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Chapter 1: Introduction   

Knowing factors that drive population dynamics over a large spatial and temporal scale is 

important for the sustainable use of natural resources and conservation of biodiversity. 

Population size of mammals is influenced by the availability of food, habitat conditions and the 

impact of human disturbance. The availability of forage in time and space is reflected through 

the home range size and shape of an individual species (Herfindal et al., 2005; Nilsen et al., 

2005). A good indicators of the availability of forage and habitat for shelter are measures of 

vegetation productivity or the availability of biomass. Climate is influencing favorable habitat 

conditions for the species to live. For example, the degree to which animals are adapted to severe 

winter condition is a factor limiting their northern distributions (Formozov, 2010; Williams et al., 

2015). Even though Russia has vast territories with no human influence, human disturbance 

through development, habitat degradation or poaching needs to be considered while evaluation 

factors influencing population dynamics. 

Remote sensing provides a set of tools that are able to estimate ecosystem functions over 

wide areas such as vegetation or primary productivity, information characterizing snow cover 

and pattern of freeze and thaw, and human disturbance (Coops et al., 2008; Kerr and Ostrovsky, 

2003; Turner, 2014; Turner et al., 2003). Here we captured both food availability and winter 

conditions with newly developed remote sensing indices. We analyzed the Dynamic Habitat 

Indices (DHIs) as a proxy of availability of energy, environmental stress and environmental 

stability (Radeloff et al., n.d.). The DHIs were calculated from MODIS products of vegetation 

productivity including NDVI, EVI, fPAR, LAI, GPP with a spatial resolution of 1 km for the 

period of 2003-2014 (Hobi et al., 2017). The DHIs consist of three components: (1) overall, 

cumulative productivity over the course of the year (sites with high cumulative component have 
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more available food); (2) minimum productivity throughout the year (sites with high minimum 

productivity are more biodiverse); and (3) the coefficient of variation (CV) in productivity over 

the course of the year (sites with high CV values represent high seasonality) (Hobi et al., 2017). 

To capture winter conditions, we analyzed a new global dataset characterizing winter related 

variables including the duration of frozen ground with and without snow cover, and the timing 

(start date, length, and end date) of the frozen season with a 500 m spatial resolution for the 

period of 2000-2012 (Zhu et al., 2017). To capture human influence on wildlife, we analyzed 

human footprint index with a 1-km spatial resolution (Sanderson et al., 2002). 

The DHIs have been successfully used to explain patterns of bird species richness in 

Canada, United States, and Thailand (Coops et al., 2009a, 2009b; Hobi et al., 2017; Suttidate, 

2016), the butterfly richness in Canada (Andrew et al., 2012), and the DHIs were even tested as 

predictors for moose occurrence and abundance in Canada (Michaud et al., 2014). However, the 

DHIs have not been evaluated in Russia, and it is not clear if the DHIs can be used in models for 

explaining animal abundance for species with a variety of life history traits. Indices 

characterizing winter conditions have not previously been used in models of animal abundance, 

to my knowledge. 

  The overall goal of this work was to evaluate the utility of remotely sensed indices 

including the Dynamic Habitat Indices and winter-related indices for explaining animal 

density of species varying in life history, within Russian territory.  

The main objective of the second chapter was to explain moose abundance using the 

Dynamic Habitat Indices in combination with environmental variables in Russia. More 

specifically, two main goals were: (1) to evaluate how much variation in moose density can be 
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explained by the DHIs in combination with other environmental variables and (2) to understand 

the impact of collapse of Soviet Union in 1991 on the development of the moose population size.   

We used multiple linear regression, in which the dependent variable was log-transformed 

moose density, and the explanatory variables included the three components of the DHIs, human 

footprint, road density, elevation, temperature, precipitation, and rural human population. We 

used best subset regression to find the “good” models. Each model was tested by variance 

inflation factor (VIF) to detect multicollinearity. To assess the importance of each variable 

included in the model, we used hierarchical partitioning. For the second part of our analysis, we 

analyzed moose density during the three separate time periods, namely 1981 – 1990, 1991 – 

2000, and 2001 – 2010. We run an additional sum of squares test to evaluate if there are 

significant differences between the three time periods.  

Our results showed that the individual components of the DHIs along had low 

explanatory power. Models with a combination of the DHIs and the environmental variables 

such as temperature and precipitation explained up to 79% of variation in moose density. While 

evaluating the three periods separately we found a decrease in the explanatory power of the 

models through time, indicating an influence of other factors not included in our model. In 

summary, our results showed that combination of using remote sensing data including land cover 

classification, the DHIs with environmental variables is a promising approach for explaining 

animal abundance over vast territories.  

In the third chapter, we extended our analysis to eight species with different life history 

characteristics, and explored the utility of using two sets of remote sensing indices (Dynamic 

Habitat Indices and the winter related variables) in explaining animal density. Our eight species 
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represented animals at different trophic levels and included omnivores, herbivores, carnivores: 

brown bear (Ursus arctos), wild boar (Suc scrofa), European hare (Lepus europaeus), moose 

(Alces alces), roe deer (Capreolus pygargus Pallas, Capreolus capreolus Linnaeus), lynx (Felis 

lynx), red fox (Vulpes vulpes), and wolf (Canis lupus). We analyzed population trends of the 

mammal species and tested if these trends are significant. In order to do that, for each species in 

turn we summed up the result of winter track count (population totals) for all regions for a given 

year, and fitted a linear regression of the population totals as a function of time from 1981 to 

2010. We found that brown bear, roe deer, wild boar and wolf population trends significantly 

increased while European hare, lynx, and moose significantly decreased, and red fox increased 

but not significantly.  

To relate species population densities to our predictor variables, we applied multivariable 

linear regression and made a selection of the variables using best subset selection. Our dependent 

variable for each species was population density, which we calculated by dividing regional 

population totals by the area of suitable habitat in each region, as defined independently for each 

species. Our explanatory variables were the Dynamic Habitat Indices, road density, human 

footprint, elevation, temperature, precipitation, duration with snow-free frozen ground, duration 

of snow-covered ground, the timing and the length of the frozen season and of snow cover. We 

found that both the DHIs and the winter-related variables contributed greatly to our multivariate 

models and provided complementary information to climate and human disturbance related 

variables. Together, our suite of variables explained the variation in species density well, with 

R2
adj ranging from 0.61 to 0.94. Which subset of predictors was most useful in explaining species 

density was greatly dependent on the focus species. In general, the pattern of animal density was 

found to be similar to the pattern of primary productivity, indicating how plant productivity is 
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shaping animal density at multiple trophic levels. Our results also highlight the high importance 

of variables related to human disturbance for carnivores and herbivores for explaining their 

declining trends. 

Significance 

The main results of this work add deeper understanding of utility of remote sensing 

indices for explaining animal abundance over vast territories of Russia. This master work 

contributes greatly in management and conservation science of wildlife, and has direct 

management applications. For example, we suggested that wildlife officials may want to 

consider reducing hunting quotas in years following harsh winter and low plant productivity, to 

increase anti-poaching activity in regions with low animal density and perhaps to provide 

supplementary feeding during winter for regions with limited food resources. Our research 

highlights the requirement of establishing a monitoring program for lynx for deeper 

understanding of the decline of the lynx population. 

In summary, we suggest that using remote sensing indices including the DHIs and winter-

related variables can be an effective tool for explaining animal density for wildlife species from 

different trophic levels. In this study we showed that a combination of remote sensing indices 

and land cover together with climate and human-related variables has high explanatory power. 

The DHIs provided valuable information about primary productivity while winter-related 

variables provide important information about the effect of winter on species survival. Moreover, 

both remote sensing datasets are available globally free of charge.  
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Abstract 

Knowing factors that drive wildlife population dynamics over broad spatial and temporal 

scales is important for their conservation. Ecosystem productivity is an important factor to 

determine habitat suitability, especially for large mammals. In this study we use the Dynamic 

Habitat Indices (DHIs) which are remote sensing based measures of vegetation productivity and 

available globally. The DHIs summarize three measures of vegetation productivity: cumulative 

productivity (DHI Cum), minimum productivity (DHI Min), and seasonality (DHI Var). We 

evaluated the utility of the DHIs to explain the spatial distribution of moose (Alces alces) 

abundance in Russia using multiple regression. Our two main goals are: (1) to test how well the 

DHIs, together with other environmental variables, explain variation in moose abundance and (2) 

to understand the impact of political upheaval on the moose population over three specific time 

periods. Overall we found that the individual components of the DHIs had low predictive power, 

suggesting that moose populations were mainly driven by other factors. However, in 

combination with environment variables, the DHIs could explain up to 79% of variation in 

moose abundance. Predictive power of our model for the three periods decreased through time. 

We assume other factors influenced moose abundance, for example, increased poaching. Overall, 

combining the DHIs with climate data may be a promising approach for explaining moose 

abundance. 

Keywords 

Moose abundance, game mammals, dynamic habitat indices, winter track count, Russia. 
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Introduction 

Human activity causes significant changes in ecosystems and leads to climate change, 

accelerates biodiversity loss (Butchart et al., 2010; Rockström et al., 2009; Turner, 2014) and 

forest degradation (Hansen et al., 2014). How biodiversity responds and adapts to new 

environmental conditions is an important question for management and conservation. It is crucial 

to understand the species ecology and what the main driver for the current pattern of biodiversity 

is. Remote sensing is a very effective tool for this assessment, because data are collected 

systematically at broad scales and for long time periods (Turner et al., 2003). Habitat and land 

cover maps based on remotely sensed data provide valuable information about the condition of 

an ecosystem and can explain species distribution over vast territories (Kerr and Ostrovsky, 

2003; Nagendra, 2001; Turner et al., 2003). 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument aboard 

NASA’s Terra and Aqua satellites developed to monitor the condition of the Earth, understand 

global dynamics, and predict future changes. MODIS data are collected daily in 36 high spectral 

resolution bands with spatial resolutions of 250 m, 500 m, and 1000 m (Savtchenko et al., 2004). 

