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Summary 

Mongolia has some of the most-intact grasslands remaining globally. However, Mongolia’s 

grasslands are threatened by degradation due to climate change, overgrazing and other 

disturbances. Degradation can manifest itself both as a loss of vegetation cover, or as a change in 

vegetation communities. Monitoring degradation is challenging though and requires new remote 

sensing approaches, such as cumulative endmember fractions, and community classifications 

based on convolutional neural networks. Better degradation estimates - in turn - allow to identify 

the drivers of degradation. Protected areas can safeguard grassland biodiversity, but only if they 

are effective, and novel degradation measures can be used to measure their effectiveness. 

The overarching goal of my proposed research is to map and assess the patterns of grassland 

degradation in Mongolia with medium-resolution Landsat imagery, both in terms of vegetation 

cover and vegetation communities, link the observed degradation to livestock numbers, climate 

drivers, and other disturbances such as Brandt’s vole, and assess if protected area have been 

effective in stopping or even reversing grassland degradation. 

My project has four major objectives: 

a) estimate the long-term trends in grassland degradation from the full Landsat archive 

(1987 – 2022) based on cumulative endmember fractions parameterized with field 

spectroradiometer measurements and validated with biomass and vegetation cover field 

data. 

b) quantify change in grassland vegetation communities based on convolutional neural 

networks (CNNs), by capitalizing on phenological differences of dry versus wet years. 

c) identify the main drivers of grassland degradation (both long-term trends of cumulative 

endmember fractions and change in vegetation communities) focusing on climate, 

livestock numbers, and Brandt’s vole distributions. 

d) investigate the effectiveness of protected grassland areas, which are important for plant 

biodiversity and migrating ungulates, in stopping or even reverting grassland degradation. 

Scientifically, I will contribute new knowledge by identifying the drivers of grassland 

degradation including climate, livestock grazing, and their interactions with other disturbances 

such as Brandt’s voles, which are part of the natural ecosystems, but exacerbated by overgrazing. 

Methodologically, my project will be the first to parameterize cumulative endmember 

fraction analyses with field Spectro-Radiometer data and validate fractions with field biomass 

and vegetation cover data. I will analyze data from a range of NASA assets, focusing on Landsat, 

but also MODIS data, and use advanced statistical and image analysis methods Spectral 

Unmixing, LandTrends, remotePARTS and Matching analysis for satellite data. 

In terms of management and conservation, I will provide base-line data for sustainable 

livestock management and assess the effectiveness of Mongolia’s growing protected area 

network, and of large herbivore habitat.  
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Timeline 

My PhD started on 01/01/2021 and I am planning to finish in August of 2026. 

Year 2021 2022 2023 2024 2025 2026 

Quarter 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 

Objective 1 F D D D D F D D D D D A A A A M

P 

M

S 

     

Objective 2          F  D D D D D A A M

P 

M

S 

   

Objective 3              D D D A A A M

P 

M

S 

 

 

Objective 4                D D D A A 

 

M

P 

 

M

S 

 

D-Data processing, A-Analysis, MP-Manuscript preparation, MS- Manuscript submitting  
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INTRODUCTION 

Grassland biomes throughout the world are threatened by human activities and climate change 

(Scholtz and Twidwell 2022) even though these issues are strongly highlighted in the 15th of the 

United Nations Sustainable Development Goals for 2030 (Wang et al. 2020a), which focuses on 

land degradation, desertification, and biodiversity loss. Some of the most-intact grasslands 

remaining anywhere in the world are in Mongolia, including the montane grasslands of the 

Hentii and Hangai mountains, and the Daurian, Mongolian-Munchurian grasslands in eastern 

plains of Mongolia (Scholtz and Twidwell 2022). These steppe grasslands are important for 

wildlife conservation, biodiversity, and rural livelihoods (Chuluunkhuyag et al. 2021; Cromartie 

et al. 2020; He et al. 2018; Jürgensen et al. 2017; Lushchekina et al. 1999; Olson, Murray, and 

Fuller 2010; Shukherdorj et al. 2019; Zheng et al. 2008). However, Mongolia’s grassland 

ecosystems are quite sensitive to overgrazing and climate variation (Li et al. 2005). In recent 

decades, Mongolia’s grasslands have substantial declined in extent (Ykhanbai et al. 2004), and 

degradation resulted in a 70% decline in productivity (Hilker et al. 2014). 

In addition to lower productivity and biomass, grassland degradation in Mongolia also 

resulted in a shift in plant community composition, from highly-productive perennial grass 

species (Agropyron cristatum, Cleistogenes squarrosa, Elymus chinensis, Stipa Krylovii, Stipa 

gobica/glareosa) to low productive or ruderal annual species, and higher proportions of forbs 

(Allium spp., Artemisia frigida, Artemisia sieversiana, Artemisia Adamsii, Chenopodium spp. 

species, Heteropappus hispidus, Caragana spp. species) (Jamiyansharav et al. 2018; G. Wang et 

al. 2019). The main causes for grassland degradation are increasing grazing pressure and 

changing climate condition (John et al. 2013; Sainnemekh et al. 2022a). Grazing intensity has 

increased because the number of livestock has gone up from about 25 million in 1990 to 67 

million in 2020 (Hilker et al. 2014; Reading, Bedunah, and Amgalanbaatar 2010). Furthermore, 

there has been a shift towards more goats due to cashmere’s increasing price, but goats are most 

detrimental to grasslands (Addison et al. 2012; John et al. 2016; Mundlak and Huang 1996; Xu et 

al. 2019). Particularly, when there is a lack of rotational grazing, this can exacerbate degradation, 

especially when combined with other disturbance (Chen et al. 2015; Hilker et al. 2014; John et 

al. 2016; Li, Wu, and Huang 2012; Liu et al. 2013; Ojima and Chuluun 2008), such as Brandt's 

vole (Lasiopodomys brandtii) (K. Li et al. 2017). Brandt’s voles now occur on about 40 million 

ha in Mongolia (Munkhnasan 2019). These interactions of natural and human disturbances 

highlight that Mongolia’s grasslands are coupled human natural system (Allington, Li, and 

Brown 2017; Chen et al. 2015; Liu et al. 2013; Qiongyu Huang et al. 2022). 

 Remote sensing data has been key to monitor changes in Mongolia’s grasslands (Li et al. 

2019; Meng et al. 2020a; Shao et al. 2017), identify the causes for these changes (Sternberg 

2012), and assess the effects of grassland changes on rural livelihoods (Chen et al. 2018) and 

ecosystems (Z. Li et al. 2017; Yang and Du 2021). Nation-wide studies typically have relied on 

coarse-resolution MODIS and AVHRR imagery (de Beurs and Henebry 2004; Eckert et al. 

2015), and focused on trends in vegetation indices (de Beurs and Henebry 2004; Eckert et al. 

