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Abstract 

Buildings in the wildland-urban interface (WUI) are especially at-risk of destruction during 

wildfire seasons, but despite these risks, the WUI has grown over the last several decades. 

WUI maps are not frequently updated due to the lack of available data, especially pre-1990s. 

For my first chapter, my goal was to apply convolutional neural networks (CNNs) to extract 

building data from imagery and estimate building destruction post-wildfire. Specifically, I 

looked at three California fires: Camp, Tubbs, and Woolsey. Since CNNs are technically 

complex and challenging for non-computer scientists to apply, I evaluated a CNN-based 

building dataset from Microsoft and a pre-trained CNN model from Esri to detect buildings 

from high-resolution imagery. I found moderate accuracies for both the Microsoft dataset and 

the Esri CNN model. Occluding vegetation caused underestimation of buildings and their 

destruction rates in densely forested areas. The Esri CNN model had post-fire accuracies of ≥ 

73%, suggesting that CNNs can be used with moderate accuracies for post-fire building 

identification. However, while CNNs can be used to determine if an area is WUI or not-WUI, 

they are not accurate enough for reliable building counts. For my second chapter, I utilized 

historical spy satellite data from the Hexagon program to extract building and land cover 

information to map the WUI for the 1970s. Again, I used CNNs to extract building locations, 

and I used an object-oriented classification to extract land cover data. I selected two study 

areas, one in Southern California, US, and one in New South Wales, Australia. To observe 

WUI change, I compared my 1970s WUI maps to current WUI maps. I used the Microsoft 

building footprint dataset (updated in the late 2010s, early 2020s) and for land cover, I used 

the National Land Cover Database for the US study area and the European Space Agency 
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WorldCover dataset (updated 2020) for the Australia study area. For the US study area, the 

WUI covered 49% in 1973 and for the Australia study area, the WUI covered just 6% in 

1976. However, the WUI grew by 7 percentage points from 1973 to the present-day for the 

US study area, and the WUI grew by 34 percentage points from 1976 to the present-day for 

the Australia study area. My final WUI maps had an overall high accuracy. We visually 

inspected 100 randomly placed circular sample areas and in the samples we visually 

inspected, 94 of the 100 samples had the correct WUI classification, and all 100 samples had 

the correct WUI classification for the Australia study area. I found that the historical spy 

satellite Hexagon provides valuable land cover and building information and can be used to 

map the WUI accurately for the 1970s. Both my chapters show the limitations and benefits of 

CNNs for building identification, and I also provide a method for extracting land cover and 

building data from historical spy satellite imagery to study long-term WUI growth. 
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Introduction 

The WUI, the area where the built environment intermixes or intermingles with wildland 

vegetation, is a central location for land management issues. For example, the WUI 

disproportionally experiences human-caused ignitions which consequently threatens 

residential homes (Keeley and Fotheringham, 2003; Syphard et al., 2007; Mietkiewicz et al., 

2020) because houses are in close proximity to fuels (Syphard et al., 2004, Kramer et al., 

2009). Aside from wildfire risks, the WUI and its growth is also a central location for the 

introduction and spread of invasive species, habitat fragmentation and loss, and pollution 

from nearby settlements and roads (Bar-Massada et al., 2014). Despite the various risks 

associated with the WUI, the WUI continues to grow and in the US, it was the fastest 

growing land use type from 2000-2010 (Radeloff et al., 2018). 

The WUI and the associated consequences with its growth is a global problem, and WUI 

maps are developed in many countries for risk assessments and identifying communities with 

high wildfire risk, especially during wildfire seasons. For example, WUI maps have been 

created and used by the European Union (Modugno et al., 2016), the US (Radeloff et al., 

2018), Central Argentina (Argañaraz et al., 2017), and Poland (Kaim et al., 2018).  

With the continued growth of the WUI, it is valuable to have up-to-date WUI maps. 

Unfortunately, WUI maps are difficult to update frequently because building data is not 

frequently updated. Additionally, it is difficult to go back in time and map the WUI to assess 

long-term WUI growth, especially pre-1990s, when high-resolution satellite imagery and 

historical aerial photographs were limited. In the US, WUI maps are created using US 

Census Data but Census data is released only every 10 years, is not available prior to 1990 at 
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the block level, and too coarse for building-level information as information is provided for a 

statistical area or “census block” (Radeloff et al., 2018). Additionally, in the US, WUI maps 

have also been created using building-level data from Microsoft, but Microsoft only releases 

building footprints for one period of time so updates are not possible (Bar-Massada, 2021; 

Carlson et al., 2022). In Central Argentina, a WUI map was created by hand digitizing 

276,700 buildings (Argañaraz et al., 2017), but that is very labor intensive. However, new 

remote sensing methods may provide a more efficient method for mapping and updating the 

WUI. Specifically, I explored the feasibility of applying convolutional neural networks 

(CNNs) and spatial data to extract building information. CNNs have been used for large-area 

classifications (Postadjian et al., 2017) such as for disaster response (Dong et al., 2021; 

Zheng et al., 2021) and land cover mapping (Li et al., 2022; Wambugu et al., 2021). 

Although CNNs are powerful, they are demanding to use, as they require large, diverse 

training datasets and technical sophistication of users. However, existing CNN-derived 

building datasets and pre-trained CNN models that extract building information are available 

(Zhu et al., 2017), which raises the question of how accurate they are.  

First Chapter: CNN evaluation chapter  

For my first chapter, I evaluated an existing CNN-based building dataset and an existing 

CNN model to identify building locations pre- and post-wildfire and to assess building 

destruction. I specifically looked at three fire perimeters in California: Woolsey, Tubbs, and 

Camp fires. I used Microsoft’s nationwide building footprint dataset. The Microsoft building 

footprint dataset is derived from high-resolution satellite data, a semantic segmentation 

algorithm, and ResNet34 with RefineNet up-sampling layers (Microsoft, 2018). The 
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Microsoft building dataset has been used with generally high accuracy for WUI mapping 

(Bar-Massada, 2021; Carlson et al., 2022). Additionally, I used a pre-trained CNN model 

from Esri, the Building Footprint Extraction – USA model.  

My first chapter research questions were: (1) Can the Esri CNN model detect buildings in the 

WUI as well as or better than the Microsoft building dataset? (2) Does the Esri CNN model 

correctly detect intact buildings pre- and post-fire and correctly not detect destroyed 

buildings post-fire? (3) Do building characteristics and vegetation density influence building 

detection and destruction rates?  

I found that the Microsoft building dataset and the Esri CNN model had low to moderate 

accuracies, and neither performed better than the other did. When evaluating the accuracy for 

detecting buildings post-fire, the Microsoft building dataset had accuracies of 48% for the 

Camp Fire, 60% for the Tubbs Fire, and 58% for the Woolsey Fire. The Esri CNN model had 

accuracies of 74% for the Camp Fire, 29% for the Tubbs Fire, and 58% for the Woolsey Fire. 

The Esri CNN model performed well in areas without dense vegetation, and the model 

sometimes missed minor buildings such as detached garages and mobile homes. The model 

performed generally well when looking at major buildings only with < 50% tree cover and it 

performed best in the interface WUI where there was less tree cover than in the intermix 

WUI. In the interface WUI, the pre- and post-fire CNN model overall accuracy for major 

buildings with < 50% tree cover was 76% for the Camp Fire, 86% for the Tubbs Fire, and 

72% for the Woolsey Fire. Densely forested areas of all three fires had very low accuracy. 
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However, I also found that the CNN model severely underestimated total buildings and 

subsequently underestimated total building destruction post-wildfire. The model 

underestimated building destruction by 33-66% for all three fires (41% total). During my 

accuracy assessment, I found that although the resulting maps had generally low commission 

errors (≤ 4%), omission errors ranged between 5-58% with the intermix WUI having more 

omission errors than the interface WUI. However, I did find that the CNN model produced 

high enough accuracies to detect WUI versus not-WUI, as did the Microsoft building dataset 

(Bar-Massada, 2021; Carlson et al., 2022). A building density threshold (6.17 units/km2) is 

used for WUI mapping, which allows for some error. As long as the threshold is met, and it 

often is in urban areas, the WUI will correctly be detected. Ultimately, my first chapter 

results found that CNNs performed best in areas with sparse vegetation and although CNNs 

perform well enough to detect WUI vs not-WUI, results should be interpreted with caution 

when evaluating building counts or assessing building destruction.  

Second Chapter: Hexagon WUI mapping chapter  

The WUI has grown globally. Unfortunately, it is difficult to study long-term WUI growth 

because WUI maps do not date before the 1990s since building and land cover data are not 

available for the past, especially pre-1980s when 30 m Landsat became available. However, 

high-resolution spy satellite imagery from the Hexagon program is available and may be 

used to create WUI maps for the 1970s. In my first chapter, I learned that CNNs perform 

with high enough accuracies to detect WUI and not-WUI areas. For my second chapter, I 

wanted to expand on the use of CNNs and extract building information from Hexagon 

imagery for my study areas in Southern California, US, and New South Wales, Australia. 
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Observing patterns of growth and reduction in the WUI in different regions of the world may 

provide examples of successful or unsuccessful land use practices for mitigating wildfire 

risk. Additionally, I used an object-oriented approach to extract land cover data from 

Hexagon. To study WUI change in the last half-century, we also created current WUI maps 

using the Microsoft building footprint dataset (updated in the late 2010s, early 2020s), and 

for land cover, we used the European Space Agency WorldCover (updated 2020) dataset for 

the Australia study area and the National Land Cover Database (updated 2019) dataset for the 

US study area.  

My second chapter research questions were: (1) Can I use historical satellite imagery from 

Hexagon to extract building data with CNNs and land cover data with an object-oriented 

classification approach to accurately map the WUI? (2) Has there been WUI growth or 

reduction in my study areas, and if so, what are the major reasons for WUI change? 