MODIS data products including land cover and Fraction of absorbed Photosynthetically Active 

Radiation (FPAR) are available since 2003, providing a unique opportunity to design relevant, 

meaningful indices for biodiversity studies. We explored Dynamic Habitat Indices (DHI) which 

summarize three important measures of vegetative productivity: cumulative productivity (DHI 

Cum), minimum productivity (DHI Min), and seasonality (DHI Var) based on MODIS FPAR 

product with 8-day temporal and 1 km spatial resolution.  

The species-energy hypothesis predicts a relationship between energy availability and the 

number of species, and hypothesizes that areas with high productivity are able to support a 
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greater number of species (Gaston, 2000; Hawkins et al., 2003a, 2003b; Wright, 1983). 

Furthermore, the DHIs were successfully used to support this theory, and were tested as a 

predictor of bird species richness in Canada and US (Coops et al., 2009a, 2009b; Hobi et al., 

2017) and in Thailand (Suttidate, 2016). While the species-energy hypothesis predicts responses 

in species richness, energy, as represented by DHIs, may also be useful in predicting abundance 

within a given species. This is suggested by the fact that in areas with higher vegetation 

productivity, animal home ranges are smaller (Bjørneraas et al., 2012; Herfindal et al., 2005), 

and reproductive and survival rates are higher (Massei et al., 1996). In fact, the prediction of 

animals’ abundance is a complex problem because it involves many factors, variously, 

availability of forage in space and time, necessary climate conditions for survival and animal 

growth, predation, harvest. 

Wildlife abundance data collected in Russia provides an ideal opportunity to explore the 

relationship between species-abundance and vegetative productivity given the broad spatial and 

temporal coverage of wildlife surveys and the large variability in climate and consequent 

vegetative productivity. Russia has collected data of game species for a long period of time using 

the winter track count method (WTC) (Lomanov, 2000; Stephens et al., 2006), aerial surveys, 

and surveys of local hunters (Lomanov et al., 1996). Data for moose (Alces alces) abundance for 

the whole territory of Russia are available from 1981 to 2010. During these years Russia 

underwent radical political and economic changes as it moved from government centralization to 

an open market economy. Lax government control and a decline in the economy after the 

collapse of the Soviet Union in 1991 affected human livelihoods and increased poverty (United 

Nations Statistics Division, 2016), and resulted in agricultural land abandonment (Prishchepov et 

al., 2012) and a decline in forest cover (Baumann et al., 2012). The economic downturn also 
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affected the wildlife population primarily due to overexploitation of natural resources, as people 

relied more heavily on wildlife for food (Bragina et al., 2015; Wittemyer, 2011).  

We analyzed population trends for moose from 1981 to 2010 over the Russian territory. 

During this period, the moose population experienced dramatic changes after the collapse of 

socialism (Figure 1). We hypothesized that if we divide the whole study period into three 

decades, our model would provide different results for each of the three periods. The first period 

is before the collapse from 1981 to 1990; the second period, from 1991 to 2000, includes the 

transition from a government based to an open market economy and the third period is after the 

collapse from 2001 to 2010. 

The main goal of this study was to evaluate the utility of the Dynamic Habitat Indices 

(DHI) to explain moose abundance for the Russian territory. We expected a higher moose 

abundance in regions with high vegetation productivity (DHI Cum), high minimum productivity 

(DHI Min), and relatively low variation in productivity over the course of a year (DHI Var).  

Specifically, we were interested (1) to know which of the DHI components are most relevant for 

predicting moose abundance and (2) to understand the impact of the political upheaval on the 

moose population.  

Methods 

Study area 

The study area covers most of the territory of Russia and includes 69 administrative 

regions (13.64 million km2). Some regions of Russia have changed their borders and were split 

during the study period of 1981-2010. In our analysis we consider 62 regions with their original 

borders before splitting. This vast area is ideal to test DHI predictions because it covers multiple 
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landscape zones, and includes a diversity of topographic and vegetation types, resulting in 

substantial diversity of habitats and DHI value. The topography of Russia can be divided into 

two parts: the East European Plain, which is mainly a plain with hills located in the west, and the 

West Siberian Plain-Central Siberian Plateau where mountains and large, well-draining plains 

span the east of the country. The dominant climate of both parts is continental with two main 

seasons, winter and summer, and two short transitional seasons, spring and fall. The average 

annual temperature is -5.5°C, the coldest month is January (the range of mean temperature from -

38.6 °C in Yakutsk to -6.3°C in Volgograd), and the warmest month is July (the range of mean 

temperature from 19.5 °C in Yakutsk to 23.6 °C in Volgograd). The area includes tundra, taiga 

(boreal forest), temperate broadleaf forest, and steppe. The vegetation of tundra is composed of 

polar willow (Salix polaris), Betula nana, lichens, mosses, and shrubs. The dominant species of 

boreal forest are Scots pine (Pinus sylvestris L.), Siberian fir (Abies sibirica), spruce (Picea 

obovata), Siberian pine (Pinus sibirica), and larch (Larix decidua). The temperate broadleaf 

forest is dominated by European beech (Fagus sylvatica L.), oak (Quercus robur), ash (Fraxinus 

excelsior), maple (Acer platanoides), and Silver birch (Betula pendula) (Alehin, 1951). 

 Winter track count data, and range map  

Moose abundance data were provided by the database of the Russian Federal Agency of 

Game Animals for 1981-2010 using the winter track count (WTC) (Lomanov, 2000) for 62 

regions of Russia (Borisov et al., 1992; Gubar et al., 2007; Lomanov et al., 2004, 2000, 1996; 

Lomanova et al., 2011). The WTC involves counting tracks on the snow that intersect fixed 

transects and measuring daily travel distance of surveyed species (Kuzyakin, 1983). WTCs were 

first proposed in 1934 by A.N. Formozov, who showed how the occurrence of tracks on snow, 

length of travel distance, and population density were related (Kuzyakin, 1983). Later on his 
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formula was refined and verified by several other techniques (Chelintsev, 2000; Lomanov, 2000; 

Stephens et al., 2006). The WTC was increasingly applied in parts of Russia from 1964, and 

from 1981 the WTC method became the main method for monitoring game animals (14-33 

species depending on the year) in all territories of Russia, including the Asian part of Russia. 

Approximately 30,500 transects were monitored in 1981 and the length of an individual transect 

ranged from 8 to 12 km (Kuzyakin, 1983). The monitoring results were used to obtain seasonal 

hunting quotas. The WTC method was only applied in regions with stable snow cover. 

Moose is the most valuable game species living in almost all territories of Russia, except 

for arctic tundra and semi-desert (Figure 1). Several methods have been applied to estimate 

moose abundance including aerial surveys and surveys of local hunters. For this reason, the 

moose data are considered more reliable compared to other species surveyed (Lomanov et al., 

1996). In some regions or parts of regions, e.g. Amur Oblast, data were collected by aerial 

survey (Lomanov et al., 1996). We used the map for the moose range from the game animal’s 

analytical materials (Lomanov et al., 1996). 

In the first part of our analysis, we calculated the average moose density over the whole 

study period. For the second part, we divided the study period into three decades: 1981-1990, 

1991-2000, and 2001-2010, and calculated the average moose density for each time period. In 

our analysis we included all regions even though we did not have data for the year 1996 and 

there were 25 missing values in individual years throughout the whole study period.  

Dynamic Habitat Indices and land cover  

We calculated the Dynamic Habitat Indices (DHIs) based on the Fraction of Absorbed 

Photosynthetically Active Radiation (FPAR) collected by the Moderate Resolution Imaging 
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Spectroradiometer (MODIS) instrument aboard the Terra and Aqua satellite with 1-km spatial 

resolution and 8-day temporal resolution from 2003-2014. The DHIs contain three measures of 

vegetation productivity: annual cumulative productivity (DHI Cum), annual minimum 

productivity (DHI Min), and seasonality (DHI Var). We calculated DHI Cum by summing FPAR 

values over a year; DHI Min is the lowest FPAR value during a year and DHI Var is the 

coefficient of variation (standard deviation divided by mean) (Figure 2). For all analyses we used 

the composite product which is based on the median FPAR values between 2003 and 2014 (Hobi 

et al., 2017). 

We used the MODIS International Geosphere-Biosphere Programme Classification 

(IGBP) product which includes 17 land cover classes with 500 m spatial resolution to produce a 

stable land cover data set for 2003-2012 (Friedl et al., 2010). For the stable land cover product, 

we separated each pixel of the MODIS land cover into binary masks for every year, then for 

every land cover class we summed up the values. We applied a majority threshold of 50%, which 

only allows changes in the land cover class for half of the considered time period. Based on this 

stable land cover data we defined regions that correspond to suitable habitat for moose. It 

includes the following classes: 1-evergreen needle leaf forest, 2-evergreen broadleaf forest, 3-

deciduous needle leaf forest, 4-deciduous broadleaf forest, 5-mixed forest, 7-open shrub lands, 8-

woody savannas, and 11-permanent wetland (Figure 1a) (Danilkin, 1999; Timmermann and 

McNicol, 1988). Accordingly, the total area of suitable habitat within the moose range map was 

10.6 million km2. We projected our data to an Albers equal area conic projection (Datum D 

European 1950), to calculate the suitable habitat area for each individual region.  
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Environmental variables and elevation 

We obtained nineteen BIOCLIM variables (Hijmans et al., 2005) (Table 1) and elevation 

data with 1 km resolution from WorldClim (http://worldclim.com). Our data set therefore 

included 11 variables characterizing temperature and 8 variables for precipitation. The elevation 

data used in the WorldClim project is based on the Shuttle Radar Topography Mission (SRTM). 

