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Science/Technical/Management Section 
 
Introduction 

Understanding biodiversity patterns in relation to habitat and climate is an important to 
determine the need for conservation planning and action. One way to understand patterns of 
biodiversity at regional to global scales is by pairing remotely sensed imagery and associated 
indices with in situ biodiversity data, in order to identify factors that influence biodiversity, and 
areas of high conservation value and their threats 1. However, remote sensing observations used 
to model biodiversity distributions often have coarse resolution, which may mask relevant fine 
scale habitat heterogeneity. For example, many bird species respond to different configurations 
of fine-scale habitat features such as vegetation structure, but also to broad-scale factors such as 
landscape composition 2,3. So, one question is what resolution of satellite imagery is best for 
which species. While organisms may respond to fine-scale habitat features and heterogeneity, the 
use of very high spatial resolution (<5 m) data can introduce ‘false’ heterogeneity from in-
shadow pixels, 4–6. That suggest that medium-resolution (~10-50 m) satellite data is a good 
compromise as a basis for biodiversity modeling, but there is wide variation in resolution among 
medium-resolution sensors. For example, the spatial resolution of different “Landsat-like” 
sensors ranges from 10 m to 160 m 7. In a collaborative project we found that 10-m meter 
resolution satellite image texture measures have higher explanatory power than 30 m texture 
measures when predicting bird species richness in the U.S. 8, illustrating the need to identify the 
spatial resolution(s) at remotely sensed products that characterize habitat,  are most effective for 
modelling biodiversity 9. 

Further, in models, remote sensing data are often used for one point in time, and discrete 
in classification, thereby missing important within-class variability and temporal changes that 
influence species distributions. Indeed, generalized landcover classifications often do not capture 
key fine-scale habitat heterogeneity as well as continuous measures derived from satellite 
imagery 10. Seasonality (temporal variability) may alter the availability or quality of key 
resources and can lead to shifts in habitat use or ranges 11,12, and at broad scales, patterns of 
biodiversity are determined by phenology and climate 13,14.  Areas with higher spatial variability 
in phenology and climate are more likely to host high levels of species richness 15–17. 
Furthermore, high spatial variability in phenology and climate may buffer against temporal 
variability in phenology and temperature because some populations may be able to persist during 
extreme events, but it is unclear how important this is. Fortunately, satellite data can offer both 
spatial and temporal measures of spectral variability, which can improve biodiversity modeling 
because organisms respond to both the spatial patterns and temporal changes within their 
environments. 

Understanding how spatial resolution and variation in environmental characteristics 
affect biodiversity patterns is important for conservation planning, but without including 
information on human modification of the environment, conservation planning is likely 
ineffective. Humans historically have settled in areas of high primary productivity 18,19, but those 
areas with high primary productivity are often the areas with the highest levels of biodiversity 20. 
This coincidence between primary productivity, human population density, and species richness 
can result in conflicts between human development and conservation of biodiversity 21,22. The 
percentage of protected land often declines with increasing human population density and 
primary productivity,  and protected areas that protect high levels of biodiversity and high 
primary productivity are typically smaller and surrounded by human populations compared to 
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protected areas in sparsely populated regions that protect less biodiversity and have lower 
primary productivity 20,21. As such, it is important to identify the relationships between primary 
productivity, human development, and biodiversity, in order to identify areas where biodiversity 
conservation would be most effective, and where threats to biodiversity are most severe. 

The overarching goal of my proposed research is to model avian biodiversity patterns in 
Argentina with remotely sensed indices to aid conservation planning. More specifically I will: 

Objective 1: Assess how spatial resolution of Dynamic Habitat Indices (DHIs) derived 
from different sensors (1km MODIS, 30m Landsat-8, and 10-20 m Sentinel-2) differ in their 
ability to predict bird distributions.  

Objective 2: Assess how spatial (Landsat-8 LST and EVI) and temporal variability 
(MODIS LST and EVI) in temperature and forest phenology influence bird species distributions. 

Objective 3: Identify the relationships between primary productivity, human population 
size, and forest bird species richness patterns in Argentina. 

My research addresses the fundamental research question of NASA Earth Sciences 
regarding how the global Earth system is changing by describing how differences in terrestrial 
productivity, forest phenology, and climate variability influence patterns of bird species richness 
and human settlement. To do so, my research will rely heavily on NASA assets, in particular on 
MODIS and Landsat-8, as well as ESA’s Sentinel 2 satellites, and I will advance the 
understanding of the patterns and drivers of bird biodiversity and inform conservation efforts in 
an ecologically diverse country. 