2015; Hill and Guerschman 2022; Hostert, Röder, and Hill 2003; Lamchin et al. 2020; Lewińska 

et al. 2021; Li, Fassnacht, and Bürgi 2021; Vermeulen, Munch, and Palmer 2021; Jie Wang et al. 

2019; H. Yu et al. 2019; Zeng et al. 2003). However, surface fractions of green vegetation, non-

photosynthetic vegetation, and soil offer advantages over vegetation indices when assessing 

degradation (Lewińska et al. 2020), and medium-resolution Landsat imagery may be better 

suited to identify grassland degradation and grazing effects (Lewińska et al. 2021).  Furthermore, 

neither vegetation indices nor surface fractions can capture changes in plant species composition, 
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and new approaches are needed to capture that aspect of grassland degradation. Such analyses 

require detailed field data though, including spectral measurements, biomass estimates and plant 

surveys. 

One approach to safeguard grassland ecosystems is to establish protected areas, and 

Mongolia has greatly expanded its protected area network in recent decades (Jargal 2003). These 

protected areas are important for local flora (Shukherdorj et al. 2019) and for the iconic ungulate 

migrations of Mongolian gazelles (Procapra gutturosa), Goitered gazelle (Gazella 

subgutturosa), Saiga antelope (Saiga tatarica mongolica), and Onager (Equus hemionus) 

(Jürgensen et al. 2017; Lushchekina et al. 1999). However, it is unclear how effective 

Mongolia’s protected areas are in stopping, or even reverting, grassland degradation (Badarch et 

al. 2011). Globally, many protected areas are both directly and indirectly affected by human 

activities (Radeloff et al. 2010), including those in forested regions (Andam et al. 2008; Bragina 

et al. 2015; Butsic, Munteanu, et al. 2017a). Even land-use change and human activities in the 

surroundings of protected areas can cause harm by disrupting ecological processes and restricting 

organism’s movement (Hamilton et al. 2013). Econometric approaches (Butsic, Lewis, et al. 

2017), such as propensity score matching, have been widely used to quantify the effectiveness of 

forested protected areas in stopping deforestation (Bragina et al. 2015; Brandt et al. 2019; Butsic, 

Munteanu, et al. 2017b; Sieber et al. 2013), and may also be valuable to assess the effectiveness 

of Mongolia’s protected grasslands (Jürgensen et al. 2017; Lushchekina et al. 1999). 

1. Study area 

My study area includes all of Mongolia (1,566,120 km2) most of which is part of the central 

Asian temperate steppe’s grassland biome (Bliss 2016). Mongolia is a landlocked country at 

42°–52° latitude and 88°–120° longitudes (Wang et al. 2020b), (Fig. 1.), bordered by China to 

the east, and south, and Russia to the north and west. Most of the country has a continental 

temperate climate, with pronounced seasonality (Batjargal 1997).  

 
Figure 1. Study area (a) global biome map, and (b) Land cover map of Mongolia 

Mongolia has a short growing season, high evaporation, and low precipitation, with an 

average precipitation of only about 120–250 mm, of which 70% falls during July and August (fig 

2) (Dorjsuren, Liou, and Cheng 2016). During spring season there are often strong winds and 

unstable weather systems. This is also often the season when wild herbivores and livestock die 

due to the volatile weather conditions and because the animals are emaciated from the harsh 

winter season. Vegetation cover consists of Siberian coniferous forest in the north, and 
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grasslands in the middle and central part transitioning to semi-deserts to the south (Wei et al. 

2008). 

 
Figure 2. the annual time series of climate data (by average monthly between 1987-2021) 

2. Goals and Objectives 

The overarching goal of my proposed research is to assess the patterns of grassland degradation 

in Mongolia, identify its causes, and quantify protected area effectiveness. 

Objective 1: To estimate long-term trends in grassland degradation based on annual cumulative 

endmember fractions parameterized with field spectroradiometer measurements and validated 

with biomass and vegetation cover field data. 

Objective 2: To quantify change in grassland vegetation communities based on convolutional 

neural networks (CNNs), and phenological differences of dry versus wet years. 

Objective 3: To identify the main drivers of grassland degradation (both long-term trends of 

cumulative endmember fractions and change in vegetation communities) focusing on climate, 

livestock numbers, and Brandt’s vole distributions. 

Objective 4: To investigate the effectiveness of protected areas in grasslands, which are 

important for plant biodiversity and migrating ungulates, in stopping or even reverting grassland 

degradation.  
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Figure 3. The framework of my research objectives and their linkages 

 

CHAPTER 1: To estimate the long-term trends in grassland degradation based on 

cumulative endmember fractions parameterized with field spectroradiometer 

measurements and validated with biomass and vegetation cover field data. 

1. Introduction 

Grasslands cover about one-quarter of the Earth's land surface (Henebry 1993), making it 

important to monitor them accurately. In Mongolia, grasslands are widespread, and important 

parts of forest-steppe, steppe, desert steppe, and semi-desert ecosystems (Iwasaki 2006). 

However, during the 2010s, grasslands changed especially rapidly both in terms of species 

composition due to grazing but also in an increase of bare soil spots in the arid and semi-arid 

region due to the drought (Cao, Feng, and Wang 2016; Kang et al. 2021). Indeed, based on 

MODIS and AVHRR NDVI time series, grasslands have changed considerably (Chang et al. 

2021; Chen et al. 2015, 2022; Enebish et al. 2020; Karnieli et al. 2006; Meng et al. 2020b, 

2020a). However, vegetation indices can be affected by soil and rocks in areas with sparse 

vegetation, and MODIS data has coarse spatial resolution. Therefore, spectral unmixing of 

medium-resolution Landsat imagery based on field spectra may capture grassland degradation is 

probably better suited to assess grassland degradation (Okujeni et al. 2013, 2017; Schug et al. 

2020; Vermeulen et al. 2021; Yue et al. 2021). Linear spectral unmixing models the reflectance 

curve of a given pixel as a linear combination of a set of field pure endmembers (green 

vegetation-GV, Non-photosynthesis vegetation-NPV and Soil) plus an error term (Hostert et al. 

2003; Lewińska et al. 2021; Peddle, Hall, and Ledrew 1999; Radeloff, Mladenoff, and Boyce 

1999). That is why Cumulative Endmembers Fractions can to overcome the limitation of 

analyses of NDVI at peak-greenness (Lewińska et al. 2020, 2021). 
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1.2. Analysis of objective  

I will investigate grassland degradation trends across Mongolia over 35 years. To do so, I will 

combine remote sensing analysis (Lewińska et al. 2020, 2021) with statistical analyses (Alfonso 

Zamora Saiz et al. 2021; Ives et al. 2022; Tabachnick and Fidell 2019). My specific research 

question and hypotheses are:  

1. How accurately can annual cumulative endmember fractions be generated based on field 

spectroradiometer data ? 