In my second chapter, I found during the accuracy assessment that the final WUI maps had 

an overall accuracy of 94% for the US study area and 100% for the Australia study area. The 

object-oriented classification for deriving land cover was moderately accurate. The US study 

area had an overall accuracy of 80±3% and the Australia study area had an overall accuracy 

of 77±4%. I found that there was sometimes confusion between agriculture and wildland 

vegetation but this only affected the WUI maps for the US study area. For the US WUI maps, 

the 6% that was not correct was solely due to the misclassification of agriculture as wildland 

vegetation. This caused some areas to be defined as intermix WUI instead of interface WUI. 

However, those areas were still correctly defined as the WUI. Additionally, I found that the 
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WUI grew by 7 percentage points from 1973 to the present-day in the US study area, and the 

WUI grew by 34 percentage points from 1976 to the present-day in the Australia study area.  

I found the CNN model had low to moderate accuracies at detecting buildings, and the 

threshold for defining areas as WUI or not-WUI allowed for some building detection errors. 

The US study area CNN model had an overall accuracy of 80% with 2% commission errors 

and 20% omission errors. For the Australia study area, the CNN model had an overall 

accuracy of 60% with 36% commission errors and 40% omission errors. Overall, I found that 

the CNN model was accurate enough to detect the WUI vs not-WUI, and the CNN model did 

not cause a false WUI classification in any instance. Ultimately, my results demonstrate that 

CNNs and object-oriented classification methods perform well enough to map the WUI with 

high accuracy. My second chapter results also highlights the value of using historical spy 

satellite imagery, especially for studying the WUI, and other long-term land use change 

processes.  
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Abstract 

Wildland-urban interface (WUI) maps identify areas with wildfire risk, but they are often not 

updated frequently due to the lack of building data. Convolutional neural networks (CNNs) 

can extract building locations from remote sensing data, but their accuracy in WUI areas is 

unknown. Additionally, CNNs are computationally intensive and technically complex 

making it challenging for end users, such as those who use or create WUI maps, to apply. 

Our aim was to map buildings pre- and post-wildfire and estimate building destruction for 

three California wildfires: Camp, Tubbs, and Woolsey. We did this by evaluating and 

utilizing a CNN-based building dataset from Microsoft and a CNN model from Esri to detect 

buildings from high-resolution satellite imagery. This dataset and model represent to end 

users the state-of-the-art of what is readily available for potential WUI mapping. We found 

only moderate accuracies for the Microsoft dataset and the Esri CNN model and a severe 

underestimation of buildings and their destruction rates where trees occluded buildings. The 

Esri CNN model performed best post-fire with accuracies ≥ 73%. Existing CNNs may be 

used with moderate accuracy for identifying individual buildings post-fire and mapping the 

extent of the WUI. However, CNNs are not accurate enough for post-fire damage 

assessments or building counts in the WUI. 

Keywords 

Housing growth, urbanization, wildland fire, wildfire hazard, machine learning, aerial 

photography, building detection, wildfire destruction 
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Introduction 

Wildfires largely affect communities in the wildland-urban interface (WUI), the area where 

buildings intermix or intermingle with wildland vegetation. In the U.S., housing in the WUI 

has grown rapidly since 1990 (Keeley et al., 1999; Radeloff et al., 2018), and increasingly 

severe wildfire seasons have resulted in record-setting destruction of homes (Cruz et al., 

2012; Kramer et al., 2019; Tedim et al., 2020). Although wildfires are a natural phenomenon, 

climate change, human ignitions, and alteration of fuels have changed historical fire regimes 

(Bowman et al., 2009; Chuvieco et al., 2014; Marlon et al., 2009). On the one hand, fire 

suppression has reduced fire frequency in many areas, especially the frequency of lower-

intensity surface fires (Agee and Skinner, 2005; Smith et al., 2022; Syphard et al., 2007). On 

the other hand, wildfires have been introduced to ecosystems not accustomed to them 

(Chuvieco et al., 2014), and in some areas, there has been an increase in fire severity and 

frequency compared to historical fire regimes (Bowman et al., 2009; Chuvieco et al., 2014). 

More frequent wildfires have many far-reaching ecological and socioeconomic impacts, 

including the increased risk of building destruction.  

WUI maps are useful for risk assessments and identifying communities that experience high 

wildfire risk. The WUI has been mapped for many regions including Central Argentina 

(Argañaraz et al., 2017), the European Union (Modugno et al., 2016), Lebanon (Mhawej et 

al., 2017), and the United States (Radeloff et al., 2018). Some drivers of WUI growth include 

recreational amenities (Godoy et al., 2019), forest regrowth (Kaim et al., 2018), and, 

generally, new developments as people move towards more rural areas adjacent to or within 

wildland vegetation (Hammer et al., 2009). In the future, the WUI is likely to continue 
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growing as people seek access to natural amenities and ecosystem services (Radeloff et al., 

2018). WUI growth has several negative environmental effects, such as habitat loss, 

introduction and spread of invasive species, pollutants from nearby settlements and roads, 

and wildfire ignition (Bar-Massada et al., 2014). 

Unfortunately, WUI maps are challenging to update frequently. WUI maps require two 

inputs – wildland vegetation data and building data. The latter is the most difficult to acquire 

since most building datasets are not updated frequently enough to account for increased 

urbanization. In the United States, housing density data is available from the U.S. Census, 

but Census data is only available every decade (Radeloff et al., 2018, 2005; Stewart et al., 

2007). Furthermore, WUI maps that use Census data are often too coarse for building-level 

analysis and risk assessments (Carlson et al., 2022), and do not capture where buildings were 

destroyed by wildfires. However, new remote sensing methods derived from algorithms for 

object or image recognition may allow for mapping the WUI with finer spatial resolution and 

for efficient updates to WUI maps (Bar-Massada, 2021). Specifically, convolutional neural 

networks (CNNs) and spatial data can be applied for large-area classifications (Postadjian et 

al., 2017). CNNs have been utilized for various remote sensing applications such as disaster 

response (Dong et al., 2021; Zheng et al., 2021) and land cover mapping (Li et al., 2022; 

Wambugu et al., 2021). CNNs utilize spectral and spatial properties as they relate to each 

other, unlike pixel-based classifications, which use only spectral information. As such, CNNs 

are efficient, especially when compared to hand digitizing objects (Brodrick et al., 2019).  

While CNNs are very powerful, they are also fairly demanding in terms of computing power, 

size of training datasets, and technical sophistication of users. Particularly, the creation of a 
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customized CNN model from scratch is challenging for a non-computer scientist because it is 

not clear which CNN structure will detect buildings best (Kattenborn et al., 2021). 

Additionally, CNNs require a large, diverse training dataset, which often is not available, and 

resources may limit training dataset collection (Song et al., 2019). However, there are both 

existing CNN-derived building datasets and pre-trained CNN models (Zhu et al., 2017) 

which represent for many end users the state-of-the-art datasets or models that they can use, 

raising the question of how accurate either are. 

An excellent example of the power of CNNs to map objects for large areas is Microsoft’s 

nationwide building footprint dataset. The Microsoft building dataset is derived from high-

resolution satellite data. In the United States, the reported overall classification accuracies of 

the Microsoft building footprints are 98.5% precision and 92.4% recall (Microsoft, 2018). 

The Microsoft building dataset has been used for WUI mapping with generally high accuracy 

in California (Bar-Massada, 2021) and across the United States (Carlson et al., 2022). We 

selected this dataset because it is the premier broad-scale building dataset derived from 

CNNs that is available. The Microsoft dataset was the first to provide building locations at a 

continental scale when it was initially released in 2015, and the U.S. has been continuously 

updated since. Furthermore, Microsoft is now providing similar data for most of Africa and 

Europe, and Google has also released a comparable CNN-based building dataset for Africa. 

We focus on building detection in the WUI because of a) the importance of the WUI for 

wildfire management and b) the challenges when identifying buildings in the WUI given the 

density and proximity of vegetation. Overhanging trees may occlude buildings and affect the 

accuracy of building footprints produced by either hand digitization or image classifications 
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(Bittner et al., 2018; Hoeser and Kuenzer, 2020; Kramer et al., 2019). Vegetation cover is 

most likely in the intermix WUI, potentially causing a bias when assessing destruction in the 

interface versus the intermix WUI. However, CNNs may detect buildings near vegetation 

that pixel-based methods may have missed. It is not clear what the accuracy of the Microsoft 

building dataset is where trees occlude buildings. 

An alternative to the analysis of existing CNN-derived building datasets is to apply existing 

CNN models to pre- and post-fire remote sensing imagery. One example of a pre-trained 

CNN model is the Building Footprint Extraction – USA model by Environmental Systems 

Research Institute (Esri). The Esri CNN model can be applied to multi-band high-resolution 

imagery to extract building locations, and Esri reported that the average precision score is 

71.8% (Esri, 2021). An advantage of using the Esri CNN model is that it has customizable 

parameters and can be implemented in any study area where high-resolution imagery is 

available. However, the reported accuracies appear to mainly represent the results in urban 

areas, where most buildings are located, and it is not clear what the accuracy is in areas with 

dense vegetation cover such as the WUI. We selected this model because, like the Microsoft 

data, it is the most accessible to end users. Esri is globally a leading GIS software program, 

and many natural resource management agencies are already using Esri software to manage 

their spatial data. Documentation and default parameters make this model easier to use than 

other available CNN models because it can be applied without modifications or training data, 

but permits tuning to local conditions. 

 In summary, our goal was to examine how accurately both existing CNN-based building 

datasets and existing CNN models can identify building locations pre- and post-wildfire and 
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estimate building destruction. To meet this goal, we evaluated the accuracy of CNNs for 

building detection in the WUI as available in (a) an existing dataset, from Microsoft, and (b) 

an existing CNN model, from Esri for three destructive California wildfires: Camp, Tubbs, 

and Woolsey. Specifically, we had three research questions: (1) Can the Esri CNN model 

detect buildings in the WUI as well as or better than the Microsoft building dataset? (2) Does 

the Esri CNN model correctly detect intact buildings pre- and post-fire and correctly not 

detect destroyed buildings post-fire? (3) Do building characteristics and vegetation density 

influence building detection and destruction rates? We expect that the Esri CNN model and 

Microsoft building dataset would have similar accuracies and that CNNs would detect 

building pre-fire and post-fire overall well, but with lower accuracy in the intermix WUI due 

to occluding vegetation. Ultimately, we aim to demonstrate to end users the benefits and 

drawbacks of utilizing CNNs for WUI mapping and post-fire damage assessment via either a 

readily available building dataset or a pre-trained CNN model. 