 
Background and relationship of my proposal to ongoing projects: 

Argentina is the fourth largest country in the Americas and ecologically and climatically 
very diverse. It spans approximately 21 to 55 degrees south, and 53 to 73 degrees west, 
encompassing much of the Southern Cone in South America, and is bordered by the Andes 
Mountains in the west and the Atlantic Ocean in the east. Ecosystems include subtropical dry and 
humid broadleaf forests, grasslands, and shrublands, flooded grasslands and savannas, montane 
grasslands and shrublands, temperate grasslands and forests, and subpolar forests. From a 
conservation perspective, Argentina hosts several biodiversity hotspots 23,24, ecoregions at risk of 
being lost (‘crisis ecoregions’) 25, endemic bird areas 26, centers of plant diversity 27, priority 
regions for global conservation (‘Global 200’) 28,29, frontier forests 30, and ‘last of the wild’ areas 
31 32.  

Argentina is a developing nation that has still vast undeveloped areas, and many areas are 
quite remote. However, while this is great for biodiversity, it also means that there is a lack of 
information which areas are most important for maintaining the country’s rich biodiversity. 
Indeed, Argentina a national forest land use planning strategy in 2007, but little biodiversity data 
has been incorporated into national or provincial plans to date, with only a few provinces 
including biodiversity data into plans 33. That means that under the current forest land use plans, 
many wilderness areas are zoned so that logging and grazing are allowed, and much of the high 
conservation value forest is under some level of human influence 33. Recent shifts in agricultural 
land use in Argentina have put highly productive and fertile areas under more intense pressure 
for conversion to-, or intensification of- agriculture 34. Existing forest land use plans can be been 
improved when biodiversity information becomes available, and provincial governments are 
open to utilize such data, as our team piloted successfully in one ecoregion (Yungas)33. So, given 
that biodiversity is under threat, that biodiversity data is useful for enhancing land use plans, and 
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that biodiversity and human settlement patterns often respond to similar gradients of primary 
productivity, I proposed to map and study bird biodiversity using a variety of satellite data. 
 
Approach 

Objective 1: Assess how spatial resolution of Dynamic Habitat Indices (DHIs) derived from 
different sensors (1 km MODIS, 30 m Landsat-8, and 10-20m Sentinel-2) affects their 
ability to predict bird distributions. 

Vegetation productivity summarized over the course of year, in the form of Dynamic 
Habitat Indices (DHIs) 35,36, provide remotely sensed indices that capture the energy available to 
organisms, which makes them useful for predicting biodiversity patterns both regionally 35–47 and 
globally 48,49. There are three components of the DHIs that capture different aspects of the 
relationships between species richness and available energy. Cumulative annual productivity 
(cumulative DHI) captures the available energy in an area and areas with high cumulative DHI 
values have typically higher species richness. Annual minimum productivity (minimum DHI) 
reflects the minimum available energy in an area, and areas with high minimum DHI values 
typically have higher species richness. Variation DHI captures the seasonal variability in 
productivity, and areas with lower variation DHI values typically have higher species richness 
because the environment is more stable. 

Until recently, DHIs have been derived from MODIS data and those DHIs have proven 
useful in predicting biodiversity patterns, despite their relatively coarse resolution (250 m to 1 
km). However, Landsat and Sentinel-2 derived DHIs, at 30 m and 10 m resolution, respectively, 
may increase predictive power of biodiversity models, because these resolutions are more likely 
to match the resolution at which many species select habitat. Coarse resolution environmental 
data may mask fine scale variability that supports higher levels of biodiversity 2,3, however 
spatial resolution that is too fine can increase within-class spectral variation and introduce. noise 
from in-shadow pixels 4–6. As such, I propose to compare the predictive power of DHIs derived 
from MODIS, Landsat, and Sentinel-2 in modelling avian species richness patterns in Argentina.  

I will develop DHI measures across Argentina from Sentinel-2 and Landsat-8 data. 
MODIS DHIs have already been calculated globally 48, and Landst-8 DHIs are in development in 
my lab for the US. After calculating the three different DHI measures (cumulative, minimum, 
and variation) for each sensor, I will assess how well each predicts individual bird species 
distributions. I will create species distribution models (SDMs) for bird species in Argentina using 
the BIOMOD2 package in R 50, and species occurrence data obtained from GBIF from 1998-
2019. I will spatially thin the occurrence data 51, and identify species which there are>30 more 
occurrences, which I consider the minimum number required to generate species distribution 
models 52–55. During preliminary data exploration I identified 89 bird species with sufficient data, 
and I will retrieve additional data from GBIF, or from the National Biological Data System 
http://www.datosbiologicos.mincyt.gob.ar/). 