2. What was the magnitude of grassland degradation change in steppe, dry steppe and desert 

steppe areas of Mongolia from 1987 to 2022? 

Hypothesis: The magnitude of grassland degradation was greater in dry steppe areas 

then in other steppe areas 

3. What is the accuracy between the predicted endmember fraction and ground actual 

biomass and soil moisture? 

Hypothesis: GV and NPV endmember fractions are positively correlated with biomass in 

steppe and dry steppe area.  

1.3. Sampling design  

I selected my field sampling plots based on a stratified-random sample methods across Mongolia 

in 2021 and 2022, and my colleagues and I collected field spectra with an ASD-FieldSpec-4 

Spectroradiometer (wavelength 350mn-2500mn) (Danner et al. 2015) in 330 samples, including 

spectra of green grass, Soil, and NPV grass, and also recorded corresponding GPS coordinates, 

and digital photos. In addition, I collected at the same locations soil moisture at 10 cm depth and 

clipped biomass (1x1 m plots) (Fig 4). 

 
Figure 4. Study area (Mongolia) with locations of Spectro-radiometer (ASD 4) field samples of 

plant, and soils, plus measures of biomass, soil moisture, and photos. 
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2. Methods 

I propose to conduct a spectral mixture analysis (Lewińska et al. 2020, 2021), based on field 

spectra, and analyze the entire Landsat archive for Mongolia from 1987 to 2022. I will conduct 

this analysis in four steps: 

First, I will select endmember sets (GV, NPV and Soil) based on a collinearity and 

orthogonality analysis (van der Meera and Jia 2012). Specifically, I will calculate several 

statistical indicators including Pearson correlation coefficient, variance inflation factor and the 

singular value decomposition analysis to select the best endmember sets from field 

spectroradiometer signatures data across Mongolia.  

Eq 1. Pearson correlation coefficient: 

𝑟 =
∑𝑥𝑖𝑦𝑖 − 𝑛𝑥𝑦̅̅ ̅

√(𝛴𝑥𝑖
2 − 𝑛𝑥−2)√(𝛴𝑦𝑖

2 − 𝑛𝑦−2)

 

           

where: 𝑟 is sample correlation coefficient, 𝑛 is number of sample size, 𝑥𝑖𝑦𝑖 are the individual 

samples with 𝑖, 𝑥𝑦̅̅ ̅ are mean of 𝑥 𝑎𝑛𝑑 𝑦 variables.  In general, the value of correlation 

coefficients is represented between two or more variables below 0.7 is acceptable, but when the 

correlation is larger than 0.7 or even 0.9 is represents serious issue of multicollinearity among 

endmembers. 

Eq 2.Variance of inflation factor (VIF): 

𝑉𝐼𝐹(𝑖) =
1

1 − 𝑅𝑖
2 

where: 𝑅𝑖
2 is coefficient of determination of a regression. In generally values of VIF less than 3 

are low and indicate no collinearity, less than 5 is moderate, and greater than 10 indicates severe 

collinearity (Becker 1999). The variance inflation factor-VIF (Fox and Monette 1992; van der 

Meera and Jia 2012; Senaviratna and A. Cooray 2019) has been widely applied in scientific 

literature to diagnose collinearity. 

Eq 3.Singular Value Decomposition (SVD) 

𝐴 = 𝑈𝛴𝑉𝑇 
where: the columns of unitary matrices U and V are both square, and Σ is a diagonal matrix with 

an orthogonal singular value. The SVD analysis is commonly used in many applications 

including image compression, noise reduction of satellite images, and climate research (Baker 

2005; Chitsaz et al. 2016; Ji and Fan 2019; C. Yu, Li, and Wang 2019). The singular value 

decomposition (SVD) converts a matrix A into a product of three matrices (fig 5). 
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Figure 5. details of the Singular value decomposition (SVD) 

Second, after I have selected my endmembers, I will apply a linear spectral unmixing for 

every Landsat image in the archive in Google Earth Engine, and calculate annual Cumulative 

Endmembers Fractions for each year (GV, NPV, soil and shade) following Lewinska et al., 

(Lewińska et al. 2020, 2021), which was developed by my research group in the SILVIS Lab. 

Linear spectral unmixing decomposes the measured spectrum of a mixed pixel into its 

constituent spectra, or endmembers, resulting in a set of corresponding image fractions that 

represent the proportion of each endmembers fractions present in the pixel (Uhrin and Townsend 

2016). Different unmixing algorithms are based on variants of the linear mixture model (He, 

Yang, and Guo 2020; Uhrin and Townsend 2016). The formula is (Eq4): 

Eq 4. linear spectral unmixing analysis (LSMA) 

𝑅𝑗 = ∑ 𝑓𝑖

𝑛

𝑖=0

⋅ 𝐸𝑖,𝑗 + 𝜀𝑗;      𝑅𝑀𝑆𝐸 = √(∑ 𝜀𝑗
2

𝑚

𝑗

)

−𝑚

 

where: 𝑅𝑗 is the reflectance in wavelength band 𝑗, 𝑓𝑖 fraction of field endmember 𝑖, 𝐸𝑖,𝑗 is a 

reflectance of a spectrum of endmember 𝑖 in satellite sensor band 𝑗, and 𝜀𝑗 is an error at the spectral 

bands 𝑗, and 𝑅𝑀𝑆𝐸 is root mean square error of the 𝜀𝑗, and 𝑛 is number of endmember, and 𝑚 is 

number of spectral bands in the discrete wavelength spectrum (Keshava and Mustard 2002; 

Lewińska et al. 2021). The cumulative endmembers provide annual estimates of the growing-

season fractions of GV, NPV, Soil, Shade) for each Landsat Pixel, plus estimates of residual errors. 

I have already tested the linear spectral unmixing approach in Google Earth Engine for 126 

different endmember sets derived from field spectral signatures, and for satellite data from July, 

2021 to guide my endmember selection (fig 8 and 9). 

Third, will estimate and identify the magnitude of short and long-term degradation trends of 

my cumulative endmember fractions using Landtrendr (Lewińska et al. 2021). If there are 

missing dates, which are not uncommon in the Landsat records, I will gap-fill them with a 

Whittaker filter (Lewinska et al. 2021 and Kong et al. 2019). Thus, the result of my Cumulative 

Endmember Fractions analysis will be an annual estimate of the fractions of growing season 

(GV, NPV, Soil, Shade) for each 30-meter Landsat Pixel, plus pixel-based estimates of residual 

errors and of uncertainties in the fraction, and the full time-series of grassland degradation trends 

as identified by LandTrendr. In generally, the LandTrendr’s temporal segmentation involves 

repeated random-access calls to each pixel’s time series in entire of frame image, resulting in a 

set of breakpoints that are “vertices” bounding straight-line segments, and “horizons” that 
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represent magnitude of time duration over time series (Fig 6), (Kennedy et al. 2018). I also have 

implemented and tested the first three steps of my approach in western Mongolia (Fig 10).  