Methods 

Study area 

California is an ideal study area to assess whether CNNs provide accurate results for building 

identification before and after fires due to its long history of destructive, deadly, and costly 

wildfires. Most of California is fire-prone with fuel-dominated and wind-dominated fires, 

and its Mediterranean-climate shrublands are a fuel source that can drive high-intensity fires 

when ignited (Keeley et al., 1999; Keeley and Syphard, 2019). Fire suppression and 

increased anthropogenic ignitions have altered California fire regimes, resulting in increased 

fire frequency (Keeley and Fotheringham, 2003) and suppression cost. In California, 
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wildfires have led to increased total structure damage over the last four decades (Buechi et 

al., 2021). In the 2020 California fire season alone, there were nearly 10,000 fires, which 

resulted in about 1.74 million hectares burned, 33 fatalities, and 10,500 buildings that were 

damaged or destroyed (CAL FIRE, 2021). The 2020 California fire season also marked the 

first “gigafire” when the August Complex Fire burned about 418,000 hectares (1,033,000 

acres).  

We analyzed three wildfires: Camp, Tubbs, and Woolsey (Figure 1). These three fires are 

among the top ten most destructive wildfires in California’s history (CAL FIRE, 2021). The 

Camp Fire is California’s most destructive and deadliest wildfire, burning 62,242 hectares, 

destroying 18,804 buildings, and killing 85 people. The Tubbs Fire burned 14,895 hectares, 

destroyed 5,636 structures, and killed 22 people while the Woolsey Fire burned 39,233 

hectares, destroyed 1,643 structures, and killed three people.  

Data 

The California Department of Forestry and Fire (CAL FIRE) collects data on unaffected, 

damaged, and destroyed buildings to assess the extent of wildfire damage. Through the 

California Public Records Act, we accessed this ground collected damage dataset, which we 

refer to as the CAL FIRE ground-truth dataset, to assess building loss for the Camp, Tubbs, 

and Woolsey Fires. Damage is classified as: No Damage, Affected (1-9% of the building 

damaged), Minor (10-25%), Major (26-50%), and Destroyed (> 50%). In all three fires, we 

found that buildings classified as > 50% destroyed were completely burned down. We used 

the CAL FIRE ground-truth dataset to verify the results from the Esri CNN Model and 
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Microsoft building dataset. We also obtained fire perimeters from CAL FIRE for the Camp 

Fire, Tubbs Fire, and Woolsey Fire (CAL FIRE FRAP).  

To assess whether CNN accuracy differed by WUI type, we used an independent WUI 

classification based on the 2010 United States Census data to identify intermix and interface 

WUI (Radeloff et al., 2018). Within the three fire perimeters, about 27% was in the intermix 

WUI and 4% was in the interface WUI. The other 68% was uninhabited or did not have 

enough wildland vegetation to qualify as WUI. 

The Microsoft United States building footprint dataset, first released in 2018, contains 

129,591,852 building footprints (as of April 2022) derived from Bing Imagery and a CNN 

semantic segmentation algorithm (Microsoft, 2018). Microsoft applied Deep Neural 

Networks and ResNet34 with RefineNet up-sampling layers to detect buildings from Bing 

imagery (Microsoft, 2018). The Microsoft building dataset was the first dataset to 

demonstrate that CNNs can map building footprints at a national scale and was only in 2021 

surpassed in size by Google’s Africa-wide building footprint dataset (Sirko et al., 2021). 

Creating Buildings Footprints with the Esri CNN Model 

We also created our own building footprint dataset pre- and post-fire with the Esri CNN 

model. The Esri CNN model uses a Mask Region-based CNN (Mask R-CNN) architecture to 

determine the location of intact buildings. The Mask R-CNN architecture creates a high-

quality segmentation mask while concurrently detecting objects in the imagery and is simple 

to train, while highly accurate (He et al., 2018). The Esri CNN model is pre-trained, uses 

ArcGIS API for Python to implement the Mask R-CNN architecture, and maps polygons for 

each building (Figure 2).  
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We applied the Esri CNN model to National Agriculture Imagery Program (NAIP) imagery 

(Earth Resources Observation and Science Center, 2017). We used NAIP imagery taken 

before (1.5 years maximum) and after (2 years maximum) each wildfire. NAIP imagery 

typically has no more than 10% cloud cover per quarter quad tile, and it is acquired during 

the growing season in the United States. Since 2016, 0.6 m NAIP imagery is acquired every 

two years in select states. NAIP imagery is typically available with four bands (blue, green, 

red, and near-infrared), and nadir collections reduce the effects of shadows. 

Esri CNN Model Building Footprints and Microsoft Building Footprints 

We compared the ability of the Microsoft building dataset and the Esri CNN model to detect 

post-fire buildings. We selected this model and dataset because they represent state-of-the-art 

datasets, and are readily available to researchers and resource managers alike. We evaluated 

the accuracy of both the Microsoft dataset and the Esri CNN model output by using CAL 

FIRE ground-truth data. We were not able to evaluate the accuracy of the Microsoft building 

data pre-fire due to differences between the date of the wildfire and the date when the 

Microsoft building dataset was last updated (Table 1). Since the Microsoft building dataset 

was sometimes updated before the wildfire, the dataset may have marked destroyed buildings 

as intact. Thus, a pre-fire comparison was not possible and our evaluation of the Microsoft 

building dataset was limited to a post-fire comparison. Additionally, we only analyzed 

buildings from the Esri CNN model that the CAL FIRE ground-truth dataset reported were 

not affected (0% damage) by the fires. Therefore, there was no concern about whether the 

Microsoft dataset or Esri CNN model detected a destroyed building or a building that was 
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destroyed and then rebuilt. Lastly, we considered a building as correctly detected if a 

building footprint at least partially overlapped a building in the NAIP imagery.  

Identifying Destroyed and Intact Buildings Pre-Fire and Post-Fire 

We applied the Esri CNN model on NAIP imagery to create pre - and post-fire building 

footprint datasets. We then used the Esri CNN model to estimate where buildings had been 

destroyed in the intermix and interface WUI. To identify the locations of destroyed buildings, 

we compared the Esri CNN model building footprints for pre-fire and post-fire. If a building 

was present pre-fire but absent post-fire, we inferred that the building was destroyed. We 

used the CAL FIRE ground-truth dataset to verify whether the building had indeed been 

destroyed. 

For each fire’s accuracy assessment, we conducted a stratified random sample on our post-

classification change detection results (Figure 3). First, we manually examined ≥ 8% of the 

buildings that the Esri CNN model detected in each fire. We visually inspected every 

building within the stratified random sample in the NAIP imagery to assess whether the Esri 

CNN model correctly detected a building pre-fire and post-fire, if that building was not 

destroyed. If a building was destroyed, we checked to see that the Esri CNN model did not 

detect a building after the fire, and we used the CAL FIRE ground-truth dataset to verify 

building destruction. We then calculated the post-classification change detection accuracy for 

each fire. We also estimated the overall accuracy, errors of commission, and errors of 

omission for each wildfire, pre-fire and post-fire. Errors of commission reflected how many 

buildings were detected in locations where no building was present in the NAIP imagery, and 



12 

 

errors of omission reflected how many buildings were not detected where a building was 

actually present in the NAIP imagery. 

Factors Affecting CNN Results 

We collected additional data during our accuracy assessment such as building type and 

percent vegetation cover to assess which variables may have influenced CNN accuracy. We 

also made note of whether there was a presence/absence of a Microsoft footprint and whether 

a destroyed building was rebuilt. For building type, we documented if a building was major, 

such as residential or commercial, or minor, such as a shed, utility building, or a detached 

garage. We verified building type using the CAL FIRE ground-truth dataset. For percent 

vegetation cover directly overtop a building, we noted if the building had no vegetation cover 

(< 50%), partial tree cover (< 99%), and full tree cover (100%). 

We fit a spatial logistic regression model in R Studio using the spaMM package (RStudio 

Team; Rousset and Ferdy, 2004) for all the buildings included in our accuracy assessment for 

the three fires. We modeled the probability of a discrete outcome which was building 

destruction (destroyed, not destroyed) given our two predictor variables which were tree 

cover (none, partial, full) and fire (Camp, Tubbs, Woolsey). Since our data is observational 

and not randomized in space, we checked for spatial autocorrelation in the data by fitting a 

non-spatial regression model, assuming independence in space, and we plotted the residuals 

which showed very little evidence of autocorrelation. However, after using Moran’s I test for 

distance-based autocorrelation, we found significant evidence of spatial autocorrelation in the 

data. Therefore, we fit our spatial logistic regression model considering the spatial 

dependency in the residuals and assessed the significance of regression coefficients to 
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determine whether overhanging vegetation influenced the likelihood of a building being 

destroyed. 

Results 

Post-Fire Building Detection with CNNs 

Both the Microsoft building dataset and the Esri CNN post-fire model results had moderate 

to low overall accuracies for the three fires. Neither dataset performed substantially better 

than the other. The Microsoft building dataset had a post-fire accuracy of 48% for the Camp 

Fire, 60% for the Tubbs Fire, and 58% for the Woolsey Fire. The Esri CNN model had a 

post-fire accuracy of 74% for the Camp Fire, 29% for the Tubbs Fire, and 58% for the 

Woolsey Fire. 