To assess the role that the resolution of the DHIs plays in species distributions, I will use 
the DHIs as environmental inputs in the species distribution models, along with Landsat-8 TIRS-
derived relative temperature (Elsen et al. 2020) and topography. This will result in three models 
for each species (Sentinel-2 DHIs, Landsat-8 DHIs, MODIS DHIs). For each species I will 
generate 10,000 pseudo-absence points within a buffer (2 km – 1000 km) around occurrences (to 
prevent absence points being close to presence points), run 10-fold cross validation on eight 
species distribution modelling algorithms (GLM, GBM, GAM, CTA, MARS, RF, SRE, 
Maxent), evaluate the models based on AUC, and select the four highest ranked algorithm types 
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to generate one ensemble model for each species/sensor model set. After calculating the final 
ensemble model for each species/sensor combination, I will rank these three models by AUC and 
identify which model (and sensor) predicts the species distribution the best. I will calculate 
variable importance to see how each DHI (cumulative, variation, minimum) affects individual 
bird species distributions. I will identify trends in which types of birds (foraging guild, migratory 
strategy, body size etc.) are best predicted at which resolution. For example, I predict that 
distributions of altitudinal migrants should be well predicted by Sentinel-2 DHIs because they 
respond to fine scale heterogeneity due to topography that may not be captured in coarser 
resolution data 56. Similarly, I predict that species with large home ranges, long-distance 
migrations, or those that are nomadic might be better predicted by Landsat-8 or MODIS DHIs 
because they may respond to broader landscape features. 

My research for objective 1 will help assess the generalizability of Landsat-8 and 
Sentinel-2 derived DHIs and their usefulness for predicting species distributions. It will also 
identify if spatial resolution consistently influences species distribution models in the same way. 
Furthermore, 10-m DHIs from Sentinel-2 data will be novel. Maps of DHIs derived from both 
Landsat-8 and Sentinel-2 will be useful to land managers by themselves. Maps of species 
distributions will be useful in conservation planning, as their resolution is management- relevant. 
The results of objective 1 will be a quantitative evaluation of the sensitivity of a suite of DHIs 
derived from different sensors in explaining bird species distributions in Argentina, as well as 
maps of the resulting DHIs from each sensor across Argentina. I plan to submit this work to 
Journal of Applied Ecology. 

 
Objective 2: Assess how spatial (Landsat-8 LST and EVI) and temporal variability 
(MODIS LST and EVI) in temperature and forest phenology influence bird species 
distributions. 

Patterns of biodiversity at broad scales are determined by climate and phenology 13,14, and 
understanding these patterns is important for conservation planning, especially in the face of 
global climate change. Areas with warmer temperatures and greater spatial variability in 
temperature (i.e., due to topography) generally have higher species richness 15,57,58.  Seasonal 
variation in temperature influences the phenology of vegetation 59–61, and thus patterns of 
biodiversity that depends on vegetation 61–63. Spatial variability in greenness means that at fine 
spatial scales there is asynchrony in plant phenology and plant-dependent resources 17,61,64, which 
can increase species richness or facilitate persistence of individuals 64. Additionally, areas of 
high spatial variability in temperature or phenology may be more resilient to temporal variability, 
and buffer populations 64–66. Conversely, areas with stable phenology or short phenological 
periods are at a higher risk of phenological mismatch in a climatically extreme year 64,65,67. 

Given the importance of variability in temperature and phenology for biodiversity, I want 
to understand how spatial and temporal variability in temperature and phenology affect species 
distributions. First, I want to assess how risk and resilience influence distributions, and second, I 
want to understand which measures (temporal vs. spatial heterogeneity; temperature vs. 
phenology) have the strongest influence on distributions. I will use measures of spatial 
heterogeneity in temperature and phenology derived from Landsat-8 TIRS and EVI (2013-2018), 
and temporal heterogeneity in temperature and phenology derived from MODIS 8-day LST and 
16-day EVI (2001-2018) 68. These measures have already been derived for the U.S. 11 and 
Argentina 68, but the measures derived for Argentina have not been related to biodiversity. 
Temporal variability is measured as the coefficient of variation of the first day of the year in 
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spring when EVI or LST were >25% of the annual maximum, and spatial variability was 
captured by the standard deviation texture measure for EVI or LST respectively 68. 

To assess how species richness patterns respond to spatial and temporal variability in 
temperature and phenology, I will generate species distribution models in the same way as in 
Objective 1, but I will include the four measures of variability as environmental inputs instead of 
the DHIs, resulting in one ensemble model for each species. I will calculate variable importance 
to see how each measure might influence species distributions. I will identify trends in which 
types of birds (organized by foraging guild, migratory strategy, body size etc.) are best predicted 
by the measures of variability. For example, I predict that non-migratory species distributions are 
concentrated in areas with stable phenology, and migratory species distributions in areas with 
variable phenology and temperature. Similarly, I predict that aerial insectivores will be 
concentrated in areas with stable phenology and temperature. 