 
Figure 6. Overview of the change detection algorithm LandTrendr; a) contributions to a 

trajectory of a spectral index i.e cummulative endmember fractions, b) dectection of magnitude 

of LandTrendr, c) curve of magnitude of LandTrendr (de Jong et al. 2021; Lewińska et al. 2021), 

all implemented in Google Earth Engine (GEE). 

Fourth, I will validate the long-term degradation LandTrendr based on vegetation cover and 

biomass field data from 1987 to 2022. Specifically, I will analyze dry biomass, soil moisture 

collected from 130 well-distributed Meteorological stations of the Mongolia Meteorological 

Agency for 10-day estimates during the growing season. I will conduct the Pearson correlation 

coefficient (r) for the relationship between my cumulative endmembers and the field estimates 

(Chang et al. 2017; Chen, Wang, and Fu 2020) (Eq1). 

3. Expected results 

The result of the analysis for my first chapter will be two primary products: first, the best spectral 

unmixing model field based to predict endmembers fractions maps such as GV, NPV, Soil and 

Shade (Fig 7, 8 and 10.); and second, long-term grassland degradation trend maps for the last 35 

years derived from 30-m Landsat data. The maps will be accompanied by scatter plots to judge 

the linear relationship between the predicted variables (endmembers) and ground observation 

biomass (Fig 9). 
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Figure 7. Preliminary result of the spectra endmember model selection by collinearity and 

orthogonality analysis; a) collinearity and orthogonality of the results; b) model selection. 

 
Figure 8. Preliminary result of the Spectral Unmixing model on July, 2021 (65th test model); a) 

GV map; GV fractions have a 63% correlation with biomass estimates, b) NPV map; 12% 

correlation, c) Soil map; 60% correlation, d) Shade map; 45% correlation, and e) RMSE ranging 

from 0-35%, and < 10% for most of Mongolia. 
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Figure 9. SMA’s predicted variables (endmembers: GV, NPV, Shade and Soil) and ground 

observation biomass (Agrometeorological 1407 station) 

 
Figure 10. Preliminary analysis of one test area in west-Mongolia and the pathways of change 

among the different surface fractions from 1987 to 2020 (right). 

4. Significance and contributions  

My results will advance understanding of grassland degradation in Mongolia’s ‘steppe grassland 

ecosystem’ because prior studies analyzed only coarse-resolution data, and they will be useful 

for pasture management, and desertification monitoring. Specifically, my datasets will be 

valuable for Mongolia’s Desertification Center, the Geology Institute of the Academy of Science 

of Mongolia, and the Meteorological agency of Mongolia.  
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CHAPTER 2: To quantify change in grassland vegetation communities based on 

convolutional neural networks (CNNs), and on phenological differences of dry versus wet 

years. 

1. Introduction 

In Mongolia, a substantial increase in grazing intensity (Hilker et al. 2014; Khishigbayar et al. 

2015), and drought (Chang et al. 2021) has led to a decrease in both the quality and quantity of 

grassland and pasture resources over the last few decades (Hilker et al. 2014; Li et al. 2019). 

Furthermore, grazing has caused significant loss of carbon from soil (Oates and Jackson 2014). 

There is substantial evidence that human activity and climate extremes both strongly affect the 

vegetation community composition in grassland ecosystems (Knick and Rotenberry 2002; Ma et 

al. 2010). Indeed, in Mongolia grassland degradation has resulted in lower productivity and 

biomass (Godde et al. 2020; Horie, Miyasaka, and Yoshihara 2023; Liu et al. 2019; Ma et al. 

2010), but also resulted in a shift in plant community composition, from highly-productive 

perennial grass species (Agropyron cristatum, Cleistogenes squarrosa, Elymus chinensis, Stipa 

Krylovii, Stipa gobica/glareosa) to low productive or ruderal annual species, and higher 

proportions of forbs (Allium spp. species, Artemisia frigida, Artemisia sieversiana, Artemisia 

Adamsii, Chenopodium spp. species, Heteropappus hispidus, Caragana spp. species) 

(Jamiyansharav et al. 2018; G. Wang et al. 2019). That is important because for both grassland 

ecosystem services (Landis et al. 2018), and for grassland biodiversity changes in plant 

communities are just as important as changes in vegetation cover (Jamiyansharav et al. 2018; 

Lamchin et al. 2016; Yang et al. 2019).  

However, classifying grassland plant communities from satellite imagery is challenging 

(Clark, Seyfried, and Harris 2001; Rapinel et al. 2019). So, while there is a large number of 

studies that focused on changes in vegetation communities in Mongolia (Aghababaei et al. 2021, 

Anon 2022; He et al. 2018; Jambal et al. 2012; Jamiyansharav et al. 2018; Lkhavgadorj, 

Iderzorig, and Kwon 2016; Oyundelger et al. 2020; Zemmrich, Hilbig, and Oyuunchimeg 2010), 

only a few studies used an integrated of remote sensing imagery with in situ measurements 

(Sainnemekh et al. 2022b). However, advances in machine learning, especially the development 

of CNNs, may offer an opportunity to classify plant communities and their changes over time 

shifts accurately (Chauhan and Ram 2018; Noi Phan, Kuch, and Lehnert 2020; Zhang et al. 

2020). Particularly, deep neural networks (CNN) have ability to identify vegetation community 

changes (Kang et al. 2020). Furthermore, there are differences in phenology among communities 

during dry versus wet years, which may allow to distinguish them. 
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Figure 11. Flowchart of vegetation community classification 

1.2. Analysis of objective  

My goal is to determine vegetation community changes over 30 years, by deriving two 

vegetation maps that each use phenological differences between wet and dry years to capture 

vegetation communities accurately. I have two primary research questions and hypotheses: 

1. Which type of vegetation community increases and declines in dry and humid years? 

Hypothesis: In dry years, the perennial plant community mostly decreases, while the 

annual plant community increases 

2. How much have grassland communities in Mongolia changed? 

Hypothesis: There have been widespread changes from communities dominated by 

perennial grass species to those dominated by forbs 

2. Methods 

I propose to classify grassland vegetation community change from ca 1990 to ca. 2020.  For each 

time point, I will implement four steps: 

First, I will select a pair of years when climate extremes had a strong impact on the grassland 

vegetation community. For example, in drought years, grasslands are often dominated by 
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unpalatable Artemisia spp, and Caraganna spp species that can adapt to the dry climate 

condition, while in wet years, palatable species of perennial grasses are more dominant in the 

semi-arid grassland region (Fig 12). In terms of the time points and data, 1993 and 1996 

represent one nice pair of a wet and dry year, and so does 2020 and 2021. These different climate 

variations also affect plant phenology (Kariyeva and van Leeuwen 2012), which will help me to 

distinguish the dominant vegetation communities. The standardized precipitation 

evapotranspiration index (SPEI) (Stagge et al. 2016) is a good measure to identify wet and dry 

years (Beguería et al. 2014) (Fig 13) because three variables (precipitation, temperature, and 

evapotranspiration potential) are integrated in the SPEI (Nejadrekabi, Eslamian, and Zareian 

2022). A global real-time drought monitoring system is operative, and provides global SPEI 

maps, time-series curve at 1o resolution  (Stagge et al. 2016). 