We calculated mean values for all variables within suitable moose habitat for the 62 regions in 

our study. 

Human footprint 

Human footprint index (HFI) data were downloaded from 

http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic  with 1-km 

resolution. The HFI was created from nine data layers including human population pressure 

(population density), human land use and infrastructure (built-up areas, nighttime lights, land 

use/land cover), and human access (coastlines, roads, railroads, navigable rivers) (Sanderson et 

al., 2002).  

Road density 

We obtained road data for the Russian Federation from DIVA-GIS (http://www.diva-

gis.org). The data were projected onto an Albers equal area conic projection to calculate the 

length of roads. Then the length of roads was normalized by area of the regions to obtain road 

density. 

Rural human population 

Rural human population data were provided by Russian Federal service of state statistics 

for 1991-2010. Rural populations include all those situated outside of cities and towns as 

http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic
http://www.diva-gis.org/
http://www.diva-gis.org/
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approved by legislative acts.  It is an estimation of the population based on results of a periodic 

population census by adding the number of newborns and subtracting the number of deaths 

within each territory (Rosstat, 2010). We divided the rural population data into two time periods: 

1991-2000 and 2001-2010, and then we calculated the average over each time period. 

Statistical analysis  

Variation in moose abundance (1981 – 2010) 

For the statistical analysis of WTC data, we used a multiple linear regression approach 

and selected the “best” model based on a set of criteria. The response variable was log-

transformed moose density, which was estimated by dividing the results of the WTC with 

suitable moose habitat (Figure 1b). Moose density was log-transformed to normalize the data and 

based on residual plots there was no evidence of outliers. The explanatory variables in the 

multiple regression included the DHIs, the BIOCLIM variables (11 temperature variables, 9 

precipitation variables), elevation, road density, HFI and rural population. We calculated 

correlation coefficients for all explanatory variables to check for multicollinearity and we ran a 

hierarchical cluster analysis for environmental variables using squared Spearman correlation to 

determine their similarity (Supplementary Material Figure S1). We used best subset regression to 

find the “good” models, based on the different criteria. The best subset approach fits all possible 

models and identifies the best model from the list (Draper and Smith, 1998). The Bayesian 

Information Criteria (BIC) was used for model selection of competing models (Burnham and 

Anderson, 2002) and the adjusted coefficient of determination (R2
adj) to estimate how much of 

the variation in the response variable is explained by the model. After selecting several “good” 

models, multicollinearity was assessed by examining the variance inflation factor (VIF) for each 

variable, applying a threshold of VIF <10 (Dormann et al., 2013). We measured spatial 
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autocorrelation with semivariograms and we used the hierarchical partitioning approach to assess 

the importance of each variable included in the model (Chevan and Sutherland, 1991; MacNally, 

1996). 

Variation in moose abundance by time period 

For the second part of our analysis, we analyzed moose density during the three separate 

time periods, namely 1981 – 1990, 1991 – 2000 and 2001 – 2010. Our aim was to determine 

whether the relationship between moose density and the explanatory variables differed among 

the three periods. We selected the most parsimonious model from the first part of the analysis 

and refit the model for each time period. We compared the intercepts and slopes across the time 

periods using an additional sum of squares test. In addition, for the second and the third periods, 

we fitted an additional model that included rural population to determine whether changes in 

rural populations over time affected moose density. 

We performed our analysis in R version 3.3.1 (R Core Team, 2016). We used the 

following R packages: Hmisc (Harrell and Dupon, 2016) to run cluster analysis, leaps (Lumley, 

2009) to perform best model selection, geoR (Ribeiro and Diggle, 2016) for semivariograms, and 

hier.part (Walsh, C., Mac Nally, 2013) for hierarchical partitioning. 

Results 

Moose population dynamics 

Moose populations experienced large changes during the study period. From 1981 to 

1991 the moose population fluctuates with an overall growth trend, and reaches a maximum at 

the end of this period with 900,000 individuals over the Russian territory. After the collapse of 

the Soviet Union in 1991, the moose population rapidly declines and reaches a minimum in 2002 
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with 520,000 individuals, signalizing a decline of 42%. To illustrate this decline, we created a 

map showing the percent of decline in each regions from 1981 to 2010. In some regions the 

moose population decline is up to 98% during the whole study period (Figure 1d). After reaching 

the minimum in 2002, the moose population increased and in 2010 it numbered 645,000 

individuals. 

Based on MODIS stable land cover information we created a map with suitable habitat 

for moose, where the total area within the range map was 10.6 million km2 (Figure 1a). In some 

regions, for example, Volgograd and Orenburg, there is hardly any forest, and we identified only 

small areas with suitable habitat based on the eight selected land cover classes. That is why the 

moose density in these regions is extraordinary high. However, both regions are located on large 

rivers and moose can live in the floodplain. In general, moose density is higher in the European 

part of Russia then in the Asian part. 

 DHI and moose density 

The DHIs capture the pattern of vegetation productivity over the Russian territory; values 

for DHI Cum were highest for areas with mixed and deciduous needle leaf forests. DHI Min had 

low values in the northern and northeastern parts of Russia, which are areas that are mainly 

covered by snow, and high values in the southeast of the Asian part of Russia (south of Far East) 

and the south of Russia (Caucasus region) characterized by a mild climate. In contrast to DHI 

Cum, DHI Var showed high values for the north, north-east of Russia, for areas covered by shrub 

lands, woody savannas, and deciduous needle leaf forests (Figure 2). 

  Our first step in exploring the DHIs was an evaluation of each component separately in 

order to see how much of the variation in moose density was explained. DHI Cum had a positive 



21 

 

 

 

correlation with moose density (R2
adj =0.23, P<0.01). As we expected, DHI Var showed the 

opposite trend, and moose density decreased for areas with high DHI Var (R2
adj =0.23, P<0.01). 

DHI Cum and DHI Var showed very similar results in explaining variability for moose density, 

but DHI Min did not have a notable trend (R2
adj =-0.02, P=0.8) (Figure 3).  

DHI Cum, DHI Var, human footprint, road density, and some BIOCLIM variables were 

included in the “best” models. We selected the top three performing models and two of them 

included the DHIs (Table 2). In order to determine the relationship between moose density and 

each variable, we fitted univariate models with these variables. The R2
adj varied from 0.23-0.68 

for positively correlated variables and from 0.27-0.3 for negatively correlated variables (Figure 

4). We found a positive correlation between human footprint and moose density. Due to some 

interaction between human footprint and road density in the multivariate model, road density was 

selected only in combination with human footprint. However, we did not consider those models 

due to high correlation between human footprint and road density showing a Pearson correlation 

coefficient r=0.95. When we included road density without human footprint in the models, road 

density was not significant.  

The “best” model based on BIC included cumulative productivity (DHI Cum), annual 

mean temperature (BIO1), temperature annual range (BIO7), and human footprint (Table 2), 

however, the VIF of BIO7 was 16 due to high collinearity between BIO1 and human footprint 

(r=0.89), and between BIO1 and BIO7 (r=-0.85). Therefore, the “best” models excluded those 

with high collinearity and BIOCLIM variables that were clustered (Supplementary materials S1). 

The most parsimonious model included cumulative productivity (DHI Cum), annual mean 

temperature (BIO1), and temperature seasonality (BIO4). The next “best” model included only 

two explanatory variables: BIO5 and BIO9. To evaluate other components of the DHIs, we used 
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this model and fitted the models with DHI Min and DHI Var instead of DHI Cum. DHI Cum in 

combination with other variables performed better than DHI Var and DHI Min, as measured by 

BIC, but the R2
adj was similar between all three models (Table 2).  The variation in the most 

important explanatory variables over the Russian territories can be viewed in Figure 4.  

Difference between the three periods 

The most parsimonious model used to evaluate moose densities from the three time 

periods included the variables cumulative productivity (DHI Cum), annual mean temperature 

(BIO1), and temperature seasonality (BIO4). Moose density increased with increasing values of 

DHI Cum and BIO1, while it decreased for increasing values for BIO4 (Figure 3). The slopes of 

the regression lines for the univariate models of the three periods are only slightly different based 

on the scatter plots (Figure 5). However, we found that the lines of the multivariate models are 

significantly different between the first and the third period (P=0.005), and between the second 

and the third period (P=0.013); however, there is no difference between the first and the second 

period (P=0.89). The correlation between moose density and DHI Cum, BIO1, and BIO4 was 

stronger (R2
adj =0.81) for the first period compared with the second period (R2

adj =0.73) and third 

period (R2
adj =0.67) (Table 3). Rural population was not significant in the models based on these 

three time periods. 

Discussion 

In this study, we evaluated the utility of the DHIs as predictors for moose abundance in 

Russia. Our results show that models with the individual DHIs had low predictive power. 

However, models combining the DHIs and environmental variables with or without an 

anthropogenic predictor (e.g., human footprint) were able to explain up to 79% of variation in 

moose density. The relationship between the moose density and the DHIs and environmental 



23 

 

 

 

variables changed significantly over the three study periods, suggesting the impact of human 

activities on moose density. The predictive power of our model based on R2
adj was highest for the 

first time period and lowest for the third time period, suggesting the decline in moose density 

depends on factors unaccounted for in the model (e.g., poaching). Our results when using only 

the DHIs are similar to Michaud et al (2014), a study based in Canada that uses different data 

sources for moose abundance, but nonetheless indicating that moose abundance is driven by a 

more complex combination of environmental factors (Michaud et al., 2014). 