Locations of Buildings and Building Destruction with CNNs 

In general, the Esri CNN model performed well in areas without dense vegetation, such as 

the interface WUI (Table 2). However, we found high rates of omission errors in forested 

areas due to trees obscuring buildings, especially in the intermix WUI. The accuracy 

increased for all three fires when examining only major buildings and buildings with < 50% 

tree cover (Table 2) showing that ideal areas for CNNs were those without dense vegetation 

near buildings, such as the interface WUI. In the interface WUI, the pre- and post-fire CNN 

model overall accuracy for major buildings with < 50% tree cover was 76% for the Camp 

Fire, 86% for the Tubbs Fire, and 72% for the Woolsey Fire. Densely forested areas of all 

three fires had very low accuracy. Suburban and urban areas had overall higher accuracy than 

rural areas. 
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Based on buildings detected by the Esri CNN model, 10,549 buildings were destroyed 

(6,186, 3,320, and 1,043 in the Camp, Tubbs, and Woolsey fires, respectively). However, the 

actual number of buildings destroyed in the CAL FIRE ground-truth dataset was 26,024 and 

hence much higher (18,798, 5,636, and 1,590, respectively), indicating that the Esri CNN 

model severely underestimated building destruction by 33% to 66% (41% in total). 

In our accuracy assessment of the Esri CNN model results, we also calculated errors of 

commission and errors of omission for each fire, pre- and post-fire (Table 3). Commission 

errors were generally low (≤ 4%). However, omission errors were large and ranged between 

5% and 58%. We found that the intermix WUI had more omission errors than the interface 

WUI both pre- and post-fire. We also found that errors of omission were higher pre-fire than 

post-fire. The reason for both was likely due to tree cover in the intermix WUI and before 

fires occurred. Generally, overall accuracy was higher post-fire, and commission and 

omission errors were lower because a considerable portion of the tree cover was burned, 

making buildings more visible. 

During our accuracy assessment, we found that rebuilding was minimal as expected since the 

post-fire imagery used for the Esri CNN model was taken less than 2 years after each fire. 

For the Camp Fire and Tubbs Fire, only 4% of destroyed buildings were rebuilt while for the 

Woolsey Fire, 3% of destroyed buildings were rebuilt. For < 2% of buildings, we could not 

tell if a building was rebuilt due to dense vegetation. 

Factors Influencing CNN Accuracy and Building Destruction 

Based on our accuracy assessment, several factors influenced the CNN’s ability to detect 

buildings. Building type influenced CNN accuracy, especially for the Esri CNN model, 
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which missed many minor buildings. The amount of vegetation obscuring a building also 

affected the accuracy of the CNNs, and buildings with full tree cover were often not detected 

by both the Esri CNN model and the Microsoft building dataset (Figure 4). Building loss 

estimates were thus biased due to the influence of vegetation on CNNs, resulting in the 

under-detection of buildings. Building detection decreased with increased vegetation, and 

according to our spatial logistic regression model, buildings with full tree cover have a higher 

likelihood of being destroyed by a wildfire (Table 4). This could further negatively bias 

building loss estimates because destroyed buildings with full tree cover would not be 

detected pre-fire or post-fire. 

The low accuracy of building detections in forested areas resulted in a strong bias when 

assessing building destruction in intermix versus interface WUI. Overall, the Esri CNN 

model underestimated how many buildings were destroyed in the intermix WUI (Figure 5). 

For the entire study area, the Esri CNN model found that 49% of all destroyed buildings were 

in the intermix WUI while 50% were in the interface WUI, compared to 56% versus 30% in 

the CAL FIRE ground-truth dataset. Underestimation in forested areas is concerning because 

we found that buildings with overhanging vegetation have a higher probability of being 

destroyed. According to our spatial logistic regression model, among the buildings that the 

Esri CNN model identified, those with full tree cover had a 95% probability of being 

destroyed. Buildings with partial tree cover had a 77% lower risk of being destroyed than a 

building with full tree cover, and buildings with no tree cover had an 88% lower risk of being 

destroyed than a building with full tree cover. Because the Esri CNN model missed many 
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buildings pre-fire with full tree cover that may have been destroyed, this is a conservative 

estimate. 

Discussion 

CNNs offer great promise for mapping building footprints efficiently for large areas and 

could potentially be used to assess building destruction from wildfires rapidly. Although our 

results show that existing CNNs applied to high-resolution aerial imagery are not accurate 

enough for building-level assessments, accuracy is generally high enough to assess whether 

an area is WUI or not (Bar-Massada, 2021; Carlson et al., 2022). However, accuracy is lower 

for minor buildings and buildings partially or fully covered by trees, and that creates a bias 

when estimating how many buildings were destroyed in the interface versus intermix WUI 

because a larger fraction of buildings in the intermix WUI are missed. 

The accuracies from the Esri CNN model and the Microsoft building dataset had substantial 

variability when mapping buildings post-fire. Although the accuracies varied, both datasets 

worked well in ideal cases, such as those without dense vegetation near buildings. CNNs 

applied to these areas may allow for point-based WUI mapping. When creating WUI maps, 

some omitted buildings still allow for accurate WUI mapping as long as the building density 

threshold is still met (Carlson et al., 2022). The US Federal Register’s definition of the WUI 

does not include isolated buildings in or near wildland vegetation (USDA and USDI, 2001). 

Instead, minimum building density thresholds are defined to identify communities, or 

clusters of buildings. This makes footprint-based WUI maps robust to omission errors, and, 

the accuracy of the classification into WUI versus non-WUI may still be high, even when the 

accuracy of the building detection itself is low. However, estimates of the number of 
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buildings in the WUI based on CNNs are likely erroneous, and so would be estimates of 

building growth in the WUI. Furthermore, there were regional biases in that the Microsoft 

building dataset included the majority of buildings in some regions, but not in others.  

Uneven building detection by CNNs causes a bias when identifying what proportion of 

buildings are destroyed in intermix versus interface WUI. The reason is that interface WUI 

had an overall higher accuracy for detecting buildings individually, which means that the pre-

fire baseline is more accurate. CNNs may be more beneficial to mapping the interface WUI. 

For destructive California fires that burned between 1985 to 2013, the interface WUI 

experienced the greatest total amount of building destruction (Kramer et al., 2019). CNNs 

can assist in the mapping of some high fire risk areas, such as the interface WUI. However, 

in intermix WUI, too many pre-fire buildings were missed to provide an accurate estimate of 

rates of destruction by wildfires. 

We found that occluding vegetation and building size limited CNN accuracy both pre- and 

post-fire. Occlusion by vegetation, and also by shadows, is a common problem for building 

detection (Khoshboresh-Masouleh et al., 2020). However, when mapping buildings in the 

WUI, buildings occluded by vegetation are especially important because they have an 

elevated risk of destruction during wildfires because the vegetation near provides fuel that 

can potentially ignite buildings (Cohen, 2000; Syphard et al., 2014). For example, in 

Australia, there is a strong correlation between overhanging vegetation and building 

destruction from wildfires (Leonard et al., 2009). Similarly, we found that buildings that 

were fully occluded by vegetation had the highest probability of being destroyed, whereas 

buildings with no occluding vegetation have the smallest probability of being destroyed.  
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Limitations 

We found several limitations when applying CNNs on aerial imagery. The Esri CNN model 

requires imagery with < 1 m resolution that is taken at close to nadir. However, the 

availability of such data was limited for our study area and elsewhere too. We selected NAIP 

for our study because the imagery has a resolution of 0.6 meters. However, because the NAIP 

imagery was taken over several days, sun angles differed, and the appearance of shadows 

was greater in some images. Also, NAIP is available in the United States only, and only 

during the growing season, which means that trees are fully leafed out. Our study area had 

little to no deciduous forests, but in study areas with deciduous forests, leaf-off imagery 

would be preferable. Imagery from other sensors that penetrate tree canopies may be 

effective for building detection. For example, LIDAR data (Gamal et al., 2020; Griffiths and 

Boehm, 2019) and synthetic aperture radar data (Fibæk et al., 2021; Xu et al., 2020) have 

been used with CNNs to extract building information. 

Conclusion 

CNNs applied to aerial imagery are capable of detecting individual building footprints in 

areas with low vegetation cover. In such areas, CNNs could provide detailed maps of 

building locations for wildfire management and mapping the WUI. However, our results 

indicated that CNNs have lower accuracy where vegetation is dense and where buildings are 

smaller than a single-family residential home, such as mobile home communities. In these 

areas, building maps derived from CNNs may be accurate enough to map WUI versus non-

WUI, but not accurate enough to estimate building counts or to assess destruction due to 

wildfires. 
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Table 1: Acquisition dates 

Dates of National Agricultural Imagery Program (NAIP) acquisition, fire dates, and 

Microsoft building footprint acquisition. 

 

 Date of Fire 

(Started – 

Contained) 

Dates of 

NAIP 

Acquisition 

– Pre Fire 

Dates of NAIP 

Acquisition – 

Post Fire 

Dates of 

Microsoft 

Building 

Acquisition  

Camp Fire 2018/11/08 - 25 2018/07/16 

2018/07/18 

2018/07/21 

2020/07/09 

2020/07/10 

2018/12 

Tubbs Fire 2017/10/08 – 

2018/02/09 

2016/06/11 2018/07/25 2019/07 – 

2020/10 

Woolsey 

Fire 

2018/11/08 – 

2019/01/04 

2018/07/22 2020/05/15 

2020/05/22 

2020/05/24 

2018/04 – 

2019/04 
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Table 2: Esri CNN Model Pre- and Post-Fire Accuracies 

Esri convolutional neural network (CNN) model pre-fire and post-fire accuracy for the % of 

building correctly identified in the interface and intermix wildland-urban interface (WUI) 

across the Camp Fire, Tubbs Fire, and Woolsey Fire perimeters. A correctly identified 

building was correctly detected in the pre-fire or post-fire image (destroyed or not). 

