variables to check for multicollinearity, and exclude variables 

with |r|>0.7 from further analysis. After applying the best subset regression, I will select the top-

ranked model and calculate the adjusted coefficient of determination.  

Expected Results  

I expect to find that bird abundance will be higher in productive areas than in less 710 

productive areas for all bird groups. In general, this pattern will be more relevant for common 

species and widely distributed species. I expect to find that even rare species will also have 

higher number of individuals in more productive areas, but this relationship will be very weak 

because the energy measured through vegetation productivity is not limited factor. However, the 

DHIs can capture some important characteristics for suitable habitat of rare species, which are 715 

dependent on complex vertical structure of vegetation. For resident birds, I expect to see a 

stronger energy-abundance relationship based on Min DHI, while for long-distance migrants 

based on Var DHI. In multivariate models the DHIs will complement the climate and topography 

variables, however, I expect that BIOCLIM variables will provide more independent 

contribution than the DHIs. 720 

Significance  

Global biodiversity crisis started with the declining abundance of individual species, thus 

there is an urgent need to identify factors driving species abundance patterns. The proposed 

study will explore the potential usage of remote sensing technology for monitoring species 

abundance. The evaluation of relationships between the DHIs and bird abundance will provide 725 

insightful information about available tools for monitoring species abundance.  
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Overall significance 

Identifying the factors driving species richness and abundance pattern across broad scales 

is crucial for understanding the mechanisms influencing these patterns, and predicting how 

species may respond to changing conditions. In order to safeguard biodiversity, we need better 730 

assessments of the current status of biodiversity. However, biodiversity patterns are very 

complex, many factors matter for different regions and for different species. My proposed 

research will provide a better understanding of the relationship between vegetation productivity, 

avian biodiversity, and individual bird species.  

My proposed work will contribute to science from three perspectives. The main 735 

methodological contribution is to develop the Dynamic Habitat Indices using Landsat imagery, 

to quantify important characteristics of suitable habitat for many species over a broad scale. I 

will determine whether DHIs with medium resolution provide more advantages over DHIs with 

coarse resolution, at different scales. In addition, I will evaluate how the Landsat DHIs capture 

vegetation heterogeneity in complex mountain terrains and fragmented landscapes. I will 740 

determine the time period required for the DHIs calculation in order to provide robust products 

and avoid uncertainties associated with abrupt changes of vegetation. Moreover, newly 

developed Landsat DHIs and updated MODIS DHIs will be available to the scientific 

community, as effective tools for explaining spatial patterns of many other taxonomic groups.  

My project will contribute to avian ecology by improving our understanding of the 745 

factors shaping broad-scale patterns of species richness. While biodiversity patterns have been 

studied extensively, in most cases researchers used data that are too coarse or over limited 

geographical extents. I will show the effectiveness of the DHIs with medium resolution to 

explain bird richness of those bird guilds that depend more on heterogeneous landscapes. By 

combining the DHIs with other important factors influencing biodiversity, such as topography 750 

and land cover variables, I will add to our understanding of the relative importance of these 

factors and the importance of higher spatial resolution of the remote sensing data.  

I will add more understanding of the application of remote sensing data to land 

management and conservation efforts to reduce the biodiversity loss and the degradation of 

natural resources. The Landsat DHIs will be tested for assessing bird abundances for different 755 

bird guilds. I hope that the remote sensing measures of vegetation productivity will be able to 
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capture important characteristics of suitable habitat of common species and birds that are 

experiencing significant declines. Identifying critical habitats for species of high concern will 

have direct implementation for management of those species. 

  760 
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