Variation in moose density was best explained by vegetative productivity and 

temperature-related variables, and for example these explained 81% of variation in moose 

densities during the time period 1981 – 1990. Previous studies of ungulates have also shown that 

abundance of roe deer (Capreolus capreolus) and wild boar (Sus scrofa) were positively 

correlated with vegetative productivity (Melis et al., 2009, 2006). Reproductive performance of 

moose is also positively related to vegetative productivity, with higher twinning rates by females 

with good body condition (Allen et al., 2017; Testa and Adams, 1998), thus providing support to 

our findings. Interestingly, Michaud et al. (2014) found that the minimum levels of productivity 

(DHI Min) during winter were more important for explaining abundance of moose. DHI Min 

may indicate levels of forage availability during winter, an important determinant of moose 

space uses during the lean winter months (van Beest et al., 2010), and forage availability during 

winter may also have carryover effects to calf survival the following spring thus affecting 

population recruitment (Allen et al., 2017; Milner et al., 2013). In our analyses, DHI Min tended 

to perform poorly and explained very little variation in moose density. An explanation may be 

due to missing values arising from periods of darkness or snow cover in the northern parts of our 
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study region, with a number of steps and data checking required to identify the last correct 

minimum reading of FPAR (Beck et al., 2006; Bischof et al., 2012; Hird and McDermid, 2009). 

We hypothesized that increasing human presence would have a negative effect on moose 

density. We did not find a strong relationship between moose density and road density or rural 

populations, however, the human footprint index was positively correlated with moose density. 

Although human effects on biodiversity may often be negative, for example how ungulates may 

alter their activity patterns in response to human disturbance (Ciuti et al., 2012; Ensing et al., 

2014), improved hunter access (Brown, 2011) and the barrier effects that human developments 

cause (Bartzke et al., 2015), human presence may also positively influence wildlife populations. 

Predators often avoid human-dominated areas thus providing a safe-haven for prey species 

(Hebblewhite and Merrill, 2009), humans may increase forage availability through fertilizers and 

thus increase vegetative productivity (Polis, 1999) and logging practices by forestry may open up 

habitats and thus improve habitat suitability for moose (Lavsund et al., 2003), which may 

contribute to the positive correlation between moose density and the HFI in our results. Human 

effects on the environment are an important consideration given how the bottom-up and top-

down effects in the food web become less certain with increasing human densities (Muhly et al., 

2013). An important consideration is that human population density is often positively correlated 

with vegetative productivity, as shown by Evans and Gaston (2005), and we also found that 

human footprint had a positive relationship with DHI Cum and DHI Min, and a negative 

relationship with DHI Var. 

In addition, rapid changes in political and economic activity lead to changes in land use 

and forest cover. Immediately after the collapse of socialism, agricultural abandonment was 

common across the country and widespread in the European part of Russia (Prishchepov et al., 
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2013). As a consequence, forested area increased (Baumann et al., 2012), and potentially 

expanded the habitat area for wildlife. However, the moose population experienced high hunting 

pressure immediately after 1991, because of government instability and a lack of wildlife 

protection, resulting in poor people overharvesting natural resources (Bragina et al., 2015; 

Danilkin, 2008; Wittemyer, 2011). In the second part of our analysis, we found that the 

predictive power of our model decreased through time, suggesting that vegetation productivity 

was more important in the first period, while human pressure was more important in the second 

and third periods. We conclude that moose density depends on vegetation productivity and 

suitable climatic conditions; however, human pressure has the most significant role in moose 

population dynamics. 

However, there are limitations of WTC data. Aggregated WTC data were processed by 

the Russian Federal Agency of Game Species in Moscow, Russia.  We are aware of data errors 

due to human errors made at different stages of collection, processing, and reporting of WTC 

data. Moreover, data were collected over a very long period of time including a politically 

unstable period. We expect that the WTC data quality had decreased after the collapse of the 

Soviet Union.  

In summary, the Dynamic Habitat Indices provided valuable information about 

productivity of ecosystems and are very suitable for biodiversity studies. In this study, we 

calculated the DHIs based on the MODIS FPAR and showed that the combination of remote 

sensing based products incorporated in the DHIs and land cover together with climate variables 

are very promising for the prediction of animal abundance. 
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Table 1: Environmental variables from WorldClim. 

Variables Description  

BIO1 annual mean temperature (oC*10),   

BIO2 mean diurnal range (mean of monthly(max-min) (oC*10)) 

BIO3 isothermally (mean diurnal range/ temperature annual range) 

BIO4 temperature seasonality (standard deviation*100) 

BIO5 maximum temperature of the warmest month (oC*10) 

BIO6 minimum temperature of the coldest month (oC*10) 

BIO7 temperature annual range (maximum temperature of warmest month minimum 

temperature of coldest month (oC*10)) 

BIO8 mean temperature of wettest quarter (oC*10) 

BIO9 mean temperature of driest quarter (oC*10) 

BIO10 mean temperature of warmest quarter (oC*10) 

BIO11 mean temperature of coldest quarter (oC*10), 

BIO12 annual precipitation (mm)  

BIO13 precipitation of wettest month (mm)   

BIO14 precipitation of driest months (mm) 

BIO15 precipitation seasonality (coefficient of variation) 

BIO16 precipitation of wettest quarter (mm) 

BIO17 precipitation of driest quarter (mm),  

BIO18 precipitation of warmest quarter (mm) 

BIO19 precipitation of coldest quarter (mm) 
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Table 2: Bayesian Information Criteria (BIC), adjusted coefficient of determination (R2
adj), and 

the root mean square error (RMSE) for top performing models with the DHIs covering the whole 

time period 1981-2010. 

Model BIC ∆BIC  R2
adj RMSE 

[ind./km2] 

DHI Cum+ BIO1+BIO7+ human footprint  23.59 0 0.79 0.24 

DHI Cum+ BIO1+BIO4 24.97 1.38 0.77 0.25 

BIO5+BIO9 33.18 9.59 0.73 0.28 

DHI Var+ BIO1+BIO4 33.21 9.62 0.74 0.27 

DHI Min+ BIO1+BIO4 36.23 12.64 0.73 0.27 
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Table 3: Bayesian Information Criteria (BIC), adjusted coefficient of determination (R2
adj), and 

the root mean square error (RMSE) for the three time periods. 

Period (years) Model BIC  R2
adj RMSE 

[ind./km2] 

First (1981-1990) DHI Cum+ BIO1+BIO4  23.49 0.81 0.25 

Second (1991-2000) DHI Cum+ BIO1+BIO4 35.05 0.73 0.27 

Third (2001-2010) DHI Cum+ BIO1+BIO4 42.25 0.67 0.29 
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d) 

 

Figure 1: a) Suitable habitat for moose based on MODIS stable land cover data from 2003 to 

2012, moose range map are shown in red, b) moose density (individuals per 1 km2) based on 

suitable habitat within the moose range area, c) the trend of moose population for Russia from 

1981 to 2010, d) the decline of moose population over Russia. 
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Figure 2: The Dynamic habitat indices based on FPAR with 8-day temporal resolution: a) 

Cumulative Productivity - DHI Cum, b) Minimum productivity - DHI Min, c) Seasonality - DHI 

Var and d) The three DHIs, cumulative productivity, minimum productivity, and seasonality, 

displayed in Green, Blue, Red. The boundaries of regions of Russia are shown in black. Areas 

with white color are no data. 
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Figure 3: Relationship between log-transformed moose density (individuals per 1 km2) from 

1981 to 2010 and cumulative productivity (DHI Cum), minimum productivity (DHI Min), 

seasonality (DHI Var), annual mean temperature (BIO1), temperature seasonality (BIO4), 

maximum temperature of warmest month (BIO5), temperature annual range (BIO7), human 

footprint, and road density.  
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Figure 4: Most important explanatory variables for moose density: a) annual mean temperature 

(BIO1), b) temperature seasonality (BIO4), c) maximum temperature of warmest month (BIO5), 

d) temperature annual range (BIO7), e) human footprint, f) roads are shown in white.  
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Figure 5: Relation between log-transformed moose density (individuals per 1 km2) for the three 

periods and cumulative productivity (DHI Cum), annual mean temperature (BIO1), temperature 

seasonality (BIO4). 
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Supplementary materials 

 

Figure S1: A hierarchical cluster analysis for the environmental variables from WorldClim using 

the squared Spearman’s rank correlation coefficient.  

 

 

 

  



48 

 

 

 

Chapter 3:  Difference in the relationships of the abundances of eight mammal species with 

remotely sensed indices in Russia  

Abstract 

The density of wildlife populations can vary greatly in space, mainly due to differences in 

both environmental conditions and human activities. Our main goal here was to examine the 

relationship of densities of eight large mammal species with different remotely sensed indices. 

We analyzed average densities, and population trends across Russia from 1981 to 2010 based on 

Winter Track Count censuses. Our eight species represented different trophic levels and included 

omnivores, herbivores, carnivores: brown bear (Ursus arctos), wild boar (Suc scrofa), European 

hare (Lepus europaeus), moose (Alces alces), roe deer (Capreolus pygargus Pallas, Capreolus 

capreolus Linnaeus), lynx (Felis lynx), red fox (Vulpes vulpes), and wolf (Canis lupus). 

Populations of brown bear, roe deer, wild boar, and wolf significantly increased, while 

populations of European hare, lynx, and moose significantly decreased within the studied time 

period. To determine the main factors shaping density patterns in Russia we used multiple linear 

regression and best subset model selection. We included as predictor variables the Dynamic 

Habitat Indices (DHIs), which capture food availability; the duration of snow-free and snow-

covered ground, and the timing of the frozen season as a proxy for winter severity; elevation and 

BIOCLIM to reflect climate; and human footprint, and road density as proxies for human 

disturbance.  For all species, model fit was high (R2
adj ranged from 0.61 to 0.94), however which 

variables were selected for the top models varied greatly among the species. To our surprise we 

found that the DHIs were selected in the top models not only for herbivores and omnivores, but 

also for all carnivores, with the exception of lynx. Winter-related variables were included in the 

models for all species, except lynx. In general, the pattern of animal density was found to be 
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similar to the pattern of primary productivity, indicating how plant productivity is shaping 

animal density at different trophic level. Our results highlight the high importance of variables 

related to human disturbance for carnivores and herbivores for explaining the declining trends. 