Accuracies are reported for the subsets of the stratified random sample accuracy assessment 

on our post-classification change detection. The Camp Fire, Tubbs Fire, and Woolsey Fire 

have 772, 441, and 709 samples respectively. 
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Esri CNN 

Model Pre- 

and Post-Fire 

Accuracy (%) 

All 

Buildings, 

Any Tree 

Cover 

All 

Buildings, < 

50% Tree 

Cover 

Major Buildings 

Only, 

Any Tree Cover 

Major 

Buildings 

Only, < 

50% Tree 

Cover 

Camp Fire 

Intermix 

Interface 

 

48% 

54% 

 

71% 

68% 

 

56% 

65% 

 

78% 

76% 

Tubbs Fire 

Intermix 

Interface 

 

37% 

83% 

 

51% 

84% 

 

48% 

87% 

 

62% 

86% 

Woolsey Fire 

Intermix 

Interface 

 

41% 

61% 

 

50% 

66% 

 

48% 

71% 

 

53% 

72% 
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Table 3: Overall accuracy, errors of omission, and errors of commission 

Pre- and post-fire overall accuracy, errors of omission, and errors of commission for the Esri 

convolutional neural network (CNN) model. 
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 Intermix Interface 

 Pre-Fire Post-Fire Pre-Fire Post-Fire 

 Errors of Commission 

Camp 1% 2% 0% 2% 

Tubbs 4% 2% 0% 0% 

Woolsey 4% 3% 1% 2% 

 Errors of Omission 

Camp 49% 5% 40% 10% 

Tubbs 58% 18% 10% 10% 

Woolsey 50% 27% 31% 25% 

 Overall Accuracy 

Camp 51% 93% 60% 90% 

Tubbs 42% 82% 90% 90% 

Woolsey 50% 73% 69% 75% 
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Table 4: Spatial logistic regression model 

Summary table for the spatial logistic regression model. Coefficients are the log odds ratio of 

destruction.  

Tree Cover Coefficients (Log Odds 

Ratio) 

P-Value 

None vs Full -2.31 << 1 

Partial vs Full -1.30 << 1 
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Figure 1: Overview map of the fires of interest. 



35 

 

 

Figure 2: Detected pre-fire building footprints from the Esri convolutional neural 

network (CNN) model within a portion of the Woolsey Fire perimeter in Calabasas, 

California. Building footprints are overlaid on National Agriculture Imagery Program 

(NAIP) acquired pre-Woolsey Fire. 
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Figure 3: During our accuracy assessment, we compared the Microsoft building dataset 

and the Esri convolutional neural network (CNN) model results to the CAL FIRE 

dataset. We converted the building polygons from the Esri CNN model to point data. In 

our pre-fire image (above), we looked at every building to verify the Esri CNN properly 

detected a building. In our post-fire image (below), we looked at every destroyed 

building to verify that the Esri CNN model did not detect a building. For buildings that 

were not destroyed, we looked to see if the Esri CNN model detected a building. We 

then verified building destruction with the CAL FIRE dataset to see which buildings 

had been destroyed and not destroyed. Lastly, we checked to see if the Microsoft 

building dataset detected a building in the post-fire imagery. 
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Figure 4: Tree cover is detrimental to the Microsoft dataset and the Esri convolutional 

neural network (CNN) model accuracies as seen in the area near Paradise, California, 

where the Camp Fire was. The NAIP imagery is pre-fire.    
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Figure 5: Esri convolutional neural network (CNN) model and CAL FIRE estimation 

for where buildings were destroyed when looking at destroyed buildings only. 

  

Cal Fire Model Cal Fire Model Cal Fire Model

Camp Fire Tubbs Fire Woolsey Fire

Interface 30% 30% 35% 43% 46% 43%

Intermix 67% 64% 36% 30% 41% 26%

Not-WUI 2% 5% 28% 26% 13% 31%
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Appendix A. Esri CNN Model Arguments 

The model has five main arguments: (1) padding, (2) batch size, (3) threshold, (4) return 

bounding boxes, and (5) tile size.  

The padding is the bordering area where the model discards detections. Changing the 

padding will ultimately change the stride, the amount of movement over each image. We 

kept the default value of 128 for all three fires.  

The batch size indicates the number of image tiles the GPU will process at one time during 

inferencing. Inferencing refers to the process where a trained model, such as the one used 

here, makes predictions against new data. The model default is four. The batch size may be 

limited by GPU memory. The GPU we used ran out of memory with a batch size of four, so 

we applied a batch size of two for all three fires. 

The model outputs a level of confidence for each building prediction, and the threshold 

assigns the minimum level of confidence the model output must have. For example, if the 

threshold is set to 0.6, a building is detected only if the model is at least 60% confident the 

feature is a building. Threshold was the most influential argument, varying for each fire and 

each year. Once all the other parameters were set, we found that the default of 0.9 was too 

high for each fire and year. We adjusted the value in increments of .05 at first until we started 

getting high levels of detection and then adjusted in increments of 0.01 until we found a 

threshold with the highest accuracy. We found that a building foundation is sometimes left 

behind after a building is destroyed by a fire, and the foundation sometimes appears like an 
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intact building in aerial imagery. To prevent false detections of destroyed building 

foundations, the threshold was made higher post-fire.  

The return bounding boxes parameter is either True or False. If set to True, a bounding box is 

returned around the building. Since we were interested in the buildings only and not the 

bounding boxes, we kept the default value, False. 

For tile size, we used the default value of 512. Adjusting the tile size did not noticeably 

improve the model results. 
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Abstract 

The wildland-urban interface (WUI), the area where the built environment intermixes or 

intermingles with wildland vegetation, has grown over the last several decades globally. 

Mapping WUI growth can be informative to land managers and policymakers, because the 

WUI is where many land management conflicts occur, such as human-wildlife conflicts, 

habitat fragmentation, and wildfires. However, WUI maps require two key pieces of 

information – building density and land cover. Building density and land cover information 

are often difficult to acquire, especially pre-1990s when global, high-resolution imagery was 

limited. Our goal was to test the use of the historical spy satellite Hexagon to extract building 

and land cover information and map the WUI. We used convolutional neural networks 

(CNNs) to extract building locations and an object-oriented classification to extract land 

cover data for the 1970s for two study areas, one in Southern California, United States and 

the other in New South Wales, Australia. We also created present-day WUI maps for 

comparison using the Microsoft building footprint dataset (updated in the late 2010s, early 

2020s) for the Australia and US study areas. For the land cover datasets, we used the 

National Land Cover Database (updated 2019) for our US study area and European Space 

Agency WorldCover dataset (updated 2020) for our Australia study area. In our US study 

area, the WUI covered 49% in 1973, and in our Australia study area, the WUI covered 6% in 

1976. The WUI grew by 7 percentage points in our US study area, and in our Australia study 

area, the WUI grew by 34 percentage points. In our US study area, the interface WUI grew 

faster than the intermix WUI while the opposite was true in our Australia study area, where 

only the intermix grew in size. Overall, we found that our final WUI maps had high 

accuracies for mapping the WUI area. We visually inspected 100 randomly placed circular 
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sample areas, and found that 94 samples and 100 samples in the US and Australia study 

areas, respectively, had the correct WUI classification. Our results demonstrate that the 

historical spy satellite Hexagon can provide valuable information for the 1970s. With CNNs 

and object-oriented classification methods, we can derive building and land cover 

information from historical spy satellite imagery and map the WUI accurately for the 1970s. 

Keywords 

panchromatic satellite imagery, spy satellites, land cover mapping, object-oriented analysis, 

convolutional neural networks 

Introduction 

The wildland-urban interface (WUI), the area where buildings intermix or intermingle with 

wildland vegetation, is a central location for human-environmental conflicts. The WUI is 

especially at-risk of wildfires partly because wildfire ignitions are concentrated here (Keeley 

and Fotheringham, 2003; Syphard et al., 2007), and in the US, human-caused ignitions 

disproportionally threaten residential homes (Mietkiewicz et al., 2020). The WUI is also 

where wildfires destroy the most buildings (Caggiano et al., 2020; Kramer et al., 2018). With 

housing developments near wildland vegetation and subsequent WUI growth, there is also 

increased habitat fragmentation and loss (Bar-Massada et al., 2014; Gonzalez-Abraham et al., 

2007; Zhang et al., 2008). Additionally, WUI growth increases the introduction and spread of 

invasive species, pollutants from nearby settlements and roads, and disease transfer (Bar-

Massada et al., 2014). Despite the many consequences of WUI growth, the WUI is projected 

to continue growing, and in the contiguous US, it is the fastest-growing land use type from 

2000-2010 (Radeloff et al., 2018). However, it is difficult to map the WUI prior to the 1990s 
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due to the lack of available data. The historical spy satellite Hexagon may be used to map the 

WUI for the 1970s and to study WUI growth over the last half a century.   

WUI maps essentially require two key pieces of information: building density data and land 

cover data, particularly wildland vegetation information. The WUI has been mapped for 

many regions including the US (Radeloff et al., 2018), south-central Chile (Miranda et al., 

2020), Central Argentina (Argañaraz et al., 2017), the Polish Carpathians (Kaim et al., 2018), 

Italy (D’Este et al., 2021), and Lebanon (Mhawej et al., 2017). The WUI is defined using 

minimum thresholds of buildings density, vegetation cover, and vegetation proximity 

(Stewart et al., 2007). Thresholds for the intermix WUI, the area where buildings and 

wildland vegetation intermingle, and the interface WUI, the area where buildings are 

adjacent to wildland vegetation, sometimes differ (Radeloff et al., 2005). In Central 

Argentina, the WUI was mapped by hand digitizing 276,700 buildings and using satellite 

imagery to derive vegetation information (Argañaraz et al., 2017). In the US, WUI maps 

have been made either using decadal Census block data and the National Land Cover 

Database (NLCD) (Radeloff et al., 2005; 2018), or from a point-based building dataset from 

Microsoft and NLCD for more spatially precise WUI maps (Bar-Massada, 2021; Carlson et 

al., 2022). However, WUI maps are not available before the 1990s, and generally, building 

density and land cover data are sparse for the past, especially before 30-m Landsat satellite 

data became available in the mid-1980s. 

Fortunately, declassified US spy satellites provide high-resolution spatial data as early as the 

1960s and ‘70s and may potentially be used to extract important building density and land 

cover information and to map the WUI. The US National Reconnaissance Office launched a 
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series of reconnaissance missions during the Cold War, and in 1971, the United States 

launched Hexagon to acquire high-resolution panchromatic imagery (Burnett, 2012). 