 
Figure 12. Semi-arid grassland of Mongolia (wet year and dry year’s phenology metrics) 

 

 
Figure 13. Time series SPEI drought index across Mongolia (1993, 1996, and 2017, 2021) 

Second, I will develop a class catalog of the major grassland communities in Mongolia’s dry, 

semi dry, and humid grassland regions, and select training samples based on plant species 

composition data collected by Mongolia’s Meteorological Agency for 1450 sites for the national 

report on grazing impact monitoring of in Mongolia 2021(Sainnemekh et al. 2022b). For this 

survey, local meteorology technicians in 320 soum (counties) collect the primary data annually 

using a standardized methodology according to guide grassland management since 2012 

1993 wet 

1996 dry 

2017 dry 

2021 wet 
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(Sinclair et al. 2019). Aimag’s (province) meteorological engineers ensure quality control and 

enter the monitoring data into the National Rangeland Monitoring Database.  

 
Figure 14. Mongolian rangeland monitoring sites (n = 1450). 

Third, I will identify vegetation communities change by classifying the GV endmember 

fractions from my SMA, and apply the ResNet (He et al. 2016) model of CNNs deep learning 

algorithms (Saadeldin et al. 2022) on data for each of the paired year, and assess vegetation 

phenology metrics for the early 1990s and the late 2020 (Fig 12). For the CNN classification, I 

will use image chips (Hamer, Simms, and Waine 2021; Han et al. 2017) to create the training 

data surrounding the 1450 Mongolian rangeland monitoring sites, as well as in-situ data from 

vegetation community data in abandoned fields, which I will collect in 2023. In general, the 

CNN method is an artificial neural network that uses the local receptive field and shared weights 

(Sameen, M.I.; Pradhan and B.; Aziz, O.S. 2018). Deep learning methods can automatically 

learn the hierarchical contextual features from the input image and the ResNet architecture and 

provide a suitable platform to analyze satellite images (Bergado et al. 2016). In addition, 

information can be extracted at different levels including pixel-level, object-level, and patch-

level. The architecture of CNN is based on several layers of operators (layers) in (Fig 15: 2D 

convolution layer, pooling layer (subsampling), and fully connected layer (Nahhas et al. 2018, 

and Husam et al. 2019). 
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Figure 15. Workflow of the CNN Model (Phung and Rhee 2019) 

Fourth, I will conduct a state-of-the-art accuracy assessment (Olofsson et al. 2013, 2014). For 

this, I will create a confusion matrix, which plays a central role for both the accuracy assessment 

and area adjustments (Foody 2013), and is commonly used in land cover change detection 

(Anderson et al. 1976; Knorn et al. 2009; Liu et al. 2016; Olofsson et al. 2013; Juanle Wang et 

al. 2019). The error matrix is an ordinary cross-tabulation of the class labels allocated by the 

classification of the Satellite based data against the reference data for the sample plots (Table 1). 

The main diagonal of the error matrix represents correct classifications while the off-diagonal 

elements show omission and commission errors. The accuracy assessment of formula was given 

by (Eq 5, 6 and 7) are estimator overall, user’s, producer’s accuracies, and confidence interval 

(Olofsson et al. 2013, 2014).  

Table 1. Population error matrix with the rows (𝑖) representing the map classification and the 

columns (𝑗) representing the reference classification; (𝑃𝑖𝑗) is the population proportion of area 

with map class (𝑖) and reference class(𝑖). The row (𝑃𝑖+) and column (𝑃+𝑗) marginal totals are 

the sum of the (𝑃𝑖𝑗) values in each row and column.  

    Reference class           Total 

    1 2 … j … q   

 Map 

class 

1 P11 P12 … P1j … P1q P1+ 

2 P21 P22 … P2j … P1q P2+ 

: : :   :   : : 

: : :   :   : : 

j Pj1 Pj2 … Pjj … Pjq Pj+ 

: : :   :   : : 

q Pq1 Pq2 … Pqj … Pqq Pq+ 

Total P+1 P+2 … P+j … P+q 1 
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Eq 5. Error matrix of q classes include overall accuracy. 

0 = ∑ 𝑝𝑗𝑗

𝑞

𝑗=1

 

where: 𝑝𝑖𝑗 is the proportion of the area for the map class 𝑖 and reference class 𝑗, “population” is 

defined as the full region of interest, and 𝑝𝑖𝑗 is the value that would result if a census of the 

population was obtained reference classification. 

Eq 6. Commission error of matrix. 

𝑈𝑖 = 𝑝𝑖𝑖 𝑝𝑖⁄ ⋅ 

where: 𝑖 is the user’s error of class, 1 − 𝑝𝑖𝑖 𝑝𝑖⋅⁄ , and 𝑗 is the producer’s accuracy of class which 

the proportion of the area of reference class 𝑗 that is mapped as class 𝑗. 

Eq 7. Omission error of matrix. 

𝑃𝑗 = 𝑝𝑗𝑗 𝑝⋅𝑗⁄  

where: 𝑗 is omission error of class, 1 − 𝑝𝑗𝑗 𝑝⋅𝑗⁄ .  

In addition, sampling design is used the stratified random sampling in which the strata 

correspond to the map classes, 

Eq 8. Strata sampling design. 

�̂�𝑖𝑗 = 𝑊𝑖 

𝑛𝑖𝑗

𝑛𝑖⋅
 

where: �̂�𝑖𝑗 is available of each element of the error matrix,  𝑊𝑖 is the proportion of area mapped 

as class 𝑖, 𝑛𝑖𝑗 is the sampling counts. 

To estimate the confidence intervals for the overall accuracy I will use the following equations. 

Eq 9. Variance of overall accuracy. 

�̂�(�̂�) = ∑ 𝑊𝑖
2�̂�𝑖(1 − �̂�𝑖)

𝑞

𝑖=1

(𝑛𝑖 − 1)⁄  

Eq 10. Calculation of confidence interval. 

±1.96√�̂�(�̂�𝑖) 

where: �̂�𝑖 is replaced with �̂�𝑗 and �̂�for the producer’s and overall accuracies. In terms of 

calculation, the estimate user’s accuracy will confidence intervals at the 95% confidence level. 