The remote sensing indices that we tested provided considerable explanatory power in our 

models of mammal density, especially when used in combination with climate data and measures 

of human disturbance. Our results have implications for management and conservation practices 

of game species over large territories, e.g. while making decision for hunting quotas at regional 

level. 

Keywords 

Animal abundance, Dynamic Habitat Indices, winter track count, Russia, carnivores, 

omnivore, herbivore, brown bear (Ursus arctos), European hare (Lepus europaeus), lynx (Felis 

lynx), moose (Alces alces), roe deer (Capreolus pygargus Pallas, Capreolus capreolus 

Linnaeus), red fox (Vulpes vulpes), wild boar (Suc scrofa), and wolf (Canis lupus). 

Introduction 

The density of wildlife species can vary greatly in space and time (Currie et al., 1993). In 

some areas animal density is high, as in tropical forest, other areas have a limited number of 

species such as tundra and Polar regions. Major factors for the variability of animal density are 

environmental conditions and human activities (Melis et al., 2009; Muhly et al., 2013). 

Understanding the relative importance of environmental conditions and human activities for the 

spatial patterns of wildlife density is thus key for proper management and the conservation of 

wildlife. Remote sensing is an ideal tool to conduct such an assessment because satellite data and 

derived data products provide valuable information about habitat conditions including land cover 
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maps, measurements of primary productivity, information characterizing snow cover and 

patterns of freeze and thaw, and human disturbances across large areas (Kerr and Ostrovsky, 

2003; Turner, 2014; Turner et al., 2003). 

What controls animal density is a central question in ecology, and different factors matter 

in different areas and for different species. One group of mechanisms is related to food 

availability resulting in bottom-up effects, in which plant productivity controls the density of 

herbivores, and herbivore density controls carnivore density (Scherber et al., 2010). Closely 

related to food availability (Currie et al., 1993) is home range size for those species that are 

territorial. With more available food home range size tends to be smaller, leading to higher 

animal density (Desy et al., 1990; Herfindal et al., 2005; McLoughlin and Ferguson, 2000; 

Morellet et al., 2013; Tufto et al., 1996). There are many factors influencing home range sizes of 

species such as the species diet, their habitat location and their position within the food chain.  

The relationship between home-range size and body size depends for example on the different 

trophic levels (McLoughlin and Ferguson, 2000), so that carnivores tend to have larger home 

ranges, and hence lower densities than their prey. Also larger-bodied species have to consume 

more food to meet their metabolic requirements than smaller species (McLoughlin and Ferguson, 

2000) A species home range size depends on the location of the habitat the species is living in 

too, because home ranges of species living in high latitudes tend to be larger than of those closer 

to the equator (McLoughlin and Ferguson, 2000; McNab, 1963; Morellet et al., 2013; Peters and 

Wassenberg, 1983; Ripple and Beschta, 2012). And last but not least, there are also top-down 

effects when predators control population of herbivores and thereby vegetation patterns 

(Hairston et al., 1960; Ripple and Beschta, 2012). 



51 

 

 

 

Animal densities are also strongly affect by survivorship during the most challenging 

seasons of the year, and for mammal species living in northern climates this is typically winter 

time. For example, whether or not the ground is covered with snow when temperatures drop 

below freezing makes a big difference, because snow cover maintains more stable temperatures 

for both soils and plants, due to its low thermal conductivity (Formozov, 2010; Pomeroy and 

Brun, 2001). Furthermore, depth and density of snow cover have an influence on animal 

movements, ability to reach food under layers of snow, and the ability of small mammals to 

tunnel under the snow. Indeed, for some animal snow cover is necessary for reproduction and 

survival, for example, the Arctic lemmings (Gilg et al., 2012), and often snow is the only source 

of available moisture for animals when surface water is frozen.  Thus, the role of snow and snow 

cover is important but also rather complex. Unfortunately, climate change has rapidly changed 

winter conditions (Gilg et al., 2012; Safronov, 2016; Williams et al., 2015). Due to global 

warming there is an increase in precipitations especially during winter, and an increase in 

frequency and magnitude of extreme events (Safronov, 2016). 

We captured both food availability and winter conditions with newly developed remote 

sensing indices. To capture food availability, we analyzed the Dynamic Habitat Indices (DHIs) 

as a proxy of availability of energy, environmental stress and environmental stability (Radeloff et 

al., n.d.).  This DHIs summarize three measures of vegetation productivity over a course of the 

year: cumulative productivity (DHI Cum), minimum productivity (DHI Min), and seasonality or 

variation (DHI Var). The DHIs have proven to be good predictors of avian species richness in 

Ontario, Canada (Coops et al., 2009b), the USA (Coops et al., 2009a; Hobi et al., 2017), and 

Thailand (Suttidate, 2016), as well as for butterfly species diversity in Canada (Andrew et al., 

2012), and for moose occurrence and abundance in Ontario, Canada (Michaud et al., 2014). To 
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capture winter conditions, we analyzed a new global dataset characterizing winter related 

variables derived from satellite observations including the duration of frozen ground with and 

without snow cover, and the timing (start date, length, and end date) of the frozen season with 

500 m spatial resolution (Zhu et al., 2017). These new winter-related remote sensing indices 

have not yet been related to wildlife populations, and while the DHIs have been tested, most of 

the tests have been for species richness, not wildlife densities. 

Our main goal was to evaluate the utility of remote sensing indices in models of animal 

density across Russia. We focused on eight mammals with different life history representing 

herbivores, omnivore, and predators. We hypothesized that among the three DHIs cumulative 

productivity would be the most important. We expected higher densities of European hare, roe 

deer, moose for regions with higher DHI Cum. Also, we hypothesized that the DHIs would be 

important in models for herbivores but not for carnivores because of herbivore’s dependence on 

vegetation as food. For wild boar we expected to see a strong negative correlation with the 

duration of snow-covered ground and the length of the frozen season because boar frequently 

root in the ground to forage. For lynx, red fox, and wolf we expected that snow cover, i.e., the 

duration of snow-covered ground, to be a strong positive correlate, because of their ability to 

travel on top of snow, while their prey cannot.   

Methods 

Study area 

The vast territories of Russia provide a great opportunity to answer our research 

questions because they harbor broad ranges of vegetation, and climate conditions, and because of 

the availability of long-term data for game species. Moreover, Russia had experienced economic, 
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political, and social changes during our study period, which affected human population and 

wildlife as well. This matters for wildlife populations because it is common that people 

overexploit natural resources during economic downturn and institutional changes (Bragina et 

al., 2015; Wittemyer, 2011).  

Wildlife species’ densities, and range maps 

We focused on eight species with different life history including brown bear (Ursus 

arctos), European hare (Lepus europaeus), lynx (Felis lynx), moose (Alces alces), red fox 

(Vulpes vulpes), roe deer (Capreolus pygargus Pallas, Capreolus capreolus Linnaeus), wild boar 

(Suc scrofa), and wolf (Canis lupus). Wildlife population totals for each year and region were 

provided by the Russian Federal Agency of Game animals from 1981 to 2010 (Borisov et al., 

1992; Gubar et al., 2007; Lomanov et al., 2004, 2000, 1996; Lomanova et al., 2011).  Data are 

collected mainly using winter track counts (Kuzyakin, 1983; Lomanov, 2000). For remote or 

hard-to-reach areas airplane and hunter’s surveys were conducted (Lomanov et al., 1996). Unlike 

other species, brown bear hibernates during winter, which means that other methods were 

employed to estimate the bear population, in particular mapping of home ranges and aerial 

survey (Gubar, 1990). 

After the collapse of the Soviet Union in 1991 some regions of Russia were subdivided. 

In order to be consistent and analyze all data for the thirty years of our study, we merged those 

separated regions to make them comparable to the pre-1991 administrative boundaries. In total, 

we included 39 regions in our analysis for brown bear, 50 regions for European hare, 53 for lynx, 

62 for moose, 71 for red fox, 48 for roe deer, 64 for wild boar and 69 for wolf (Table 4). We 

excluded regions with only a few years of available data. 
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Some of Russia’s regions are large, and may only partly be within the range of a given 

wildlife species. We thus needed to restrict the area for which the predictor variables were 

summarized, and the area that was used to convert the population totals into densities. In order to 

do so, we compared several sources of range maps including those from the IUCN Red List, and 

others published in the Soviet and Russian literature, and by the Russian Academy of Science. 

Ultimately, for brown bear and European hare we used range maps from the Russian Academy 

of Science (Pavlov et al., 2002), for lynx and wolf from IUCN (IUCN, 2001), red fox range maps 

came from Soviet literature (Geptner et al., 1967), for wild boar and roe deer our source was 

Russian literature (Danilkin, 2002, 1999), and for moose it was the Game animal’s analytical 

material (Lomanov et al., 1996). Data for roe deer represented two species Capreolus pygargus 

Pallas and Capreolus capreolus Linnaeus, which are not separated in the game surveys, and 

therefore we combined their range maps. 