The results from Objective 2 will be a quantitative measure of how well a set of 
heterogeneity measures explains bird species distribution patterns in Argentina and will identify 
areas where biodiversity may be resilient to or at risk from changes in temperature or phenology. 
I plan to submit this work to Remote Sensing of Environment. 
 
Objective 3: Identify the relationships between primary productivity, human population 
size, and forest bird species richness patterns in Argentina. 
 Humans have modified the environment for millennia and continue to do so. Globally, 
1.9 million km2 of undisturbed land became highly modified between 2000 and 2013 alone 69. 
The effect of this modification on biodiversity is largely negative, especially at high levels of 
modification, but can also be beneficial at low or intermediate levels 70,71.  Disentangling how 
human disturbance is affecting biodiversity is difficult though, because human disturbance is far 
from a ‘random treatment.’ Historically, humans settled first in highly productive areas 18,19, and 
near sources of fresh water 72. Water availability also limits vegetation growth 73 and spatially 
structured gradients of environmental variation, such as annual precipitation, are strongly 
correlated with primary productivity, which is turn is a strong predictor of species richness 20. 
This means that human population density, agriculture, and species richness tend to be higher 
where primary productivity is high 21,74,75. Unfortunately, that coincidence can give a false 
impression that humans are beneficial for biodiversity, and it can result in conflict between 
development and conservation 21,22,70. On top of that, protected areas are more common where 
primary productivity is low, simply because there is less demand for land, and areas are less 
disturbed 76. Protected areas with high productivity and high species richness are smaller in size 
and surrounded by the highest human population densities 20,21. 

I will identify the relationships between primary productivity, human settlements, and 
bird species richness in Argentina. I will use the individual species distribution models from 
Objective 1 to quantify the relationship between a given species and cumulative DHI as a 
measure of productivity. Based on these models, I will calculate counterfactuals. I will run 
species distribution models for each species twice, once based on the actual cumulative DHI, 
once based on a counterfactual cumulative DHI value of zero. For each of the two models, I will 
predict species distributions, and then stack them to estimate species richness. If productivity is 
important for the distributions of many species, and hence for bird richness, then the difference 
in richness based on actual versus counterfactual cumulative DHI will be large. This will be a 
first indication of the relationship of productivity and richness, but there is the caveat that actual 
cumulative DHI values are affected by human settlements. To address this, I will model potential 
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natural cumulative DHI, based on climate, topography, soils and cumulative DHI values for 
natural areas make predictions for human-modified areas. Based on the potential natural 
cumulative DHIs, I will then run my species distribution models a third time, thereby quantifying 
how much human modification of areas with naturally high productivity has affected richness 
and identifying areas where human settlements and bird species richness respond strongly to 
primary productivity. These areas are likely under a greater threat of biodiversity loss compared 
to areas with lower human pressure because human development permanently alters the 
landscape and negatively affects biodiversity 78, highly productive areas are well suited for 
agriculture 21,75, and they are under even more pressure as populations shift away from rural, low 
human density areas to urban, high human density areas 79. 

The results of Objective 3 will be quantification of the relationship between primary 
productivity, human settlement patterns, and bird species richness in Argentina, and I will 
identify areas of high ‘risk’ (i.e., large human population and high biodiversity) and produce 
maps indicating these areas. This will help inform land use plans and biodiversity conservation 
efforts in Argentina. I plan to submit this work to Conservation Biology. 

 
Overall Significance 

Biodiversity conservation and land use plans are most effective when based on accurate 
assessments of biodiversity patterns. Using remotely sensed variables can greatly enhance 
biodiversity assessments and make them more accurate. By creating biodiversity assessments 
with higher spatial resolution data, I will create better datasets for regional planners because 1) 
coarse resolution data may mask important fine scale habitat features, and 2) resulting maps will 
be at a finer spatial resolution (10-30 m) than those generated from 1 km MODIS data. Another 
way I will improve biodiversity assessments is by using data on variation in temperature and 
phenology. This can help identify species or areas that are at risk or resilient to climate change. 
Finally, conservation actions may be ineffective if they don’t account for human development. 
Unfortunately, human development and high levels of biodiversity are often in the same places, 
i.e., where primary productivity is high. I will use remotely sensed measures of primary 
productivity, in combination with information about species richness, and human population 
density or human development to identify areas where there may be conflict between 
conservation and human development.  
Timeline of research 
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Derive DHIs 
Obj. 1                               

Analysis Obj. 1                               

Analysis Obj. 2                               
Data/SDMs 
Obj. 2                               

Analysis Obj. 3                               

Submission  
of paper                               
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