3. Expected results 

The result of this analysis will produce three primary outcomes: 1) an assessment of the ability of 

CNNs to map Mongolia’s vegetation communities, 2) an assessment of the value of combining 

data from wet and dry years to map vegetation communities, 3) vegetation community change 

maps for Mongolia’s grasslands.  

4. Significance and contributions  

My result will provide important information to understand how much grasslands have degraded 

due to change in plant communities. In doing so, I will assess an aspect of grassland degradation 

overlooked by vegetation indices or surface fractions.  For management, my results will the 
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valuable because different plant communities differ in forage quality.  Finally, my results could 

be useful for grassland vegetation restoration.  

CHAPTER 3: To identify the main drivers of grassland degradation (both long-term 

trends of cumulative endmember fractions and change in vegetation communities) focusing 

on climate, livestock numbers, Brandt’s vole distributions. 

1. Introduction 

Climate change and grazing are the two main driers of grassland degradation (Allington et al. 

2017). In Mongolia, droughts have increased in frequency in recent decades, and especially 

summer rainfall has declined (Lioubimtseva and Henebry 2009), which greatly affected 

grasslands (Allington et al. 2017; Chen et al. 2018; John et al. 2013; Kang et al. 2021). Also, 

livestock grazing is a major threat to Mongolian grassland ecosystems, due to the rapid increase 

in livestock numbers (Allington et al. 2017; Gong Li et al. 2000) from 22 million in the late 

1980s to 71 million today (Fig 10.) (Allington et al. 2017; Gong Li et al. 2000). Furthermore, 

there is a positive feedback loop in that overgrazing increases Brandt's vole populations 

(Lasiopodomys brandtii), which degrade pastures further (K. Li et al. 2017). Brandt’s voles are 

native but expanded their range to > 40 million ha in Mongolia (Fig 18) (Munkhnasan 2019; 

Shenbrot and Krasnov 2005). They prefer freshly grazed areas, eat the roots of grasses, and 

destroy the soil surface (Zhong et al. 2022). Furthermore, Brandt’s voles are highly detrimental 

to livestock because their burrowing brings infertile soils to the top and fosters the spread of low-

nutritious weeds (K. Li et al. 2017). 

 
Figure 16. SPEI Drought index (1950-2021) 
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Figure 17. Time-series of livestock numbers, five species (1987-2022) such as; horse, camel, 

cow, sheep and goat 

 
Figure 18. The distribution of Brandt's vole (orange color is represented habitat, pink color is 

showed distribution colonization area) 

1.2. Analysis of objective  

I propose to identify the drivers of grassland degradation parameter for both trends in annual 

endmember fractions and changes in vegetation communities thereby building directly on my 1st 

and 2nd objectives. In the analysis for chapter 3, I will address three primary research questions 

and test corresponding hypotheses: 
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1. Which factors are causing grassland degradation both in terms of vegetation cover, and in 

vegetation community composition? 

Hypothesis: the frequency of drought is main  cause of grassland degradation. 

2. How does livestock density affect grassland degradation? 

Hypothesis: Density of sheep and goats are strong predictors of grassland degradation.  

3. Why are Brandt’s vole numbers increasing, and do they pose a threat to grasslands? 

Hypothesis: Higher livestock numbers are leading to an increase into the number of 

voles, and voles are contributing to grassland degradation. 

  

2. Methods 

I propose to identify the main drivers of grassland degradation, both in terms of changes in 

annual endmember fractions (my 1st objective), and grassland communities (2nd objective). I will 

focus on a few drivers of grassland degradation such as climate change, livestock numbers, and 

Brandt’s vole. I will analyze long-term data from of the national Standard Meteorological Station 

Datasets of Mongolia (130 stations) for the last 35-years, which include precipitation, air 

temperature, soil moisture, unfenced biomass, wind speed, as well as Brandt’s vole abundance 

data from 2005 to 2020. I will also analyze long-term of annual livestock numbers, which I have 

already obtained from the National Statistical Office of Mongolia for each of the 1500 sub-

villages (“Bag level”) and for five species from 1987-2022 (fig 15).  

First, I will conduct regression analyses at both the pixel-level, and using sub-villages as my 

unit of analysis, because some information is only available at that level. For this, will 

summarize all datasets (climate variables, Brandt’s vole, and livestock numbers) by conducting 

spatial interpolations via universal kriging and zonal statistics to calculate mean values within 

the surveyed sub-villages/bags (Wang, Brown, and Agrawal 2013). In terms of geostatistical 

interpolation, will use ordinary kriging as implemented in the ArcGIS packages of geostatistical 

techniques to interpolate between point-based meteorological stations. To summarize my 

vegetation data, will calculate zonal statistics, and the livestock data is available at the sub-

village level. Kriging and zonal statistical estimation are defined by the following equation 

(Belkhiri, Tiri, and Mouni 2020; Charles et al. 2022): 

Eq 11. Calculation of ordinary kriging interpolation. 

�̂�(𝑥𝑝) = ∑ 𝜆𝑖

𝑛

𝑖=1

𝑍(𝑥𝑖) 

where: �̂�(𝑥𝑝) is the estimated value of variable Z at location 𝑥𝑝; 𝑍(𝑥𝑖) is the known value at 

location 𝑥𝑖; 𝜆𝑖 is the weight associated with the data. 

Eq 12. Calculation of zonal statistics in a given spatial unit. 

�̅� =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

where: �̅� is the mean of observed value, 𝑥𝑖 is observed values and 𝑁 is number of observation of 

data. The GIS zonal statistic operation is commonly used in a raster analysis performed on the 

two rasters, in which one is the zone and other is the value (Fig 19) (Hyndman and Fan 1996). 
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Figure 19. The zonal statistic GIS tool 

Second, will analyze long-term trends in the annual surface fractions via a regression that 

accounts for temporal and spatial autocorrelation by applying remotePARTS (Ives et al. 2022; 

Radeloff et al. 2000). Large datasets with time-series of autocorrelated data are frequently 

encountered in remote sensing where both temporal and spatial autocorrelation is common (Ives 

et al. 2022). RemotePARTS first estimates the trend for each pixel using an autoregressive model 

that accounts for temporal autocorrelation. Second, it conducts a generalized least square 

regression that accounts for spatial autocorrelation. If the dataset is too large to parameterize a 

single GLS, remotePARTS partitions the data into subsets, parameterizes each regression, and 

then combines the results from each model into one estimate. Because remotePARTS is 

fundamentally a regression analysis, it is very amenable to hypothesis testing, either of the trends 

themselves (e.g., there is a significant negative trend in greenness), or in terms of explanatory 

variables (e.g., there is a stronger negative trend where droughts are more severe). For my 

analyses of trends at the sub-village level, partitioning will not be necessary, but for analyses at 

the pixel-level, it will be. 