Dynamic Habitat Indices 

The Dynamic Habitat Indices contain three components of different measurement of 

vegetative productivity: annual cumulative productivity (DHI Cum), annual minimum 

productivity (DHI Min), and seasonal variation (DHI Var). To calculate the DHIs we used 

MODIS Fraction of Absorbed Photosynthetically Active Radiation (FPAR) provided by the 

MCD15A2 data product with 1-km spatial and 8-day temporal resolution for 2003-2014. We 

summed up all FPAR values for annual cumulative productivity (DHI Cum); selected the 

minimum value for annual minimum productivity (DHI Min); and calculated coefficient of 

variation for seasonality (DHI Var). Missing values of DHI Min due to polar nights are set to 

zero. For all analyses we used the composite product which is based on median FPAR values 

between 2003 and 2014 (For further information of the calculation see Hobi et al., 2017).  
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Land cover 

We used MODIS land cover with 17 classes based on the International Geosphere-

Biosphere Programme Classification with 500 m spatial resolution. We derived a map of stable 

land cover for the period 2003-2012, for which we set the change threshold to 50%, that is to say 

we allowed changes in land cover classes for up to  half of the time period (Figure 6). Based on 

this land cover information we defined the suitable habitat for each species (Table 5) and 

calculated the areal extent of suitable habitat within the range map (Table 4). 

Winter’s variables 

The severity of winter conditions varies greatly across Russia. In some regions animals 

spend half of the year overwintering. To characterize winter, we used a recently completed 

dataset with 500 m spatial resolution that provided data on the duration of snow-covered ground 

(dws), the duration of snow-free frozen ground (dwos), the timing (start and end date) and the 

length of the frozen season from 2000-2012 (Zhu et al., 2017). There are no data for dwos and 

dws above 620N due to polar night. We calculated mean values for all winter-related variables 

within suitable habitat for each animal species.  

Human disturbance  

We included two variables in our analysis as proxies of human disturbance: human 

footprint and road density. Human footprint index (HFI) was downloaded from 

http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic and has a 1 

km spatial resolution (Sanderson et al., 2002). The HFI was created from nine data layers 

including human population pressure (population density), human land use and infrastructure 

(built-up areas, nighttime lights, land use/land cover), and human access (coastlines, roads, 

railroads, navigable rivers) (Sanderson et al., 2002). We calculated mean values for HFI within 

http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic


56 

 

 

 

range map for each species. Vectorized road data were downloaded from DIVA-GIS 

(http://www.diva-gis.org). The road density by region was calculated by normalizing the length 

of roads by the area of the regions. The density of roads in a region is a good indicator of how 

developed a region is. We performed all calculations in Albers equal area conic projection 

(Datum D European 1950).  

Elevation, climatic variables 

Elevation and climate data, i.e., the nineteen BIOCLIM variables, were downloaded from 

WorldClim with 1-km spatial resolution (Hijmans et al., 2005). Eleven of the BIOCLIM 

variables were related to temperature, and eight to precipitation (Table 6). The elevation data 

used in the WorldClim is based on Shuttle Radar Topography Mission (SRTM). We calculated 

mean values per region for all variables within suitable habitat for each species. 

Statistical analyses 

To analyze population trends of the mammal species and test if these trends are 

significant, we summed up the results of winter track count (population total) for all regions for a 

given year. Then we fitted a liner regression of the population totals as a function of time from 

1981 to 2010, and tested if the slope was significantly different from zero.  

To relate species population densities to our predictor variables, we applied multivariable 

linear regression and best subset model selection. Our dependent variable was the species 

population density, which we calculated by dividing the regional population total by the area of 

suitable habitat in that region and for that species. Our explanatory variables were the DHIs, road 

density, human footprint, elevation, temperature, precipitation, duration with snow-free frozen 

ground, duration of snow-covered ground, the timing and the length of the frozen season and of 

http://www.diva-gis.org/
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snow cover. To meet the assumptions of multiple linear regression we applied log-transformation 

for brown bear, lynx, moose, red fox, roe deer, wolf. We ran Bonferroni outlier tests (Cook and 

Weisberg, 1982) to detect outliers in the models, which we then excluded. Specifically, we 

detected the following outliers: Kabardino-Balkaria for brown bear, Tyumen region for European 

hare and Orenburg for lynx. Also, we removed 5 regions from the analysis for European hare 

where the species was introduced. In order to detect multicollinearity, we calculated Pearson’s 

correlation coefficients among all explanatory variables. Some of our explanatory variables were 

highly correlated, especially BIOCLIM variables. After fitting a model with all the explanatory 

variables, we used best subset regression for each species to identify those variables that were 

most commonly included in the top models. We ranked models based on the Bayesian 

Information Criteria (BIC), and calculated the adjusted coefficient of determination (R2
adj) for the 

top model to estimate how much of the variation in density of a given species our variables were 

able to explain (Burnham and Anderson, 2002). However, the top model based on BIC criterion 

does not always result in the highest R2
adj. Also, we calculated variance inflation factor (VIF) for 

the top model in order to see how much collinearity we have. 

We performed all analyses in R version 3.3.1 (R Core Team, 2016), specifically the 

psych package (Revelle, 2017) to calculate correlation matrices, the leaps package (Lumley, 

2009) to perform best subset selection and the car package (Fox and Weisberg, 2016) to run 

Bonferroni outlier test to identify outliers and calculate variance inflation factor (VIF) for 

explanatory variables included into the top model. 



58 

 

 

 

Results 

Spatial pattern of the explanatory variables 

The DHIs captured the broad patterns of primary productivity across Russia well. Mixed 

forest, deciduous needle leaf forest, and deciduous broad leaf forest in the Caucasus and in the 

southern Primorsky Krai had the highest DHI Cum.  DHI Min had the highest values in southern 

Russia, especially in southern part of Krasnodar Krai, in Primorsky Krai, Zabaykalskiy Krai, 

Sverdlovskaya Oblast where climate is mild. Mixed forest were the most common land cover 

type where DHI Min was high. DHI Var had the highest values in the tundra of northern Siberia 

and Chukotka (Figure 7a).  

Duration of snow-free frozen ground (dwos) had the highest values in south part of 

Russia (Caucasus region) and south east of the Asian part of Russia. Duration of snow-covered 

ground (dws) showed the highest value toward the north, north east part of Russia, also at higher 

elevation (Figure 7b). Highest values for start of frozen season were located in European part of 

Russia and in areas close to the sea. Both length and the end of frozen season were inversely 

related to start of the frozen season, and had the highest values in East Siberia. 

Areas with high elevation are located in the south of Russia (Caucasus), between 

European part and Asian part of Russia (Ural Mountains), East Siberia (Altai Mountains, 

Verkhoyansk Range, Sayan Mountains, Chersky Range), Far East (Sikhote-Alin) (Figure 7c). 

Annual mean temperature (BIO1) increases from north-east to south of Russia, the coldest places 

are located in Yakutia (Figure 7d). Annual mean precipitation also increases from north-east to 

south of Russia, the highest amount of precipitation can be found in the Caucasus region, 

Primosky Krai, Khabarovsk Krai, and Kamchatka Krai (Figure 7e). Human footprint index (HFI) 



59 

 

 

 

has the highest values in European part of Russia, where most of human population of Russia 

live.  

Wildlife population trends 

To understand the nature and the significance of species population trends, we fitted the 

data with a simple linear regression and checked the p-value for the coefficient for the slope. We 

found that brown bear, roe deer, wild boar and wolf populations significantly increased (p-

value<<0.05) while European hare, lynx, and moose significantly decreased, and red fox 

increased but not significantly so (p-value = 0.157) (Figure 8). However, population trend 

fluctuated greatly for all the species over time, and most species had population drops after the 

collapse of Soviet Union in 1991, with the exception of wolf, which increased in the post-

collapse period. The largest population declines occurred for European hare and lynx, whose 

populations declined by 62% and 61.7% from 1980 levels, respectively. 

Using MODIS stable land cover map, we calculated the areal extent of suitable habitat 

within range map for all the species, and total area of the regions included in the analysis (Table 

4). Based on our calculations wolf, red fox, and moose have the greatest amount of suitable 

habitat among the studied species of 16.0 million km2, 15.9 million km2, and 10.6 million km2, 

respectively.  For most species the total area within range and area of suitable habitat were fairly 

similar.  For example, the total range area for European hare was 3 million km2 while suitable 

habitat was 2.8 million km2 (96%). However, lynx and brown bear habitat was only 52% and 

59% of their total range.  
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Variation in animal density 

The density of the studied species varied greatly over the territory of Russia. In general, 

the pattern of animal density was similar to pattern of primary productivity, which increased 

from north or north-east toward the south. Generally, the species density was much higher in the 

European part of Russia compared to the Asian part. The density for lynx, roe deer, and wild 

boar was higher in regions with higher values of DHI Min. In some regions, for example in the 

Kamchatka Krai and Magadan oblast we identified only a relatively small areas of suitable 

habitat for brown bear and lynx. That is why the density for brown bear and lynx in these regions 

was very high. European hare density increased from its northern boundary of the range map 

toward its southern boundary.   

We used best subset selection to identify which explanatory variables were the most 

significant ones and could explain great portions of variation in species density. Our models 

performed very well, and all of our explanatory variables were important at least for some 

species. The adjusted coefficient of variation (R2
adj) was high for all the models, ranging from 

0.61 to 0.94. However, there was a considerable variability in which variables were selected in 

the top models of different species (Figure 9). For all carnivores HFI and temperature related 

variables were included in the models for most species, and the DHIs and winter related 

variables were important for red fox and wolf, but not for lynx. Altitude, temperature related 

variables, and winter related variables were included in top models for omnivores (wild boar and 

brown bear), and the DHIs were included for wild boar. For herbivores some temperature and 

precipitation related variables were included in top models, and HFI and winter related variables 

were included in the models of the declining herbivore populations (European hare and moose), 

and DHI Min in model for moose.  



61 

 

 

 

Discussion 

Our main goal of this study was to assess the value of several new remotely sensed 

indices in models of species density for a range of mammals capturing different trophic levels, 

i.e., omnivores, carnivores, and herbivores. We found that both the DHIs and the winter-related 

variables contributed greatly to our multivariate models and provided complementary 

information to climate and human disturbance related variables. Together, our suite of variables 

explained the variation in species density well, with R2
adj ranging from 0.61 to 0.94. Which 

subset of predictors was most useful in explaining species density was greatly dependent on the 

focus species.  