Hexagon was launched by the US military for reconnaissance, which means that it has high-

resolution and near-global coverage for the 1970-80s. Hexagon is available in 2 - 4 feet 

resolution and 20 - 30 feet resolution and select areas have color infrared imagery available 

at 2 - 4 feet resolution. Hexagon was declassified in 2011, and while Hexagon has been used 

occasionally for non-military applications such as glaciology (Holzer et al., 2015; Pieczonka 

et al., 2013; Zhou et al., 2018), seismology (Zhou et al., 2022), and archaeology (Fowler, 

2004), to our knowledge, Hexagon is largely unexploited for land use change studies and has 

not been used to study WUI growth.  

The WUI has grown because people seek access to natural amenities and ecosystems services 

(Radeloff et al., 2018). In the US, WUI growth is largely due to new development when 

people move towards more rural areas within or adjacent to wildland vegetation (Hammer et 

al., 2009), and the WUI area grew by 33% from 1990 to 2010 (Radeloff et al., 2018). In 

Patagonia, Argentina, the WUI area grew by 76% from 1981 to 2016, with tourism being an 

important driver behind housing development (Godoy et al., 2019). In Spain, building 

development near existing urban areas and the growth of wildland vegetation in abandoned 

agricultural farms and silvopastures have led to WUI growth (Navarro-Carrión et al., 2021). 

However, WUI area growth can also be caused by regrowth in forests. In the Polish 

Carpathians, both an increase in new buildings and forest cover were responsible for about 

13-21% of WUI area growth from 1860 to 2013 (Kaim et al., 2018). Identifying the reasons 



46 

 

for growth in a given area may provide valuable insights into how to limit future WUI 

growth.  

We analyzed Hexagon spy satellite imagery to extract building locations with CNNs, and 

land cover data with an object-oriented classification approach in order to create 1970s WUI 

maps for our US study area and Australia study area. Furthermore, we compared the 1970s 

WUI maps to the present-day (late 2010s, early 2020s) WUI maps, which we created with 

current building and land cover datasets. Our research questions are: (1) Can we use 

historical satellite imagery from Hexagon to extract building data with CNNs and land cover 

data with an object-oriented classification approach to accurately map the WUI? (2) Has 

there been WUI growth or reduction in our study areas, and if so, what are the major reasons 

for WUI change?  

Methods 

Study area 

Our two study areas are in Southern California, United States (~880 km2) and New South 

Wales, Australia (~1,100 km2). Both the US and Australia study areas have experienced 

destructive and deadly wildfire seasons. Our US study area is located in Southern California, 

in San Diego County. Our Australia study area is in New South Wales, roughly 50 km 

northwest of Sydney and near Blue Mountains National Park. We selected these areas 

because they have experienced increased wildfires and housing development growth. In 

addition, these areas had mostly cloud-free Hexagon imagery available.  
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Our study area in the US was where three destructive wildfires occurred: the Cedar Fire 

(2003), the Witch Fire (2007), and the Cocos Fire (2014). The Cedar Fire destroyed 3,021 

structures and burned about 111,000 hectares, the Witch Fire destroyed 1,711 structures and 

burned about 80,000 hectares, and the Cocos Fire destroyed 40 buildings and burned about 

800 hectares (CAL FIRE, 2003; 2007; 2014). The Australia study area is where the Gospers 

Mountain Fire occurred, which was the largest recorded wildfire in New South Wales, 

burning more than 51,000 hectares (Boer et al., 2020; Krogh et al., 2022) and destroying 90 

homes (Australian Disaster Resilience Knowledge Hub).  

Data 

Microsoft has mapped building footprints across the globe. Microsoft derives building 

footprint data from high-resolution satellite imagery using Deep Neural Networks and 

ResNet-34 with RefineNet up-sampling layers. We used the Microsoft building footprints to 

map the present-day WUI for both study areas. According to Microsoft’s reported overall 

classification accuracies, the United States building dataset has accuracies of 98.5% precision 

and 92.4% recall (Microsoft, 2020), and the Australia dataset of 98.6% precision and 65% 

recall (Microsoft, 2020). 

We analyzed Hexagon imagery to extract building and land cover information for the 1970s. 

We acquired Hexagon imagery via the United States Geological Survey’s (USGS) Earth 

Explorer (https://earthexplorer.usgs.gov) at 0.95 m resolution. We selected Hexagon images 

based on which had the best coverage and least amount of clouds for our study area.  

We rectified each scanned Hexagon image based on Structure from Motion (SfM) algorithms 

implemented in AgiSoft PhotoscanTM (Munteanu et al., 2020; Nita et al., 2018; Rendenieks et 

https://github.com/microsoft/USBuildingFootprints
https://github.com/microsoft/AustraliaBuildingFootprints
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al., 2020). Nita et al. (2018) developed our rectification approach. Hexagon imagery is 

available in stereoscopic coverage based on a forward and backward-facing camera. We 

georectified 3 scanned images for our US study area and four scanned images for our 

Australia study area (Table 1Table 5) by co-aligning them to generate a point-cloud, and then 

coordinates were assigned to the point cloud to generate orthophotos. Ultimately, we had one 

forward and one backward orthorectified image for each study area.  

To assess present-day land cover, we used the National Land Cover Database (NLCD) 

dataset for California and the European Space Agency (ESA) World Cover dataset for 

Australia. NLCD is based on 2019 Landsat 8 imagery and has a 30-m resolution (Dewitz, 

2021) while ESA WorldCover is based on 2020 Sentinel-1 and -2 imagery and has a 10-m 

resolution (Zanaga et al., 2021). We used NLCD instead of ESA WorldCover for our US 

study area because we found in our initial visual assessment that NLCD detected wildland 

vegetation better than ESA WorldCover.  

Extracting Building Data  

To extract building information from Hexagon imagery, we created a building detection 

CNN model within the Esri ArcPro software. We created two CNN models, one for each 

study area. We used the PyTorch framework using the Mask Region-based CNN (Mask R-

CNN) (He et al., 2018) architecture and a ResNet-50 backbone model. When we created the 

training datasets and trained the models, we only used the backward Hexagon image and not 

the forward image for both study areas. We found using only the backward image produced 

the best results, as buildings were brighter and more visible than the forward image. To 

create training data, we hand-digitized buildings in the backward Hexagon imagery. To 
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assess how many training samples were necessary, we trained the Mask R-CNN models in 

increments of 150-500 buildings at a time and monitored improvements in the model 

precision. Once the model precision stopped improving, we stopped adding training data. 

Our training dataset for our US study area had 3017 buildings, and our Australia study area 

had 750 buildings. For both models, we set aside 15% of the training data as validation. Our 

final model for the US study area had an average precision of 64% and our final model for 

Australia had an average precision score of 67%. Ultimately, our CNN model delineated 

building footprints. We converted these polygons to point data using the centroid of each 

polygon. 

Extracting Land Cover from Hexagon 

To extract land cover data from Hexagon for our two study areas, we used the approach 

developed in (Rizayeva et. al, unpubl.). This approach works entirely in Google Earth 

Engine. First, we performed segmentation to identify objects in the imagery. For this, we 

applied the Simple Non-Iterative Clustering (SNIC) segmentation algorithm (Achanta and 

Susstrunk, 2017). After testing various segmentation parameters, we selected parameters that 

yielded the optimal results without running out of user memory in Google Earth Engine, 

while ensuring that segments encompassed objects correctly. We used a segment size of 4 for 

California and 20 for Australia. We separated our segments into two categories after visual 

inspection: pure (100% of each segment has one land cover class) and mixed (more than one 

land cover class in each segment).  

For each segment, we calculated the mean greyness level, area, perimeter, width, height, and 

shape (Nghi and Mai, 2008), as well as texture metrics. We selected texture metrics that 
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emphasized intra-class variability (Farwell et al., 2021). We applied a 7x7 pixel moving 

window within each segment (Conners et al.,1984) and calculated object-based first-order 

metric standard deviation and second-order metrics entropy, homogeneity, and angular 

second moment. After, we applied a 10-fold Random Forest classification with majority 

voting (Cui et al., 2018) (.smileRandomForest) with a tree size of 100.  

We analyzed both the forward and backward Hexagon images when digitizing the training 

and validation data. In tests, combining both images produced higher classification accuracy 

than using just the forward or backward image separately. To collect our training and 

validation data, we created a point grid across our study area with 2 km spacing. In total, we 

had 236 points for our US study area and 277 points for our Australia study area. For each 

point, we visually inspected the Hexagon imagery and labeled each point according to one of 

five classes: forest, scrub, agriculture, urban, and open water. We used the open water class 

to mask out non-buildable areas and the forest and scrub class to identify areas of wildland 

vegetation.  

For our accuracy assessment of the land cover classification, we used a ShuffleSplit Cross-

Validation. We randomly selected 80% of points within pure segments for training and the 

other 20% of the points were used for validation. Also in our validation dataset, we randomly 

selected 20% of points within the mixed segments. This random selection was repeated ten 

times, and we randomly selected from the entire dataset for each iteration so values selected 

for one iteration could have potentially been selected again for other iterations. Lastly, we 

averaged the accuracies of the ten resulting classifications. 
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Creating the Final WUI Maps 

We created four WUI maps (Figure 6): 1) 1976 WUI map for our Australia study area, 2) 

present-day WUI map for our Australia study area, 3) 1973 WUI map for our US study area, 

and 4) present-day WUI map for our US study area.  

We created our WUI maps based on the WUI definitions from the US Federal Register 

(USDA & USDI, 2001). The intermix WUI is an area where housing density exceeds 6.17 

houses/km2 and has ≥ 50% wildland vegetation. The interface WUI is defined as an area 

where housing density exceeds 6.17 houses/km2 and has < 50% wildland vegetation but 

housing density is within 2.4 km of a wildland vegetation patch area of ≥ 5 km2. 