Third, I will explain changes in vegetation communities using remote PARTS. In this case 

my response variable is different because I have only two time steps, and cannot estimate the 

slope of a trend. Instead, I will estimate absolute measures of change, such as the decrease in 

percent cover of feather grass. remotePARTS allows me to analyze all pixels across Mongolia’s 

grasslands while accounting for spatial autocorrelation to test for significance of drivers of 

changes in vegetation community. 

3. Expected results 

The result of this analysis will be the identification of the drivers of grassland degradation 

parameters for both trends in surface fractions and changes in vegetation communities thereby 

building directly on my 1st and 2nd objectives. In addition, the temporal spatial regression 

analysis will produce partial p-values for the relationships between grassland degradation versus, 

air temperature, precipitation, biomass, soil moisture, wind, Brandt’s vole and livestock. 

4. Significance and contributions 

My result will be broadly relevant given that climate change is affecting grasslands throughout 

the world. However, climate change also interacts with other drivers of degradation, which is 

why I will analyse livestock and Brandt’s vole as well. In Mongolia, my results will be useful for 

regional administrations when deciding on pasture carrying capacity plans. Furthermore, this is 

analysis will be a good reference for governmental and non-governmental organizations, such as 
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the State Emergency Commission of Mongolia, when making decisions about drought response 

and herder assistance. 

CHAPTER 4: To investigate the effectiveness of protected areas in grasslands that are 

important for plant biodiversity and migrating ungulates in stopping or even reverting 

grassland degradation. 

1. Introduction 

Globally, only 4.1% of the world’s temperate grasslands are in protected areas (Henwood 2010). 

That is unfortunate because grasslands harbor unique biodiversity and play important roles in 

global carbon cycling and climate regulation (Poulter et al. 2014). The biodiversity and plant 

species (biota) within protected areas are often affected by both land use within the protected 

areas themselves and habitat loss and fragmentation in the surrounding landscape (Townsend et 

al. 2009). However, protected areas are crucial for the conservation of species threatened by 

human activity, land use change and wildlife habitat loss (Radeloff et al. 2010). Especially, many 

grasslands have been converted to agriculture, or are used for livestock herding, resulting in 

biodiversity losses (Terrado et al. 2016). Protected areas in grassland biomes can provide refugia 

for threatened species, including migratory ungulates, for which vegetation cover, biomass, and 

forage quality is important, as well as endangered plant species, which are threatened by 

vegetation composition changes (Hannah et al. 2007; Parmesan 1996).  

Mongolia has many protected areas: 21% of the country is protected, and 10 new protected 

area have been established since 2010. Furthermore, the national program on Special Protected 

Areas was enacted in April 1998 by the Parliament of Mongolia (act number 29) to extend the 

protected area network of high ecological importance and biodiversity value so that 30% are 

protected by 2030 (Jargal 2003). However, these protected areas face growing pressure 

stemming from human activities that could lead to biodiversity losses, habitats fragmentation, 

and especially of rare plants (Jamsran et al. 2019; Reading, Bedunah, and Amgalanbaatar 2006; 

Terrado et al. 2016) of which there is a high concentration in the grasslands of eastern Mongolia 

(Shukherdorj et al. 2019). In the meantime, overgrazing and climate change impacts have 

increased in the areas surrounding national protected areas (Bayartogtokh et al. 2021; Girvetz et 

al. 2014; Liu et al. 2013). Moreover, the mobility of ungulate migration is changing due to 

irregular and unpredictable spatial and temporal patterns of rainfall (Mueller et al. 2008). The 

effectiveness of protected areas depends on their ability to stop habitat loss within boundaries 

zone (Radeloff et al. 2010), which makes grassland degradation is a good indicator of 

conservation effectiveness for grassland protected areas. 

1.2. Analysis of objective  

I propose to quantify the effectiveness of protected areas in Mongolia’s grasslands, both those 

that have a long history, and those established recently. The effectiveness estimates will utilize 

my results from my 1st and 2nd objectives and will be informed by my analysis of drivers for my 

3rd objective. Overall, my goal is to better understand relationship between grassland 

degradation, wildlife conservation and PAs effectiveness in grassland ecosystem. My specific 

research question and hypothesis are: 

1. How effective have Mongolia’s protected areas been in terms of stopping grassland 

degradation?  



26 
 

Hypothesis: protected areas have been effective in stopping grassland degradation 

within them 

2. How does climate change affect Protected areas and their effectiveness?  

Hypothesis: if climate change is the main driver of degradation, effectiveness of 

protected areas is limed 

3. How does livestock grazing interact with Protected area effectiveness?  

Hypothesis: if grazing is a main driver of degradation, protected areas may have been 

highly effective in those parts of Mongolia where livestock numbers are generally high 

4. Have protected areas limited grassland degradation especially in those areas where 

degradation is a threat to ungulate’s habitat? 

Hypothesis: due to the importance of protected areas for migratory ungulates, they have 

been more effective in areas where wild herbivores are concentrated 

2. Methods 

I propose to investigate the effectiveness of protected areas in stemming grassland degradation 

and vegetation community changes as quantified in my objectives 1 and 2 using econometric 

methods. I will analyze all protected areas in Mongolia’s grassland (Fig 21), and areas where 

wild large herbivores are concentrated (Fig 22).  

I propose to conduct my analyses in three steps. First, will select a sample of matched pairs 

of sites inside and outside of protected areas and wildlife habitats based on propensity scores 

(Brandt et al. 2019; Butsic, Lewis, et al. 2017). In generally, propensity score matching is a 

quasi-experimental approach in which pairs of samples are analyzed. In each pair, one sample is 

in the protected area (the ‘treated’ area), and one is outside, and samples are paired so that they 

have similar characteristics. Moreover, in propensity score matching treatments are non-random 

but all relevant variables are observed by researchers (Brandt et al. 2019; Butsic, Lewis, et al. 

2017). In addition, propensity scores are generally calculated using Logistic regression 

approaches, which value (x-axis) ranges from 0 (zero probability) to 1.0 (100%) (Powell, Hull, 

and Beaujean 2020): equations are given below. 

Eq 13. Logistic regression and propensity score. 

 

𝐼𝑛
ⅇ(𝑥𝑖)

1 − ⅇ(𝑥𝑖)
=  𝐼𝑛 

Pr(𝑧𝑖 = 1|𝑥𝑖)

1 − Pr(𝑧𝑖 = 1|𝑥𝑖)
= 𝑎 + 𝛽𝑇𝑥𝑖 

where: ⅇ(𝑥𝑖) = Pr(𝑧𝑖 = 1|𝑥𝑖), and ⅇ(𝑋𝑖) = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3+⋯+𝑏1𝑋1, and 𝑏0 is the 

intercept, 𝑏1 is the regression coefficient, 𝑋𝑖 the treatment variables and covariates (random 

variables), 𝑥𝑖 is observed value of variables. In logistic regression, the dependent variable is 

binary, 𝑍𝑖 = 1 is the value for the treatment and the value for the control is 𝑍𝑖 = 0.  
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Figure 20. Propensity score Matching method (Nearest Neighbor). 