Vegetation productivity was one of the main explanatory variables of animal density. 

Across Russia animal density was higher in regions with higher DHI Cum, mostly in the 

European part of Russia where the climate is relatively mild, and growing seasons are longer. 

Interestingly, the densities for brown bear and lynx were high for Magadan Oblast and 

Kamchatka Krai. It seems that particularly for these regions more land cover classes should be 

included in the definition of suitable habitat; both regions have mountains, probably, a 

combination of complex landscape elements with open shrub lands is preferably used by brown 

bear and lynx. Unexpectedly, the DHIs could explain parts of the species density not only for 

herbivores and omnivores, but also for all carnivores except lynx. This suggests that primary 

productivity can also be a limiting factor for predators, and that the effects of productivity 

propagate through the food chain. Such bottom-up effects are more pronounced when a 

population reaches carrying capacity, and are weak when population levels are very low (Currie 

et al., 1993; Lawton, 1990).  Our result that primary productivity was not significant for lynx 

makes good sense given the strong declines in lynx populations, which occurred despite the 
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concomitant increases of roe deer populations, one of lynx’ main prey species (Odden et al., 

2006; Okarma et al., 1997). However, we note that another important prey species, i.e., hare, also 

declined. Lynx population dynamics are often cyclical depending on the cycles of its prey 

(Matyushkin and Vaisfeld, 2003), and the reproductive rate of lynx responds strongly to prey 

decline (Okarma et al., 1997).  

We were also surprised to see that the DHIs were not included in models of roe deer and 

brown bear, even though a previous study showed that roe deer abundance was positively 

correlated with vegetation productivity (Melis et al., 2009). Our explanation for this is that roe 

deer prefers forest edges (Danilkin, 1999), and we were not able to determine this preferable 

habitat with the MODIS land cover data due to their relatively coarse resolution (500 m). 

Furthermore, we could only analyze roe deer as one species, but in reality there are two species 

which are different in size and habitat preferences. In case of brown bear other factors influence 

brown bear population (in our model, altitude, temperature related variables, and winter related 

variables), and the bear’s great dietary flexibility may reduce the importance of primary 

productivity even though the bulk of their diet is typically plant-based. 

Wildlife population density highly depends on the quality and quantity of available food. 

However, winter is often a time of high mortality, and both snow cover and frozen ground can be 

important limiting factors (Danilkin, 2008). We found that for all species except for lynx winter 

related variables were contributing to explain their density. Our results indicate that how tolerant 

or adapted a given species is to winter conditions can be an important driver of contemporary 

patterns of wildlife densities in Russia. Indeed, the northern limit of roe deer range is determined 

by snow depth of 50 cm and 60 cm for European and Siberian roe deer, respectively (Danilkin, 

1999; Grøtan et al., 2005). 
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Climate is a well-known driver of animal density (Michaud et al., 2014; Skidmore et al., 

2003). Indeed, temperature and precipitation were included in all models for all species. We will 

not discuss why a particular variable is important for species, however, we will discuss the effect 

of climate change on animals. Climate change has already had major influence on wildlife 

population (Baskin, 1996; Gilg et al., 2012; Rempel, 2011; Safronov, 2016; Stepanova and 

Ohlopkov, 2010). We speculate that there may be a link between the increase in brown bear, roe 

deer, and wild boar population and climate change. For example, the population of red deer is 

increasing in Yakutia and extending its range toward northeast due to climate change (Safronov, 

2016). 

Human activities, can also greatly affect densities, both by bottom-up mechanisms when 

food availability is altered due to land use change (Foley et al., 2005; Kehoe et al., 2015) or by 

top-down effects through overharvesting or poaching (Muhly et al., 2013; Okarma et al., 1997). 

In our analysis we found that HFI was included in top models for those herbivore species that are 

declining, i.e., European hare and moose; and for all carnivores, i.e., lynx, red fox, and wolf 

irrespective of their population trends. The other indication for strong top-down effects of 

humans on wildlife populations is what happened in the politically unstable period after the 

collapse of the Soviet Union in 1991, when animal population rapidly dropped for all species 

except for wolf (Bragina et al., 2015).  However, while most species recovered since, the 

population of lynx continues to decline rapidly, and the European hare population is consistently 

low. In general, lynx is a vulnerable animal; it’s population can decrease rapidly under 

unfavorable conditions (Matyushkin and Vaisfeld, 2003), and there are probably many factors 

which have had negative effect on lynx population, including anthropogenic and natural, such as 

the effects of increasing wolf populations. 
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We see some limitations of our study and want to elaborate on them here.  In our analysis 

we used an animal density averaged over 30 years, but the density was changing over time and 

mean values are not meaningful in this case. There are several limitations of WTC data: data 

cannot be collected in regions without snow cover or dense snow (Mirutenko et al., 2009); 

possible data errors made by humans during collection, processing and reporting; changing 

quality of WTC over time due to political and economic changes in Russia. 

Knowing the factors influencing animal density is important when it comes to making 

recommendations for management of wildlife despite limitation of our analysis and WTC data. 

While making a decision about hunting quotas, it is important to take into account losses of 

animals due to illegal hunting or poaching; recommended hunting quotas should be lowered in 

years with low plant productivity and harsh winter. To stabilize a declining mammal population 

our suggestions would be to reduce hunting quotas, particularly, at the northern border of the 

species range. Other recommendations are to increase anti-poaching activity in regions with low 

animal density and provide supplementary feeding during winter for regions with limited food 

resources (where DHI Min has the lowest values). A monitoring program for lynx should be 

established to get more information related to the interaction between wolf and lynx. In case of a 

continuing decline in the lynx population, temporary or complete prohibition of hunting for this 

species should be implemented in regions where suitable habitat areas are limited. 

In summary, we suggest that using remote sensing indices including the DHIs and winter-

related variables can be an effective tool for explaining animal density for species at different 

trophic level. In this study we showed that a combination of remote sensing indices and land 

cover together with climate and human-related variables has high explanatory power. The DHIs 

provided valuable information about primary productivity while winter-related variables provide 
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important information about the effect of winter on species survival. Moreover, both remote 

sensing datasets are available globally free of charge.  
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Table 4: Overview of the number of regions used for different parts of the analysis. Area of 

suitable habitat within the regions and total area. 

Species Number 

of 

regions 

included 

in 

analysis 

Number 

of 

regions 

included 

in range 

map 

Number of 

regions 

excluded 

from 

analysis 

(outliers) 

Number of regions 

with no data or 

few available 

years  

Area of 

suitable 

habitat 

(million 

km2) 

Total 

area 

without 

outliers 

(million 

km2) 

Brown 

bear 

39 50 1 10 7.03 11.88 

European 

hare 

50 59 1+5(introduced) 3 2.80 2.92 

Lynx 53 65 1 11 6.97 13.26 

Moose 62 62 0 0 10.62 13.64 

Red fox 71 71 0 0 15.86 16.15 

Roe deer 48 59 0 11 3.98 4.89 

Wild 

boar 

64 65 0 1 4.95 5.77 

Wolf 69 70 0 1 16.18 16.46 



 

 

 

 

7
7
 

Table 5: Suitable habitat based on the MODIS IGBP land cover classification for brown bear, European hare, lynx, moose, red fox, 

Roe deer, wild boar, and wolf. 0- class was not considered suitable habitat; 1- class was included as suitable habitat. 

Land cover classes Brown bear European 

hare 

Lynx Moose Red fox Roe deer, wild boar Wolf 

0-water 0 0 0 0 0 0 0 

1 -evergreen needle leaf forest 1 1 1 1 1 1 1 

2-evergreen broadleaf forest 1 1 1 1 1 1 1 

3- deciduous needle leaf forest 1 0 1 1 1 1 1 

4-deciduous broadleaf forest 1 1 1 1 1 1 1 

5-mixed forest 1 1 1 1 1 1 1 

6-closed shrub lands  0 0 0 0 0 0 1 

7-open shrub lands 0 0 0 1 1 0 1 

8-woody savannas 1 0 1 1 1 1 1 

9-savannas 1 0 1 0 1 1 1 

10-grassland 0 1 0 0 1 0 1 

11-permanent wetland  1 0 1 1 1 1 1 

12-cropland 0 1 0 0 1 1 1 

13-urban and built-up 0 0 0 0 0 0 0 

14-cropland/natural vegetation 

mosaic 

1 1 0 0 1 1 1 

15-snow and ice 0 0 0 0 0 0 0 

16-barren or sparsely vegetated 0 0 0 0 0 0 1 
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Table 6: Summary of explanatory variables indicating their spatial resolution and the sources 

from which they were downloaded. 