To map the WUI, we used a circular moving window algorithm (Bar-Massada et al., 2013) 

implemented in Python using the ArcPy library (Esri, 2019). Our WUI mapping algorithm 

required three key pieces of information: areas of open water, building information, and 

wildland vegetation information. We used our CNN model results for the 1970s building 

locations and the Microsoft dataset for our present-day building locations. Subsequently, we 

divided our land cover into wildland vegetation (forest, scrub), open water, and developed, or 

non-wildland vegetation (urban, agriculture). We did not use the urban and agriculture 

classes and only used the forest, scrub, and open water classes from our land cover datasets 

for our final WUI maps.  

Using the circular window algorithm, we classified every pixel in our study area using a 

circular window size of 500 m. We used this window size because this is the optimal size for 

providing enough spatial detail without mapping isolated buildings as WUI (Carlson et al., 

2022; Kaim et al., unpubl). For our first step, we found the number of building centroids and 
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the proportion of wildland vegetation within the 500 m window. Pixels with ≥ 6.17 

buildings/km2 and ≥ 50% wildland vegetation were classified as intermix WUI. Then, for all 

pixels not classified as intermix WUI, we mapped those that were interface WUI. We defined 

proximity as areas within a 2.4 km buffer around the large wildland vegetation patches. 

Pixels with ≥ 6.17 buildings/km2 that overlapped with the 2.4 km wildland vegetation buffer 

were classified as interface WUI.  

Accuracy Assessment 

To assess the accuracy of our WUI maps, we checked their accuracy based on the CNN 

model output, the Microsoft building dataset, the object-oriented land cover classification, 

and the present-day land cover data (ESA and NLCD). For each study area, we randomly 

placed non-overlapping circular sample areas with a radius of 500 m over our entire study 

area. We looked at 100 samples in our US study area and 100 samples in our Australia study 

area. We visually inspected each WUI map. For our 1970s WUI maps, we first counted the 

number of buildings in the Hexagon imagery and compared this value to how many buildings 

the CNN model detected. Then, we visually estimated whether there was ≥ 50% or < 50% 

wildland vegetation within each sample and compared that to what the object-oriented 

classification found.  

For our present-day WUI maps, we first counted the number of buildings in the ArcGIS Pro 

imagery base map (Esri, 2020) and compared that value to the number of buildings that the 

Microsoft building dataset detected. After, we visually estimated the percent of wildland 

vegetation in the present-day imagery and compared this value to either the ESA or NLCD 

dataset.  
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For both our 1970s and present-day accuracy assessment, we visually inspected each sample 

and noted whether the WUI class was correctly classified as either intermix WUI, interface 

WUI, or not-WUI. In our final step, we visually inspected whether the CNN model output, 

Microsoft building dataset, object-oriented classification, NLCD, or ESA data were incorrect, 

and ultimately caused a misclassification of the WUI. Overall, we calculated errors of 

omission and errors of commission for our CNN model output and Microsoft building data. 

We also calculated overall WUI map accuracy. 

Results 

Land Cover from Hexagon 

Our land cover maps derived from Hexagon imagery had an overall accuracy of 80±3% for 

our US study area, and 77±4% for our Australia study area. Overall, we found that the 

object-oriented classifications applied on Hexagon imagery yielded good results and allowed 

for accurate WUI mapping. In the 1970s, our US study area contained 85% wildland 

vegetation while our Australia study area contained 95% wildland vegetation. However, from 

1973 to the present-day, 34% of wildland vegetation in our US study area transitioned to 

developed land cover. Additionally, we found that 64% of our US study area and 96% of our 

Australia study area experienced no land cover change.  

We found that our present-day land cover map for our Australia study area was not entirely 

accurate due to the way ESA mapped wildland vegetation and urban areas (Figure 7), and 

this made it difficult to compare land cover change over time. Our 1970s WUI map used an 

object-oriented classification approach and ultimately mapped general urban areas. However, 

the ESA dataset mapped individual buildings (Figure 7) causing ESA to somewhat over 
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classify wildland vegetation and under classify urban areas. Thus, the observed increase in 

wildland vegetation was largely due to differences in land cover mapping data sources and 

methods (Table 6). The ESA dataset is pixel-based and developed using Sentinel 1 and 2 

imagery (10 m resolution), while NLCD is based on Landsat (30 m resolution). Applying the 

object-based classification on present-day high-resolution imagery would have yielded a 

present-day object-based land cover map that would have made for a true comparison of 

WUI change. 

Buildings  

Our CNN model detected buildings with high accuracy for our US study area, and we found 

our CNN model produced an overall accuracy of 80%, detecting 3248 buildings out of the 

4078 total buildings we checked during our accuracy assessment. There were 2% 

commission errors and 20% omission errors (Table 8). For the Microsoft dataset, we checked 

11893 buildings, and of those, 2% were commission errors and 4% were omission errors 

(Table 8). The Microsoft dataset had an overall accuracy of 96%. According to the CNN 

model and the Microsoft dataset, the number of buildings increased by over 250% (Table 7). 

For our Australia study area, we found that the CNN model produced much lower accuracies. 

Our CNN model had an overall accuracy of 60%, detecting 61 buildings out of the 102 total 

buildings we checked during our accuracy assessment. We found 36% commission errors 

and 40% omission errors (Table 8). The Microsoft data had an overall accuracy of 89%, 

detecting 978 buildings of the 1096 buildings we checked. The Microsoft dataset had 4% 

commission errors and 11% omission errors (Table 8). The number of building according to 

the CNN model and Microsoft building dataset increased by about 940% (Table 7). 
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Ultimately, we found during our accuracy assessment that although our CNN model had low 

accuracies and high commission and omission errors, the final WUI map was still accurate 

because the 6.17 buildings/km2 threshold was clearly met or not met.  

Decadal WUI Growth 

When comparing our 1970s and present-day WUI maps, we found WUI growth in both of 

our study areas (Table 6, Figure 8, Figure 9). In our US study area, the WUI grew overall by 

7 percentage points, and building development was solely responsible for that growth. There 

was an especially strong increase in interface WUI, which grew by 24 percentage points. 

Meanwhile, the intermix WUI decreased from 42% coverage in 1973 to 25% coverage in the 

present-day, and this was mainly caused by new development replacing wildland vegetation, 

which turned formerly intermix WUI into not-WUI (Figure 10). Also, in some areas, 

intermix WUI changed to interface WUI (198 km2, 23% of total study area), but there were 

no instances where the interface WUI turned into intermix WUI. About 47% of the study 

area had the same WUI classification (intermix, interface, not-WUI). Additionally, we found 

new WUI areas formed due to new development in areas that were originally wildland 

vegetation in 1973. About 19% of the total study area that was not-WUI in 1973 turned into 

WUI. Finally, overall WUI loss (12% of the total study area), primarily in the intermix WUI, 

was caused by new building development and wildland vegetation reduction, making these 

areas too urban to be defined as WUI.  

In our Australia study area, the WUI grew by 32 percentage points, and this was entirely 

attributed to new building construction, not changes in wildland vegetation. The interface 

WUI covered just <1% of the study area in 1976, but in the present-day, there is none. 
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Meanwhile, the intermix WUI grew by 35 percentage points, and the new intermix WUI was 

almost entirely in areas that were not-WUI in 1976. About 76% of the entire study area 

experienced no change in WUI type while about 24% of areas that were not-WUI in 1976 

turned into intermix WUI in the present-day. We generally found no areas of WUI loss.  

WUI accuracy assessment 

For our accuracy assessment, we checked the WUI classification for 100 randomly placed 

circular sample areas for each study area. When looking at WUI classification only, all 100 

samples in the 1976 Australia study area WUI Map had the correct WUI classification, and 

94 of the 100 samples in the 1973 US study area WUI map had the correct WUI 

classification. The 6 samples that did not have the correct WUI classification in the US study 

area were solely due to the land cover data we derived from Hexagon with our object-

oriented classification. Our object-oriented classification classified some areas that were 

agriculture as wildland vegetation, and this caused areas to be defined as intermix WUI 

instead of interface WUI. However, the WUI was correctly identified, but the WUI type was 

incorrect. Additionally, there were areas that occasionally had incorrect WUI classifications 

in our final WUI maps; however, the randomly placed circular samples were not placed 

there. Although it was minor overall, in these areas with incorrect WUI classifications, the 

CNN model detected bare rock as buildings and therefore, the WUI was incorrectly detected. 

For our present-day WUI maps, we found that all 100 samples had the correct WUI 

classification for both the US and Australia study areas. Although there were issues with the 

ESA dataset overdetecting wildland vegetation and underdetecting urban areas, this did not 

influence the final WUI classifications. The ESA dataset was pixel-based but our 1970s land 
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cover maps were object-based. If we had applied the same object-based classification 

approach for the present-day using present-day high-resolution imagery, there would have 

been a true comparison of WUI growth over the last 50 years in both our study areas. 

Discussion 

We extracted land cover and building information for the 1970s from the historical spy 

satellite Hexagon. This allowed us to create 1970s WUI maps, which we compared to 

current-day WUI maps to study decadal change. We used CNNs to identify buildings, and we 

applied an object-oriented classification to derive land cover data from Hexagon imagery. 

When visually inspecting randomly placed circular sample areas, we found that our WUI 

maps were highly accurate (≥ 94%) for mapping the intermix and interface WUI. However, 

when visually inspecting the samples, both 1970s WUI maps had no misclassifications for 

mapping combined WUI (interface and intermix) vs. non-WUI categories. We found that the 

major driver of WUI growth was new building construction, and in our US study area, some 

areas that were WUI in the 1970s became not-WUI after new developments made the area 

too urban to be classified as WUI. In summary, we demonstrate that it is possible to map the 

WUI for the 1970s by deriving building data with CNNs and land cover data with an object-

oriented classification from Hexagon imagery.  