There are different approaches to identify the best matches. I will use the absolute difference 

between the estimate propensity scores for the control and treatment groups and minimize that by 

Nearest Neighbor Matching (Equation 14) 

Eq 14. Nearest Neighbor matching. 

𝐶(𝑃𝑖) = 𝑚𝑖𝑛
𝑗

|𝑃𝑖 − 𝑃𝑗| 

where: 𝐶(𝑃𝑖) is presented the group of control subjects 𝑗 matched to treated subjects 𝑖 (on the 

estimated propensity score), 𝑃𝑖 is the estimated propensity score for the treated subjects 𝑖, 𝑃𝑗 is 

the estimated propensity score for the control subjects 𝑗. The control and treatment subjects are 

randomly ordered but the first 𝒏 treatments are matched to 𝒏 control subjects with the closest 

propensity score. The commonly used matches are 1: 1, 1: 𝑁 𝑜𝑟 𝑁: 1 matches. 
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Figure 21. State protected area of Mongolia (red: strict PA; blue: National Park; yellow: Nature 

reserve; pink: Nature monument), in which I will randomly distributed pair samples inside and 

outside PAs boundaries. 

 
Figure 22. Wild large herbivore locations (red: Onager; cyan: Saiga antelope; green: Goitered 

gazelle; blue: Mongolian gazelle). 
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Second, once I have my matched sample sites, will identify the effectiveness of protected 

areas in reducing vegetation cover declines (Brandt et al. 2019; Butsic, Lewis, et al. 2017) by 

combining matching statistics with fixed-effects linear probability models for my panel data of 

cumulative endmember fraction trends (Butsic, Munteanu, et al. 2017b; Sieber et al. 2013). 

Third, will conduct similar analyses to assess protected area effectiveness to limit grassland 

community changes (Brandt et al. 2019; Butsic, Lewis, et al. 2017).  

3. Expected results 

The result of this analysis will produce three primary research outcomes: 1) an assessment of the 

effectiveness of protected areas in Mongolia’s grasslands throughout the Landsat record; 2) an 

indication on the relative importance on climate versus livestock on protected area effectiveness; 

3) a detailed examination if protected areas in core areas of wild herbivores are effective. 

4. Significance and contributions  

My result will be broadly relevant given that grassland degradation may be affecting protected 

area effectiveness, wildlife habitat, and conservation management throughout the world. In 

Mongolia, my results will be useful for regional administrations when deciding about nature 

conservation plans, manage protected area usage and protected zones, and for the selection of 

new protected areas. As such, my results will be relevant for the Mongolia Program of the 

Wildlife Conservation Society (WCS), World Wildlife Fund (WWF), and the Ministry of the 

Environment and Tourism of Mongolia. 

EXPECTED OUTCOMES AND DELIVERABLES 

In my PhD research and in my future career, I plan to conduct interdisciplinary research at the 

interface of remote sensing, land use science, and conservation biology in my home country of 

Mongolia. Based on my dissertation chapters, I plan to publish four journal articles in Remote 

Sensing of Environment (Obj. 1), Global Change Biology (Obj. 2), Global Environmental 

Change (Obj. 3), and Conservation Biology (Obj. 4). In addition, my research will generate 

important datasets, which I will make openly and freely available, including: (1) plant species 

community and Spectro-radiometer library for Mongolia for 2021/22; (2) grassland degradation 

trends based on annual cumulative endmember fractions from by Landsat for 1987-2022, (3) 

grassland community maps for ca. 1990 and 2020, and (4) Protected area effectiveness data. 

Throughout my project, I will collaborate closely with my network of partners in the country, 

many of which I have worked with closely already in my prior position as the Chief technologist 

of GIS and Remote Sensing, National Remote Sensing Center of Mongolia, thereby building 

capacity and strengthening international collaborations. 

OVERALL SIGNIFICANCE 

Mongolia’s steppe grasslands are vast and among the most-intact grasslands remaining globally. 

The grasslands are mostly dominated by various grasses including feather grass, wheatgrass, and 

needlegrass as well as forbs, shrubs, and small trees. The steppe grasslands provide important 

habitat for a number of endangered and threatened species, and for the migrations of Mongolian 

gazelles (Procapra gutturosa), Goitered gazelle (Gazella subgutturosa), Saiga antelope (Saiga 

tatarica mongolica), Onager (Equus hemionus), the wild Bactrian camels, and Argali sheep. It is 
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also home to a variety of predators, such as wolves, foxes, and eagles. 

In Mongolia’s long history, herders have relied on the grasslands for their livelihoods, using 

a nomadic seasonal rotation system for grazing livestock, hunting, and gathering. However, in 

recent decades the grasslands are facing a large number of threats including grassland 

degradation and soil nutrient losses due to overgrazing, climate change, mining, and natural 

disturbance. Degradation can manifest itself both as a loss of vegetation cover, or as a change in 

vegetation communities. In order to support the conservation of Mongolia’s grassland 

ecosystems, both in terms of general biodiversity, and of rare plant species, there is a need to 

conduct the kind of remote sensing assessments that I am proposing here. 

In terms of its scientific contribution, my research will advance the understanding of the 

magnitude of grassland degradation, and of the core drivers of grassland degradation including 

climate, grazing, and the positive feedback loop between grazing and Brandt’s voles. 

Furthermore, I will examine multiple dimensions of grassland degradation including changes in 

surface fractions of the cumulative endmembers, as well as vegetation community changes. 

Methodologically, I will contribute to remote sensing, by analyzing cumulative endmember 

fractions with field spectra, by processing the full Landsat archive for Mongolia, and by 

developing new methods to map grassland communities based on CNNs as a deep learning 

approach and on phenological differences between dry and wet years. 

For biodiversity conservation and grassland management, I will provide new datasets 

depicting Mongolia’s grasslands and their changes with 30-m Landsat imagery. This enables my 

detailed assessment of grassland degradation from 1987 to 2022 and provides change trend 

information in local and regional level. I will identify the main drivers of degradation, which is 

the necessary first step to limit it. Related, I will quantify if protected areas are effective in 

stemming grassland degradation, thereby protecting the grassland vegetation communities, and 

the habitat for Mongolia’s herds of wild ungulates. 

Grassland degradation and vegetation community change maps are useful source information 

for local and regional policy making, pasture management, land-use planning and desertification 

process, and nature conservation action management. Furthermore, my results will provide 

reference maps for grassland vegetation restoration, and local decision makers, as well State 

Emergency Commission of Mongolia, state and local PAs organization, the Ministry of the 

Environment and Tourism of Mongolia and non-governmental organizations, and nature 

conservation NGOs such as the Wildlife Conservation Society (WCS), World Wildlife Fund 

(WWF) in Mongolia.  
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