Data Resolution Source 

Dynamic Habitat Indices (DHIs) 1-km http://silvis.forest.wisc.edu/data/DHIs 

Duration of snow-free frozen ground 

(dwos), duration of snow-covered 

frozen ground (dws), start, length, and 

end of frozen season 

500 m http://silvis.forest.wisc.edu 

 

 

Temperature and Precipitation from 

BIOCLIM  

1-km http://www.worldclim.org 

 

Elevation 1-km http://www.worldclim.org 

Human footprint index (HFI) 1-km http://sedac.ciesin.columbia.edu/data/set/

wildareas-v2-human-footprint-

geographic 

Roads - http://www.diva-gis.org 

 

  

http://silvis.forest.wisc.edu/data/DHIs
http://silvis.forest.wisc.edu/
http://www.worldclim.org/
http://www.worldclim.org/
http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic
http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic
http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic
http://www.diva-gis.org/
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Figure 6: MODIS land cover based on IGBP classification for the regions of Russia: 0-water, 1-

evergreen needle leaf forest, 2-evergreen broadleaf forest, 3-deciduous needle leaf forest, 4-

deciduous broadleaf forest, 5-mixed forest, 6-closed shrub lands, 7-open shrub lands, 8-woody 

savannas, 9-savannas, 10-grassland, 11-permanent wetland ,12-cropland, 13-urban and built-up, 

14-cropland/natural vegetation mosaic, 15-snow and ice, 16-barren or sparsely vegetated. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 

Figure 7: Some explanatory variables: a) the Dynamic Habitat Indices are shown in RGB where 

DHI Var was assigned to red, DHI Cum to green, DHI Min to blue; b) duration of snow-covered 

ground; c) elevation above sea level (m) from SRTM; d) annual mean temperature (BIO1) 

(°C*10); e) annual precipitation (BIO12) (mm); f) human footprint index (HFI). 
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Figure 8: Animal species density corrected by its suitable habitat and population trends from 

1981 to 2010. 
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R2
adj=0.74 for first top model 

 

R2
adj=0.94 for first top model 
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R2
adj=0.61 for first top model 

 

R2
adj=0.81 for first top model 
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R2
adj=0.89 for first top model 

 

R2
adj=0.62 for first top model 
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R2
adj=0.77 for first top model 

 

R2
adj=0.82 for first top model 

Figure 9: Main results of best model selection for all animal based on BIC criterion. R2
adj is indicating the overall variance explained 

by the first top model. 
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Appendices 

It is very important to have quality range maps for our analysis. For Russian territory 

IUCN range maps lack accuracy.  That is why we analyzed several resources to find accurate 

range maps including IUCN, Soviet and Russian literature, and Russian Academy of Science. 

Also, we included a map showing the distribution of European hare, including some regions with 

artificially developed populations. Another map shows the home range size for wolf. Our choice 

of range maps was described in chapter 3.  
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Appendix 1:  Brown bear (Ursus arctos) range map by Puzachenko A. Yu. is shown in red color. Sub regions are the regions of 

natural zoning (Puzachenko, 2017). 
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Appendix 2: Brown bear (Ursus arctos) range map by Russian Academy of Sciences is shown in orange. Rivers, lakes, seas are 

shown in blue; the border of Russia is shown in pink  (Pavlov et al., 2002).  
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Appendix 3: Brown bear (Ursus arctos) IUCN range map is shown in brown: 0-not included in range; 1-included in range. The 

administrative regions of Russia are shown in gray (IUCN, 2001).  
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Appendix 4: Brown bear (Ursus arctos) range map in Soviet Union by Geptner V. G. (1967) 

Legend: 1 – boundaries of the reconstructed range, 2 – southern boundary of brown bear distribution in western Siberia and in 

European part of Soviet Union in late 1950s and in 1960s, 3 – north boundary of regular occurrence into taiga of Western Siberia, 4 

– isolated points of habitat in Białowieża Forest. Arrows at the north indicate the limit of the farthest visits in tundra, and in the 

south arrows indicate isolated habitats in Carpathian Mountains, Talysh, and Kopet Dag (Geptner et al., 1967, p.415). 
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Appendix 5: European hare (Lepus europaeus) range map by Puzachenko A. Yu. is shown in red color. Sub regions are the regions 

of natural zoning (Puzachenko, 2017). 
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Appendix 6: European hare (Lepus europaeus) range map by Russian Academy of Sciences is shown in orange. Rivers, lakes, seas 

are shown in blue (Pavlov et al., 2002). 
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Appendix 7: European hare (Lepus europaeus) IUCN range map is shown in brown: 0-not included in range; 1-included in range.  

The administrative regions of Russia are shown in gray (IUCN, 2001).  
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Appendix 8: European hare (Lepus europaeus) range map 

Legend: 1- European hare occurrence according to museum collections, 2-places of introduction, 3-points of presence of newly 

developed populations of European hare, 4-regions with artificially developed populations, 5-northern boundary of European hare 

range based on data from 1964, 6-northern boundary of presence of European hare based on literature (by Gruzdev, 1974) (reported 

in Sokolov et al., 1994, p.211) 
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Appendix 9: Lynx (Felis lynx) range map by Puzachenko A. Yu. is shown in red color. Sub regions are the regions of natural zoning 

(Puzachenko, 2017) 

 
  



 

 

 

9
7
 

Appendix 10: Lynx (Felis lynx) range map by Russian Academy of Sciences is shown in orange. Rivers, lakes, seas are shown in 

blue; the border of Russia is shown in pink (Pavlov et al., 2002). 
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Appendix 11: Lynx (Felis lynx) IUCN range map is shown in brown: 0-not included in range; 1-included in range. The 

administrative regions of Russia are shown in gray (IUCN, 2001) 
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Appendix 12: Range for lynx, Felis (lynx) lynx L. in Soviet Union. 

Solid line shows historical and current range in the north and east. Dashed line shows the current boundary of permanent habitat in 

European part of the Soviet Union and in Caucasus. In West Siberia dashed line shows the southern boundary of permanent habitat 

in the period of maximum reduction of range in late 1930’s. By the end of 1960’s, there was only few local populations or 

occurrences at the south of historical range in Kazakhstan. Some of these places are marked with points. It is likely that there are no 

lynx in Karatau (Geptner and Sludskiy, 1972, p.396) 
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Appendix 13: Red fox (Vulpes vulpes) range map by Puzachenko A. Yu. is shown in red color. Sub regions are the regions of 

natural zoning (Puzachenko, 2017) 

 
  



 

 

 

1
0
1
 

Appendix 14: Red fox (Vulpes vulpes) range map by Russian Academy of Sciences is shown in orange. Rivers, lakes, seas are 

shown in blue (Pavlov et al., 2002). 
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Appendix 15: Red fox (Vulpes vulpes) IUCN range map is shown in brown: 0-not included in range; 1-included in range. The 

administrative regions of Russia are shown in gray (IUCN, 2001)  
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Appendix 16: North and east boundaries of fox habitat, Vulpes vulpes L., in Soviet Union.  

Arrows show direction and places for far occurrences to the north (V.P.Geptner) (Geptner et al., 1967, p.330) 
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Appendix 17: European roe deer (Capreolus capreolus Linnaeus) range map by Puzachenko A. Yu. is shown in red color. Sub 

regions are the regions of natural zoning (Puzachenko, 2017) 
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Appendix 18: European roe deer (Capreolus capreolus Linnaeus) range map by Russian Academy of Sciences is shown in orange. 

Rivers, lakes, seas are shown in blue; the border of Russia is shown in dark blue. Circles show occurrence outside the range 

boundary (Pavlov et al., 2002). 

 

  



 

 

 

1
0
6
 

Appendix 19: European roe deer (Capreolus capreolus) IUCN range map is shown in brown: 0-not included in range; 1-included in 

range. The administrative regions of Russia are shown in gray (IUCN, 2001) 
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Appendix 20: Siberian roe deer (Capreolus pygargus Pallas) range map by Puzachenko A. Yu. is shown in red color. Sub regions 

are the regions of natural zoning (Puzachenko, 2017) 
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Appendix 21: Siberian roe deer (Capreolus pygargus Pallas) range map by Russian Academy of Sciences is shown in orange. 

Rivers, lakes, seas are shown in blue; the border of Russia is shown in dark blue (Pavlov et al., 2002). 
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Appendix 22: Siberian roe deer (Capreolus pygargus) IUCN range map is shown in brown: 0-not included in range; 1-included in 

range. The administrative regions of Russia are shown in gray (IUCN, 2001) 
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Appendix 23: Current range of European and Siberian roe deer. 

Legend: 1-Capreolus capreolus, 2-C. pygargus pygargus Pall, 3-C. pygargus tianschanicus Satunin. Circles show occurrence 

outside the range boundary (Danilkin, 1999, p.59) 
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Appendix 24:Wild boar (Sus scrofa) range map by Puzachenko A. Yu. is shown in red color. Sub regions are the regions of natural 

zoning (Puzachenko, 2017) 
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Appendix 25: Wild boar (Sus scrofa) range map by Russian Academy of Sciences is shown in orange. Rivers, lakes, seas are shown 

in blue; the border of Russia is shown in pink. Triangles show the northern occurrence (Pavlov et al., 2002). 

 

  



 

 

 

1
1
3
 

Appendix 26: Wild boar (Suc scrofa) IUCN range map is shown in brown: 0-not included in range; 1-included in range. The 

administrative regions of Russia are shown in gray (IUCN, 2001) 
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Appendix 27: Wild boar range map in Russia and adjacent regions (in boundaries of former Soviet Union) 

Legend: 1-northern boundary of reconstructed range (where the boundary is different from the current boundary), 2-minimal range 

at the beginning of XX century (by Geptner, 1961) with changes, 3-maximal range in the end of XX century (including irregular 

occurrence),4-points of the northern occurrence (Danilkin, 2002,p.56) 
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Appendix 28: Wolf (Canis lupus) range map by Puzachenko A. Yu. is shown in red color. Sub regions are the regions of natural 

zoning (Puzachenko, 2017) 
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Appendix 29: Wolf (Canis lupus) range map by Russian Academy of Sciences is shown in orange. Rivers, lakes, seas are shown in 

blue; the border of Russia is shown in pink (Pavlov et al., 2002) 
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Appendix 30: Wolf (Canis lupus) IUCN range map is shown in brown: 0-not included in range; 1-included in range. The 

administrative regions of Russia are shown in gray (IUCN, 2001) 
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Appendix 31: Northern and eastern boundary of wolf’s range, Canis lupus L., in Soviet Union (V.G.Geptner) (Geptner et al., 1967, 

p.133) 
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Appendix 32: Home-range size of family packs  in different climatic zones in Soviet Union 

Legend: 1- area of home-range in summer, 2-area of home-range in winter: 1cm2=154km2, numbers represent an average size of 

packs (Bibikov, 1985, p.417) 
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