Spy satellite imagery, such as Hexagon, is especially useful for understanding change over 

time. High-resolution satellite data is not easily available, especially globally, pre-21st 

Century (Poli and Toutin, 2012). Analyses requiring high-resolution data, like WUI mapping, 

may use spy satellite imagery as a reference point as it is available three to four decades 

earlier than commercial high-resolution satellites. Additionally, spy satellite data can be 
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combined with current imagery, such as Landsat, to study long-term changes. For example, 

Landsat imagery has been combined with spy satellite imagery for forest change analyses 

along the Latvian-Russian border (Rendenieks et al., 2020). Another study used spy satellite 

imagery and Landsat to study land resource changes in Senegal from the 1960s – 1990s 

(Tappan et al., 2000). Spy satellite imagery coupled with more current datasets can add 

coverage by a decade or more. Unlike other historical datasets, such as orthophotos, Hexagon 

has near-global coverage and processes can be automated for larger study areas as a single 

Hexagon frame covers the ground distance of 370 nautical miles. Although we used CNNs 

and Hexagon imagery to study WUI growth, there are many applications where CNNs can be 

applied on remotely sensed data. For example, CNNs have been used to extract roads 

(Alshehhi et al., 2017; Yang et al., 2019), wetlands (Mahdianpari et al., 2018; Rezaee et al., 

2018), and archeological sites (Caspari and Crespo, 2019; Lambers et al., 2019; Meyer-Heß 

et al., 2022). CNNs have also been applied to historical spy satellite data, specifically the 

Corona mission which predates Hexagon, to create land cover maps (Deshpande et al., 2021) 

and for qanat detection (qanat: underground water supply technology) (Soroush et al., 2020). 

We found that our CNN model generally performed well for detecting buildings in the 

Hexagon imagery. The Hexagon imagery was distorted in some areas. This can occur from 

the orthorectification process or sometimes, there are film and scanning distortions (Dehecq 

et al., 2020; Maurer and Rupper, 2015). Where those distortions occurred, it was almost 

impossible for the CNN model to detect buildings. The distortions were mostly present in the 

Australia imagery, and this may have caused the high omission and commission errors. 

However, we found no instances in our accuracy assessment where errors in the CNN model 
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caused a misclassification of the WUI. Building footprint datasets rely on high-resolution 

imagery, but so far, building footprint datasets have been based on recent imagery, and lack 

the information required for retrospective analysis. Hexagon imagery allows the unique 

opportunity to derive historical building locations that can be directly compared to the 

present-day building locations. 

Our object-oriented classification produced generally good accuracies for detecting land 

cover from Hexagon imagery. Sometimes, classes were misclassified but we found this rarely 

influenced our final WUI maps. For example, in some instances, bare rocks and areas of bare 

soil were classified as urban in remote areas. The spectral signature of bare rocks and soil is 

sometimes similar to impervious surfaces seen in urban areas (Deng et al., 2015; Sun et al., 

2016). However, the misclassification between rock and urban did not matter for the WUI 

classification because both are non-wildland vegetation. However, the misclassification of 

agriculture as wildland vegetation did occasionally influence our final WUI map. Some 

agriculture fields are very similar to scrublands or grasslands in the Hexagon imagery. The 

misclassification of agriculture fields for other classes such as grasslands is not uncommon 

(Weng and Lu, 2008), and also occurs in the NLCD dataset (Wardlow and Egbert, 2003). 

However, agriculture is considered non-wildland vegetation, while scrub is wildland 

vegetation, so the underdetection of agriculture may have resulted in an overdetection of 

wildland vegetation. That problem was not widespread but resulted in a 6% error in the US 

study area 1973 WUI map and no errors for our Australia 1976 WUI map. 

Both our study areas experienced WUI growth with the major driver being new building 

development. In our US study area, we found that the interface WUI experienced the most 
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growth, while the intermix WUI decreased in overall size; however, new intermix WUI still 

formed. Meanwhile, in our Australia study area, the intermix WUI experienced the most 

growth while the interface WUI became nonexistent. Both the intermix and interface WUI 

are unique in definition and present a different set of challenges when they grow. For 

example, during a wildfire, fire can spread from building to building in the interface WUI 

(Alexandre et al., 2016) while direct ignition from vegetation is more common in the 

intermix WUI (Kramer et al., 2019). In the US and Patagonia, more houses are located in the 

interface WUI while the intermix WUI occupies more area (Argañaraz et al., 2017; Kramer 

et al., 2019). Since both areas are unique, studying where there is interface and intermix WUI 

growth and reduction may be helpful, especially for wildfire management (Hammer et al., 

2007). 

Limitations 

Imagery with occluding cloud cover was a major limitation, especially for our Australia 

study area where much of the available imagery was cloudy and therefore, not useable. 

Additionally, our Australia study area had very bright and therefore blurry urban areas, 

making it impossible to train a CNN model for dense urban areas, as individual buildings 

were not identifiable. Sometimes, when the film is overexposed in cloudy areas, urban areas 

appear very bright. We reduced our study area to exclude densely urban areas to ensure the 

CNN model produced reliable building counts. 

For our vegetation classification, we used both the forward and backward-facing imagery 

while for the CNN model, we used just the backward-facing image. We obtained better 

vegetation maps using both the forward and backward-facing images to detect vegetation but 
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sometimes there was a shift between them. This was likely due to errors in the 

orthorectification process.  

Conclusion 

By utilizing CNNs and an object-oriented classification, we were able to derive building and 

land cover data for the 1970s from the historical satellite Hexagon, map the WUI then, and 

ultimately, study decadal WUI growth. We found WUI growth occurred in both our study 

areas and new building development was the driver for this growth. Our results yielded 

above average accuracy, and we had only a few instances where the WUI was misclassified 

for the 1970s. Historical spy satellites provide an important opportunity to classify 

development and land cover change from before the era of widespread satellite imagery. 
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Table 5: Hexagon images used 

 Image Entity ID Date Acquired 

Southern California D3C1207-100096A010 1973/11/20 

 D3C1207-100096A011 1973/11/20 

 D3C1207-100096F010 1973/11/20 

New South Wales D3C1212-400931A043 1976/11/18 

 D3C1212-400931A044 1976/11/18 

 D3C1212-400931F043 1976/11/18 

 D3C1212-400931F044 1976/11/18 
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Table 6: WUI and land cover totals 

The 1970s wildland-urban interface (WUI) maps were created using Hexagon imagery. The 

present-day WUI maps were created using building data from the Microsoft building 

footprint datasets for the Australia and the US. The land cover data for the present-day WUI 

maps were the National Land Cover Database for the US study area and the European Space 

Agency WorldCover dataset for the Australia study area.  

Study Area Intermix 

WUI 

Interface 

WUI 

Total 

WUI 

Developed 

Area 

Wildland 

Vegetation 

US      

1973 42% 7% 49% 14% 85% 

Present-

Day 

25% 31% 56% 46% 53% 

Australia      

1976 5% < 1% 6% 3% 95% 

Present-

Day 

40% 0% 40% < 1% 98% 
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Table 7: Number of Buildings 

The 1970s building counts are derived from the convolutional neural network (CNN) models 

and Hexagon imagery, and the present-day building counts are from the Microsoft building 

footprint dataset. 

 1970s Building Count Present-Day Building Count 

US Study Area 47,717 174,021 

Australia Study Area 1,125 11,686 
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Table 8: Commission Errors, Omission Errors, and Overall Accuracy  

The commission errors, omission errors, and overall accuracy for the 1) buildings, 2) land 

cover, and 3) wildland-urban interface (WUI) classification. The 1970s buildings are derived 

with convolutional neural networks (CNNs) and Hexagon imagery. The present-day 

buildings are from the Microsoft building footprint dataset. The 1970s land cover is derived 

using an object-oriented classification with Hexagon imagery. The present-day land cover for 

the US study area is from the National Land Cover Database (NCLD), and for the Australia 

study area, it is from the European Space Agency (ESA) WorldCover dataset. Our WUI 

classifications were produced using an algorithm that utilized the building and land cover 

data for the respective study area and year.  
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  Commission Errors  Omission Errors Overall Accuracy 

  1970s Present-

Day 

1970s Present-

Day 

1970s Present-

Day 

  US Study Area 

Buildings 2% 2% 20% 4% 80% 96% 

Land Cover developed

: 0% 

wildland 

veg.: 20% 

developed: 

0% 

wildland 

veg.: 0 % 

developed: 

73% 

wildland 

veg.: 0 % 

developed: 

0% 

wildland 

veg.: 0 % 

85% 100% 

WUI 

Classification 

not-wui: 

0% 

intermix: 

13% 

interface: 

0% 

not-wui: 

0% 

intermix: 

0% 

interface: 

0% 

not-wui: 

0% 

intermix: 

0% 

interface: 

45% 

not-wui: 

0% 

intermix: 

0% 

interface: 

0% 

94% 100% 

  Australia Study Area 

Buildings 36% 4% 40% 11% 60% 89% 

Land Cover developed

: 0% 

wildland 

veg.: 0% 

developed: 

0% 

wildland 

veg.: 0% 

developed: 

0% 

wildland 

veg.: 0% 

developed: 

0% 

wildland 

veg.: 0% 

100% 100% 
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WUI 

Classification 

not-wui: 

0% 

intermix: 

0% 

interface: 

0% 

not-wui: 

0% 

intermix: 

0% 

interface: 

0% 

not-wui: 

0% 

intermix: 

0% 

interface: 

0% 

not-wui: 

0% 

intermix: 

0% 

interface: 

0% 

100% 100% 
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Figure 6: Flowchart showing the methods used to create the 1970s and present-day 

WUI maps for our US and Australia study areas. 
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Figure 7: a) A select area of the Australia study area in 1976; b) The results of our 

object-oriented classification for 1976 for the selected extent. The object-oriented 

classification defined urban well in this example; c) The extent for 2021. The study area 

has had minimal to no changes since 1976; d) The ESA WorldCover dataset for 2020 
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for the selected extent. Even though the study area has experienced no change in land 

cover, ESA WorldCover has a pixel-based classification and therefore, produces a more 

speckled appearance. ESA WorldCover also missed a few urban areas. When 

comparing the two land cover datasets, it appears that there has been a reduction in 

developed areas; however, there has been no change; e) where the extent is located 

within our Australia study area.  
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Figure 8: Changes in WUI and land cover for our US study area. 
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Figure 9: Changes in WUI and land cover for our Australia study area. 
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Figure 10: Examples of WUI change in our US study area. The 1973 image is from 

Hexagon and the present-day image is from Maxar. 

 

 


